
Cryptographic Complexity of
Multi-party Computation Problems:

Classifications and Separations

Manoj Prabhakaran? and Mike Rosulek?

Department of Computer Science
University of Illinois, Urbana-Champaign

{mmp,rosulek}@uiuc.edu

Abstract. We develop new tools to study the relative complexities of se-
cure multi-party computation tasks in the Universal Composition frame-
work. When one task can be securely realized using another task as a
black-box, we interpret this as a qualitative, complexity-theoretic reduc-
tion between the two tasks. Virtually all previous characterizations of
MPC functionalities, in the UC model or otherwise, focus exclusively on
secure function evaluation. In comparison, the tools we develop do not
rely on any special internal structure of the functionality, thus applying
to functionalities with arbitrary behavior. Our tools additionally apply
uniformly to both the PPT and unbounded computation models.
Our first main tool is an exact characterization of realizability in the UC
framework with respect to a large class of communication channel func-
tionalities. Using this characterization, we can rederive all previously-
known impossibility results as immediate and simple corollaries. We also
complete the combinatorial characterization of 2-party secure function
evaluation initiated by [10] and partially extend the combinatorial con-
ditions to the multi-party setting. Our second main tool allows us to
translate complexity separations in simpler MPC settings (such as the
honest-but-curious corruption model) to the standard (malicious) set-
ting. Using this tool, we demonstrate the existence of functionalities
which are neither realizable nor complete, in the unbounded computation
model.

1 Introduction

In this work, we seek to investigate the intrinsic “cryptographic complexity” of
secure multiparty computation (MPC) functionalities. MPC functionalities can
have a rich structure, being interactive, often randomized, computations involv-
ing more than one party. Clearly not all functionalities have equal cryptographic
sophistication. For instance, one expects a task like oblivious transfer to be much
more sophisticated than the mere task of communication or local computation.
One could ask if the two-party task of commitment is any more complex than

? Partially supported by NSF grant CNS 07-47027.

the task of two (mutually distrusting) parties generating unbiased coin-flips. We
present a complexity-theoretic approach to asking and answering such questions.

At the heart of such an approach is identifying meaningful (or useful) no-
tions of reductions between MPC functionalities, that would allow us to form
“complexity classes” of functionalities with similar cryptographic complexity.
The most natural notion of reduction for MPC functionalities is in terms of “se-
cure realizability:” can one functionality F be securely realized given access to
another functionality G? Indeed, this notion of reduction has been extensively
used in literature. Yet, the way this “reduction” was traditionally defined, it was
not transitive. This severely restricted its usefulness as a reduction for study-
ing cryptographic complexity. In the recently developed framework of Universal
Composition (UC) [7], however, the Universal Composition theorem guarantees
that the reduction based on secure realizability in that framework is indeed a
transitive relation. It is in this framework that we ground our study.

Our results presented below can be viewed as relating to an abstract notion
of complexity of MPC functionalities. More concretely, these can be interpreted
as results on secure realizability in the UC framework.

Our Results. We introduce new techniques and tools to better understand and
classify cryptographic complexity classes (as defined using secure realizability in
the UC framework). We focus on tools that apply broadly to arbitrary function-
alities, whereas most previous work either focused on secure function evaluation
or involved ad hoc arguments specific to particular functionalities. Further, the
main tools we develop apply in the standard UC model, as well as in the infor-
mation theoretic (or computationally unbounded) variant.

We then apply our new tools to give more concrete results for specific func-
tionalities and characterizations for important subclasses of functionalities. Our
main results mostly involve showing separations in complexity among function-
alities, as opposed to new protocol constructions. Our main results fall into two
categories based on the techniques used:

Classifying Functionalities Using Splittability. We define a very general aspect
of cryptographic complexity called splittability. We show that splittable func-
tionalities are exactly the ones that have secure protocols in the plain model,
with respect to static corruptions, using an idealized communication channel
(Theorem 1). This is the first alternate characterization of realizability in the
UC model.

Superficially, the definition of splittability is similar to the definition of re-
alizability in the UC framework, and indeed, showing that a functionality is
splittable is not much easier than directly showing that it is realizable. However,
the main utility of the splittability characterization is that it is often extremely
easily to show that a functionality is unsplittable. We rederive the impossibility of
zero-knowledge proofs [7], bit commitment, coin-tossing, and oblivious transfer
[9] as simple and easy consequences of this characterization. We also use splitta-
bility to complete the combinatorial characterization of 2-party secure function
evaluation (SFE) initiated in [10, 11] (Theorem 5).

We generalize the notion of splittability as a transitive binary relation on
functionalities, which we view as a complexity-theoretic reduction. Using this
definition, we identify a class that includes all natural communication channels,
and which we argue defines a natural class of “low cryptographic complexity.”
Then we show that for all G in this class, our exact characterization generalizes;
that is, F is splittable with respect to G if and only if F has a secure protocol
on the channel G (Theorem 3), with respect to static corruptions.

Furthemore, if a functionality is unsplittable according to the simpler, less
general definition, then it has no secure protocol on any natural channel. Thus,
splittability provides a powerful and easy way to separate the cryptographic
complexities of many functionalities.

Our main technical results hold for multi-party functionalities, although the
definitions become complicated and less intuitive for more than 2 parties. How-
ever, we show that the 2-party case yields some necessary conditions for multi-
party functionalities (Theorem 7). We leave open the question of whether they
are sufficient in general.

Passive Corruption and Deviation-Revealing Functionalities. A functionality’s
realizability depends crucially on the model of the adversary’s corruption. For
instance, in the unbounded computation model, functionalities like coin-flipping
and commitment become trivial if the adversary is passive (honest-but-curious),
while oblivious transfer still remains unrealizable. This motivates using alternate
(and possibly unrealistic) corruption models to study the complexity of function-
alities. We develop an effective technique to “lift” realizability separations from
restricted corruption settings to the standard malicious corruption setting. While
the techniques of splittability can give separations involving only relatively low-
complexity functionalities, this second technique can yield separations among
higher-complexity functionalities.

Translating separations in the restricted corruption settings to the standard
setting is possible only for certain “well-behaved” functionalities. We identify
such a well-behavedness property called deviation revealing and formulate an
appropriate translation recipe (Theorem 4). As in the case of splittability, the
deviation-revealing property is applicable to completely arbitrary functionalities.

Combining this recipe with known separations in various corruption models
(as well as some easy observations), we show a sequence of four natural function-
alities that form a hierarchy of strictly increasing complexity, in the unbounded
computation model (Theorem 8). This implies that the two intermediate func-
tionalities in this sequence are neither complete nor realizable (using any natural
communication channel), and that there is more than one distinct intermediate
level of complexity. Our result separating these two functionalities of intermedi-
ate complexity is perhaps unique since most previous works focused on only the
extremes of complexity.

Related Work. Multiparty computation was introduced in the eighties, and se-
cure protocols were given early on for realizing all functionalities [38, 18, 13, 24,
5]. However, the notion of security used was stand-alone security. MPC was also

studied in an information theoretic setting, and with weaker models of adver-
sarial behavior: honest-but-curious adversaries [16, 28, 27] and honest majority
[13, 5]. In these models, much work has focused on developing alternate charac-
terizations for the extremes of complexity: realizability [15, 16, 28, 29] and com-
pleteness [25, 30, 26, 27, 20, 4]; see the full version [35] for a more comprehensive
survey of these results.

Canetti [7, 6] (and independently Pfitzmann and Waidner [33]) introduced
the general framework of network-aware security used in this work, known as
UC security. The first impossibility results in the UC framework were already
given in [7], followed by more in [9, 10, 23]. Our splittability characterization is
motivated by common techniques underlying these results. A somewhat similar
technique appears in a different context in an impossibility proof by Dwork et
al. [17]. Network-aware secure protocols for all functionalities were given under
different variations of the model [12, 1, 8, 36, 3, 22]. Impossibility results were also
shown for various settings with less standard notions of composability [31, 32,
2]. We remark that our results are meaningful in variations of the model which
simply involve augmenting the UC model with a “set-up” functionality. However,
some of our theory does not apply to the models in [36, 3], which effectively allow
different computational powers for adversaries/environments and simulators.

2 Preliminaries

Some of our conventions differ from the original UC model. We now give an
overview of the model while highlighting these (cosmetic) differences, which are
motivated by our “complexity theoretic” view of MPC.

Modeling conventions. The network-aware security framework for MPC includes
four kinds of entities: an environment, multiple parties, an adversary, and a
functionality. The functionality’s program fully specifies an MPC problem, and
as such, is the primary object we classify in this paper.

Emphasizing the generality of our theory, we do not specify any computa-
tional limitations on these network entities, but instead consider abstract classes
of admissible machines. We only require that a machine that internally simu-
lates several other admissible machines is itself admissible.1 Our general results
apply uniformly for any such system, the two most natural of which are compu-
tationally unbounded systems (which admit all probabilistic machines) and PPT
systems (which admit all probabilistic, polynomial-time machines).

Unlike the original UC model, we model the communication among the envi-
ronment, parties, and functionalities as an ideal, private, tamper-proof channel.
In the UC model, an adversary can tamper with and delay such communica-
tions. Instead, we assume that functionalities themselves achieve the same effect
by directly interacting with the adversary each time a party communicates with

1 As such, our theory is not directly applicable to the network-aware security model
introduced in [36, 34] and also used in [3], where an adversary can sometimes access
extra computational power that an environment cannot.

the functionality. This difference is significant in defining non-trivial protocols,
which we address later in this section. Furthermore, there is no built-in commu-
nication mechanism among the parties; all communication must be facilitated by
a functionality. In this way, we are able to uniformly consider arbitrary channels.

We require that a protocol interact only with a single instance of some func-
tionality. This is without loss of generality, since we can always consider a single
“augmented” functionality that provides an interface to multiple independent
sessions of simpler functionalities. This convention maintains the strict binary
nature of our complexity reduction. Also, for simplicity, we assume that parties
and communication ports of the functionality are numbered, and that a protocol
which uses F must have the ith party interact only as the ith party to F . Again,
this is without loss of generality, as an “augmented” functionality could provide
an interface to multiple different “port-mappings” of a simpler functionality. To
emphasize a qualitative measure of cryptographic complexity, we generally (im-
plicitly) consider reductions among such augmented functionalities. In the UC
model, F and its augmented version F+ can be realized in terms of one another
(though not following our notational conventions). Thus all of our results may
be interpreted as being in terms of augmented or unaugmented functionalities,
whichever is appropriate.

Notation. exec[Z,A, πG] denotes the probability of the environment Z out-
putting 1 when it interacts with parties running the protocol πG (i.e., π using
G as the sole medium for interaction), in the presence of an adversary A. We
denote the “dummy protocol” used to access a functionality by ∂ (i.e., an ideal-
world direct interaction with F will be denoted as running the protocol ∂F).
We say π is a secure realization of F with respect to G if if for all adversaries
A, there exists a simulator S such that for all environments Z, exec[Z,A, πG]
and exec[Z,S, ∂F] are negligibly close. When there is a secure realization of
F with respect to G, we write F v G. We define the natural complexity class
realizG = {F | F v G}, the class of functionalities that can be securely real-
ized using G. Our main results apply to both PPT and unbounded systems in
a unified way, so our notation does not distinguish between them. To explicitly
refer to PPT or unbounded systems, we write vp,realizp and vu,realizu,
respectively.

Non-trivial protocols. In the standard UC model where an adversary can de-
lay communications between functionality and parties, a protocol which does
nothing is trivially a secure realization (since the same effect can be achieved in
the ideal world by an adversary who indefinitely blocks all outputs). Thus it is
necessary to restrict attention to non-trivial protocols [12, 10], which are secure
even when the ideal-world adversary eventually delivers all messages.

In our model, all communication between parties and functionality is on an
idealized channel that does not allow blocking, but we may consider function-
alities that explicitly interact with the adversary, allowing it to block or delay
outputs to honest parties. For such functionalities, we must also consider a def-
inition of non-triviality for our results to be meaningful.

Definition 1. Let wrap(F) be the functionality that runs F , except that outputs
generated by F are kept in an internal queue. wrap(F) informs the adversary of
each such output (source, destination, and length) and delivers it only if/when
the adversary instructs it to.

Definition 2. Let π be a secure realization of wrap(F) with respect to wrap(G).
We say π is non-trivial, and write wrap(F) vnt wrap(G), if π is also a realization
of F with respect to G.

In other words, a secure realization is non-trivial if, in the optimistic case
where the adversary delivers all messages on wrap(G), the protocol realizes F
(which may guarantee delivery of outputs, for example).2 Indeed, it is often the
case that one would consider wrap(Fpvt) (or similar) as one’s communication
channel, and would be willing to settle for the security of wrap(F).

The important implication of Definition 2 is that F 6v G implies wrap(F) 6vnt

wrap(G). Thus the complexity separations we obtain (between more simply de-
fined functionalities) also imply corresponding separations for the weaker, more
realistic wrapped functionalities, with respect to non-trivial protocols.

3 Structural Results

In this section we present our two new tools for studying the realizability of
functionalities. These tools apply to arbitrary functionalities and to both PPT
and unbounded computational systems. We call this set of results our “structural
results” to emphasize their generality. Later, in Section 4, we apply these struc-
tural results to specific settings and classes of functionalities to obtain concrete
results.

3.1 Splittability of (Regular) 2-Party Functionalities

The main tool we develop to characterize classes realizG is a theory of splitta-
bility. For expositional clarity, we first present a special case of our splittability
theory which captures the essential intuition and still has useful consequences
in the more general setting. Then we remove these restrictions and present the
general theory for 2-party functionalities. The general theory for the multi-party
setting is more complicated and is defered to the full version.

In this section we restrict attention to a class of functionalities called 2regular:
the 2-party functionalities which do not directly interact with the adversary
when no parties are corrupted, and whose behavior does not depend on which
parties are corrupted. This class already includes all secure function evaluation
(SFE) functionalities as they are typically defined. We also restrict attention to

2 This definition is slightly stronger than the non-triviality condition in [12, 10].
Their definition was arguably sufficient for secure function evaluation, but must be
strengthened to be appropriate for more general functionalities. See the full version
for more detailed justification.

F

P1 P2

Z

F F

T
P1 P2

Z
F functionality FT

split functionality

Fig. 1. 2-party splittability (for F ∈
2regular). The shaded box shows FT

split.

π1 π2

F F

T

Z

Fig. 2. Secure protocol π for a
splittable functionality F .

(1)

F

P1 P2

Z
(2)

π1 π2

Z
(3)

Z ′

π1 π2A

Z

(4)

Z ′

F

π1 P2S2

Z
(5)

Z ′′

F

π1 P2A S2

Z

(6)

Z ′′

FF

P1 P2S1 S2

Z
(7)

FF

P1 P2

T
S1 S2

Z

Fig. 3. Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply
the security guarantee three times: first with no parties corrupted (between boxes 1
and 2), then with a corrupt party P1 which plays a man-in-the-middle between P2

and an honest P1 inside the environment (between boxes 3 and 4), and finally with a
corrupt party P2 which plays a man-in-the-middle between P1 and the simulator from
the previous step (between boxes 5 and 6), all with appropriately defined environments.
The machine T required by the definition of splittability is derived from the simulators
for the last two cases, by letting them simulate the protocol to each other.

F

P1 P2

Z

G

T12

F FG

T1 T2

P1 P2

Z

Fig. 4. General 2-party
splittability (Defini-
tion 7). The shaded
box in the far left
shows SG,T12 , and the
other shaded box shows
FG,T1,T2

split . Dotted lines
indicate interaction as
adversary or corrupted
party.

secure protocols that use an ideal communication channel. We let Fpvt denote
the completely private channel functionality, which allows parties to privately
send messages to other parties of their choice, and does not interact with the
adversary at all (not even to notify that a message was sent).

Definition 3. Let F be a 2-party functionality and T an admissible machine.
Define FTsplit as the compound functionality that does the following (See Fig. 1):

FTsplit internally simulates an instance of T and two independent instances of

F , which we call FL and FR. The first party of FTsplit directly interacts with FL as

its first party. The second party of FTsplit directly interacts with FR as its second
party. The machine T interacts only with FL and FR, as the other parties to
these functionalities.

Definition 4 (Splittability). F ∈ 2regular is splittable if there exists a ma-
chine T such that F is indistinguishable from FTsplit. That is, for all environments

Z and the dummy adversary A that corrupts no one, we have exec[Z,A, ∂F] ≈
exec[Z,A, ∂FT

split], where ∂ denotes the dummy protocol. We define 2regsplit
as the class of all splittable functionalities in 2regular.

At a very high level, F is splittable if there is a way to successfully mount
an undetectable man-in-the-middle “attack” in the ideal world, between two
independent instances of the functionality.

A crucial property of this definition is that it is often relatively easy to show
that a functionality is unsplittable. See Section 4.1 for several examples involving
some common functionalities.

Theorem 1. F ∈ 2regular is securely realizable using Fpvt if and only if F
is splittable. That is, 2regular ∩ realizFpvt = 2regsplit.

Proof (Sketch). The easier direction is to see that 2regsplit ⊆ realizFpvt ∩
2regular. If F is splittable, then a protocol (π1, π2) can be derived as shown in
Fig. 2. Note that the protocol uses a perfectly private channel for communication,
which in our model is essentially the same kind of channel that the network
entities use to communicate. Interestingly, the protocol at each end simulates
a copy of the ideal functionality. Then the protocol’s simulator can faithfully
simulate the honest party’s protocol merely by accessing the functionality in the
ideal world.

The more interesting direction is showing that every realizable functional-
ity is splittable. It generalizes the “split-adversary” technique used by Canetti,
Kushilevitz, and Lindell [10], and also has parallels with an impossibility proof
by Dwork et al. [17].3 A visual overview is given in Fig. 3.

3 The common thread in these proofs is to construct two separate corruption scenarios
and consider a man-in-the-middle attack which pits the honest players in the two
scenarios against each other.

3.2 General Theory of Splittability

Protocols in network-aware frameworks are usually considered to use less ide-
alized channels than Fpvt. For instance, even the standard model of a private
channel reveals to the adversary the fact that a message was sent, and often its
length. It is also quite common to model functionalities which interact directly
with the adversary, or whose behavior depends on which parties are corrupted.

In this section, we generalize the theory to apply to securely realizing ar-
bitrary functionalities, using protocols which also use arbitrary functionalities
as their “communication channels.” Our theory also generalizes to multi-party
functionalities; however, we present only the restriction of our results to 2-party
functionalities. To state and prove our results for multi-party functionalities re-
quires specialized notation, and is defered to the full version.

Definition 5. Let F and G be 2-party functionalities and T1 and T2 be admis-
sible machines. We define FG,T1,T2split as the compound functionality that does the
following, when interacting with honest parties P1 and P2 and an adversary (see
Fig. 4):

FG,T1,T2split internally simulates instances of T1, T2, G, and two independent
instances of F , which we call FL and FR. P1 directly interacts with FL as its
honest first party. P2 directly interacts with FR as its honest second party. The
machine T1 interacts with FL as its adversary, and as its corrupt second party.
The machine T2 interacts with FR as its adversary, and as its corrupt first party.
Finally, T1 and T2 interact as honest first and second parties to G, respectively.
FG,T1,T2split ’s adversary interacts directly as the adversary to G.

Definition 6. Let G be a functionality and T an admissible machine. We define
SG,T as a simulator which internally runs a copy of G and T , where T interacts
as the adversary to the external functionality and as the two honest parties to
G. SG,T lets the external dummy adversary interact with G as its adversary (see
Fig. 4).

Definition 7 (General Splittability). (See Fig. 4) For two 2-party function-
alities F and G, we say that F is splittable with respect to G (written F ≺ G)
if there exist machines T12, T1, T2 such that for all environments Z, and the
dummy adversaries A which corrupts no parties, we have exec[Z,SG,T12 , ∂F] ≈
exec[Z,A, ∂F

G,T1,T2
split]. We define splitG = {F|F ≺ G} and split∗ =

⋃
G split

G.

As in the previous section, our definitions (and results) apply to both PPT
and computationally unbounded systems. We write splitGu or splitGp , split∗u or
split∗p and F ≺u G or F ≺p G to explicitly specify the type of the systems.

As in Section 3.1, we aim to establish a relationship between splittability and
realizability. Our main technical tools relating the two notions are given below:

Theorem 2. For any 2-party functionalities F , G and H, the following hold:

1. If F ≺ G then F v G. [Splittability implies realizability]
2. If F v G ≺ H, then F ≺ H. [“Cross-transitivity”]
3. If F ≺ G ≺ H, then F ≺ H. [Transitivity of ≺]
4. If F v G v H, then F v H. [UC Theorem [7]]

Proof (Sketch).

1. Analogous to the proof of Theorem 1, we can construct a protocol for F in
the following way: The first party simulates F along with T1, while the second
party simulates F along with T2 (as they interact in FG,T1,T2split). The simulator

for a dummy adversary who corrupts no parties is SG,T12 , and the simulator for
a dummy adversary who corrupts party i can be constructed from Ti and G.

2. This is the main technical tool. The proof is analogous to that of The-
orem 1, but accounts for the fact that the communication channel used by a
protocol for F is not Fpvt but an arbitrary functionality G, which in turn is
splittable with respect to H.

3. This is an immediate consequence of claims 1 and 2.

4. This is just a restatement of the universal composition theorem [7] in our
notation. Though the original statement and proof of the UC theorem uses PPT
systems, it is easy to see that it extends to the computationally unbounded
systems as well.

In the simplified setting of Section 3.1, splittability provided an exact char-
acterization of realizability with respect to completely private channels; namely,
realizFpvt = split∗. Ideally, we would like this characterization to generalize as
realizF = splitF for all F , but this is not the case. For instance F ∈ realizF

for all F , but F 6∈ splitF for several functionalities, e.g., commitment. However,
the characterization does generalize for a certain class of functionalities.

Definition 8. F is called self-splittable if F ≺ F . We denote the class of all
self-splittable functionalities as simplechannels.

The class simplechannels can be viewed as a natural class of low crypto-
graphic complexity in our landscape of complexity theory. Intuitively, F ≺ F
means that F does not carry out any irreversible computation on its inputs. It
can be easily seen that all typical communication channels (e.g., authenticated or
unauthenticated, public or private, multicast or point-to-point, completely ad-
versarially controlled), which are often implicitly incorporated into the network
model, are in simplechannels.

Theorem 3. splitF = realizF for all F ∈ simplechannels.

In other words, functionalities which are realizable using a simple communi-
cation channel F are exactly those which are splittable with respect to F . The
proof follows as an easy consequence of Theorem 2. Interestingly, the simple
communication channels are exactly those functionalities for which this char-
acterization holds. That is, simplechannels = {F | splitF = realizF}. As
before, these statements hold for both PPT and computationally unbounded
systems. However, note that simplechannelsu and simplechannelsp are dif-
ferent classes. For instance, a channel which applies a one-way permutation to
its input is in simplechannelsu \ simplechannelsp.

Relation to the simplified definition. The simplified definition of splittability
(Definition 4) was elegant and easy to apply. We would still like to be able to
use this simplified definition to say as much as possible about the complexity of
functionalities, even in the general setting. The following lemma gives us a tool
to do just that:

Lemma 1. split∗ = splitFpvt (= realizFpvt).

Intuitively, Fpvt is the “easiest” functionality to split with respect to. Equiv-
alently, Fpvt is the most secure channel possible in the model. The special status
of Fpvt is due to the fact that the network entities in our model communicate
using essentially such a channel.

Most importantly, combining Lemma 1 with the characterization of Theo-
rem 3, we see that if F is unsplittable according to the simple definition, then
there is no secure Fpvt-protocol for F , and hence no secure protocol using any
natural communication channel. As we shall see in Section 4, it is often very easy
to show that a functionality is unsplittable according to the simpler definition.
Thus, splittability gives us a convenient tool to easily show impossibility results
of this kind.

3.3 Deviation Revealing Functionalities

Splittability provides a convenient way to give separations that involve the rela-
tively low-complexity functionalities of simplechannels. However, splittability
is virtually useless in distinguishing among higher complexity functionalities,
which nevertheless exhibit a rich variety in their (intuitive) cryptographic com-
plexities. For instance, one may ask whether FOT (oblivious transfer) and Fcom

(commitment) have different cryptographic complexities or not. In this section
we develop a tool to answer many of these questions.

We introduce a notion called deviation revealing functionalities, which will
allow us to lift existing separations of functionalities derived in simpler settings
(such as the honest-but-curious model) to the standard UC setting.

Relating passive and active corruption. Consider the 2-party SFE functionality
FOR that evaluates the boolean OR of Alice and Bob’s input bits and outputs
it to only Bob. FOR has a secure protocol in which Alice sends her input bit
to Bob, and Bob locally computes the OR using that and his own input. This
protocol is secure because if Bob wants to, he can learn Alice’s bit even in the
ideal world (by sending 0 to FOR). However, this is too much information for an
“honest-but-curious” Bob when his input is 1. In fact it is known [16] that there
is no secure protocol for FOR in the honest-but-curious, unbounded computation
setting (where corruption in the ideal world must also be passive).

As such, in general, we cannot expect results about realizability in restricted
corruption scenarios to imply anything about realizability in the unrestricted
corruption model. However, several natural and important functionalities do not
share this odd nature of FOR. We formulate the deviation revealing condition to
capture such “nicely behaved” functionalities.

Corruption schemes. First we need to generalize the corruption model, to allow
regular (active) corruption as well as the restricted passive (a.k.a honest-but-
curious) corruption. For an m-party functionality a corruption scheme C is a
subset of {none, passive, active}m. We say that a (static) adversary A C-corrupts
(with respect to a protocol π) if the sequence of corruptions γ effected by A is
in C. We will be interested in what we call uniform corruption schemes, wherein
in each corruption sequence the corrupt parties either are all actively corrupted
or are all passively corrupted: i.e., C is a uniform corruption scheme if it is a
subset of {none, passive}m ∪ {none, active}m.

For a corruption scheme C, we say that F vC G if there exists a protocol π
such that for all C-corrupting (with respect to π) A, there exists a C-corrupting
(with respect to the dummy protocol ∂) S such that for all environments Z,
exec[Z,A, πG] ≈ exec[Z,S, ∂F].

Deviation Revealing Functionalities. Intuitively, a deviation revealing function-
ality is one for which it is easy for the environment to detect whether an ad-
versary is C-corrupting or not. However, to consider adversaries which deviate
from C-corruption in benign ways, we use a more sophisticated definition. Note
that, as with our other definitions, the following definition is given in terms of an
ideal interaction with the functionality, and thus applies uniformly to arbitrary
functionalities.

Definition 9. F is C-deviation-revealing if for all adversaries A, either:
– there exists a correctness environment Z such that exec[Z,A, ∂F] 6≈ exec[Z, Ã, ∂F],

where Ã is the dummy C-corrupting adversary;

– or, there exists a C-corrupting adversary A′ such that for all environments
Z, exec[Z,A, ∂F] ≈ exec[Z,A′, ∂F].

A correctness environment is one which only interacts with the adversary by
sending inputs to the corrupted parties and receiving their outputs.

Following is our toolkit for lifting relations in a C-corruption setting to the
standard corruption setting

Theorem 4. For any functionalities F , G and H, the following hold:

1. If F vC G vC H, then F vC H. [Universal Composition.]
2. If F is C-deviation revealing for a uniform C, then

a. F v G =⇒ F vC G [C-realizability from realizability.]
b. (F 6vC H ∧ G vC H) =⇒ F 6v G [Separation from C-separation.]

4 Applications of the Theory

In this section, we apply the general theory developed in the previous section
to specific settings and classes of functionalities, to obtain several new, concrete
results, as easy consequences.

4.1 Simple Impossibility Results

A compelling aspect of our splittability characterization is that all previous im-
possibility results for the UC model can be obtained quite easily, because the
splittability definition involves only interactions with ideal functionalities.

For instance, the bit commitment functionality (Fcom) is unsplittable: Con-
sider a simple environment which asks Alice to commit to a random bit, waits for
Bob to receive acknowledgement of the commeitment, instructs Alice to reveal
the bit, and finally checks whether Bob received the correct bit. In any potential
split of Fcom, T must at some point commit to a bit in one of the instances
of Fcom, but its view at that time is by definition independent of the environ-
ment’s choice, and thus the bit that Bob eventually receives will be wrong with
probability 1/2.

Similarly, the coin-tossing functionality Fcoin is unsplittable, because any split
of Fcoin simulates two independent copies of Fcoin, and so (regardless of T— it
sends no input to either copy of Fcoin) the two parties’ outputs will disagree
with probability 1/2. Using similar arguments, it is a very easy exercise to see
that several other important 2-party functionalities, such as oblivious transfer
(FOT) and, in PPT systems, zero-knowledge proof for languages in NP \ BPP,
are unsplittable.

Applying Theorem 3 and Lemma 1, we can further see that these functional-
ities are unrealizable via protocols that use any simple communication channel
(i.e., one from simplechannels). These impossibility results also rule out the
possibility of non-trivial protocols for variants of these functionalities which allow
the adversary to delay the honest parties’ outputs.

4.2 Combinatorial Characterization for 2-party SFE

We use the splittability characterization for 2regular to give an explicit, com-
binatorial characterization for 2-party secure function evaluation. This subsumes
and completes the characterizations initiated in [10, 11]. The impossibility results
in [10, 11] were later extended in [23], to the setting where certain “trusted setup”
functionalities F are also available for protocols to use. These extensions can also
be easily derived in our framework by observing that these particular function-
alities F are self-splittable, thus impossibility under Fpvt implies impossibility
under F .

Definition 10. F is a 2-party secure function evaluation (SFE) functionality
if it waits for inputs x and y from the two parties, respectively, computes two
(randomized) functions f1(x, y) and f2(x, y), and sends these values to the two
parties, respectively. In this case, we write F = (f1, f2).

Note that SFE functionalities are in the class 2regular. We now define two
properties of 2-party SFE functionalities which will be used in our character-
ization. We write f(x, y) ≈ g(x′, y′) to indicate that the two distributions are
indistinguishable (computationally or statistically, depending on the system).

Definition 11. We say that F = (f1, f2) has unidirectional influence if one
party’s output does not depend on the other party’s input. That is, if f1(x, y) ≈
f ′1(x) for some function f ′1, or f2(x, y) ≈ f ′2(y) for some function f ′2. Otherwise
F has bidirectional influence.

Definition 12. Let F = (f1, f2) be a 2-party SFE functionality with unidirec-
tional influence; say, f1(x, y) ≈ f ′1(x). We say that F is negligibly hiding if there
exists machines R1, R2 such that:

∀x, y : Pr
[
(y∗, s)← R1; f2

(
R2

(
s, f2(x, y∗)

)
, y
)
6≈ f2(x, y)

]
is negligible

The probability is over the randomness of f1, f2, R1 and R2.

If F is deterministic and has input domains of polynomial size (in the secu-
rity parameter), then negligibly hiding is a simple combinatorial property: F is
negligibly hiding if and only if there exists y such that f2(x, y) = f2(x′, y) ⇒
f2(x, ·) ≡ f2(x′, ·). Our definition succinctly incorporates both the completely
revealing and efficiently invertible properties of [10].

Theorem 5. Let F = (f1, f2) be a 2-party SFE functionality. F is securely re-
alizable (using Fpvt) if and only if F has unidirectional influence and is negligibly
hiding.

Proof (Sketch). We show that F is splittable if and only if it has unidirectional
influence and is negligibly hiding. If it has bidirectional influence or is not negli-
gibly hiding, then for every T , it is straight-forward to construct an environment
that distinguishes between F and FTsplit.

On the other hand, if F has unidirectional influence (say, from the first party
to the second) and is negligibly hiding, then a successful strategy for T is to
choose its input to FL according to R1, then choose its input to FR according
to R2. The definition of negligible hiding implies that the second party’s output
from such a FTsplit is correct with overwhelming probability. Unidirectional influ-
ence implies that the first party’s output is correct, since (roughly) it depends
only on the first party’s input, not on anything provided by T).

Again, we reiterate that Theorem 5 also characterizes the existence of non-
trivial protocols for SFE functionalities in which the adversary can delay honest
parties’ outputs from the functionality.

4.3 Results for Multi-party Functionalities

For multi-party functionalities involving more than two parties, where the split-
tability definition is much more complicated, combinatorial characterizations like
that of Theorem 5 seem difficult to come by. Nonetheless, we can use 2-party
results to obtain some strong necessary conditions for the multi-party setting.

A well-known technique for studying m-party SFE functionalities is the par-
titioning argument: consider 2-party SFE functionalities induced by partitioning

of the m parties into two sets. If the original functionality is realizable, then
clearly so is each induced 2-party functionality.

To exploit the partitioning argument, first we extend the notion of influence
from Definition 11 to multi-party SFE: For i 6= j, if there exist inputs x1, . . . , xm
and x′i such that fj(x1, . . . , xm) 6≈ fj(x1, . . . , x

′
i, . . . , xm), then we say party i

influences the output of party j, and write i
F
 j.

Corollary 6 (of Theorem 5) If F is an m-party SFE functionality securely
realizable using completely private channels, then in the directed graph induced

by
F
 , either all edges have a common source, or all edges have a common des-

tination.

We see that there are only two simple kinds of securely realizable SFE func-

tionalities. Let p be the common vertex in the graph induced by
F
 . If all edges

are directed towards p, then we say that F is aggregated (via party p). If all
edges are directed away from p, then we say that F is disseminated via party p.

3-party characterization. We now show that in some instances, the above par-
tioning argument does lead to a sufficient condition for realizability of multi-
party functionalities. We consider the class 3regular of 3-party functionalities
which do not interact with the adversary, and whose behavior does not depend
on which parties are corrupted. We show that for functionalities in 3regular
that have a secure honest-majority protocol,4 the partitioning argument along
with our previous 2-party characterization suffices to characterize realizability.

Theorem 7. If F ∈ 3regular has an honest-majority protocol using channel
G ∈ simplechannels, then F v G if and only if all 2-party restrictions of F
are UC-realizable using Fpvt.

Proof (Sketch). Informally, we construct a protocol for F by combining the
honest-majority protocol for F and the machines guaranteed by each 2-party
splitting of F . For adversaries that corrupt only one party, a simulator is de-
rived from the simulator for the honest-majority protocol. For adversaries that
corrupt two parties, we use the splittability criterion to construct a simulator.

In particular, this implies that realizable 3-party SFE functionalities have
a simple combinatorial characterization analogous to Theorem 5. Our protocol
requires each player to internally simulate executions of another protocol with
a weaker/different security guarantee (in this case, the 2-party restrictions and
the honest-majority protocol). This is somewhat comparable to the “MPC in
the head” approach [21, 19], where significant efficiency gains are achieved in the
standard corruption model by leveraging MPC protocols with security in the

4 Honest majority protocols are known to exist for essentially all SFE functionalities
using a broadcast channel. As outlined in [7], such protocols can be constructed by
adapting the well-known information theoretically secure (stand-alone) protocols of
[13, 5, 37].

honest-majority settings. Our constructions indicate the possibility of extending
this approach by having the parties carry out not a direct protocol execution,
but a related simulation.

The same approach does not seem to apply for functionalities which interact
with the adversary, whose behavior depends on which parties are corrupt, or
which involve more than three parties (so that two parties do not form a strict
majority). We leave it as an important open problem whether the partitioning
argument along with our previous 2-party characterizations suffice for character-
izing multi-party functionalities in general. Indeed, the analogous partitioning
argument has been studied for the honest-but-curious setting and shown to be
insufficient in this regard [14].

4.4 A Strict Hierarchy of Intermediate Complexities

Finally, we apply the main structural result of our deviation-revealing theory
(Theorem 4) to identify a sequence of functionalities with strictly increasing
complexities (in unbounded computation systems).

Theorem 8. realiz
Fpvt
u (realiz

F+
simex

u (realiz
F+

com
u (realiz

F+
OT

u .

Here, F+
simex, F+

com, and F+
OT denote “augmented” versions of simultaneous

exchange,5 bit commitment, and oblivious transfer, respectively, in which the
functionality provides multiple “sessions” instead of just one (as outlined in
Section 2).

Proof (Sketch). The non-trivial observations in proving this are that FOT 6vu

F+
com and Fcom 6vu F+

simex. For the former, we consider the passive corruption
scheme and for the latter we consider the corruption scheme where the sender
(for Fcom) could be actively corrupt and the receiver could be passively corrupt.
We exploit the fact that both FOT and Fcom are deviation revealing for these
corruption schemes respectively; that Fcom and Fsimex respectively have trivial
protocols (using, e.g., Fpvt) in these settings; and that FOT and Fcom respectively
do not have secure protocols (using Fpvt) in these settings. Then by Theorem 4,
FOT 6vu F+

com and Fcom 6vu F+
simex.

The significance of Theorem 8 is to establish several distinct levels of inter-
mediate complexity (i.e., distinct degrees of the v reduction). That is, Fsimex and
Fcom are neither realizable nor complete for computationally unbounded sys-
tems. Incidentally, both of these functionalities are complete for PPT systems
[12]. We leave it as an important open problem whether there is a zero-one law
of complexity in PPT systems (i.e., whether all functionalities not in realizFpvt

are complete).

5 The simulataneous exchange functionality Fsimex takes two inputs bits x and y from
the two parties, respectively, and outputs (x, y) to both. It is called simultaneous
exchange because x must be chosen without knowledge of y, and vice-versa.

Acknowledgements

We would like to thank Ran Canetti, Cynthia Dwork, Yuval Ishai and Tal Malkin
for useful discussions.

References

1. B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols
with relaxed set-up assumptions. In FOCS, pages 186–195. IEEE, 2004.

2. B. Barak, M. Prabhakaran, and A. Sahai. Concurrent non-malleable zero knowl-
edge. In Proc. 47th FOCS. IEEE, 2006.

3. B. Barak and A. Sahai. How to play almost any mental game over the net -
concurrent composition using super-polynomial simulation. In Proc. 46th FOCS.
IEEE, 2005.

4. A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure
computation. In M. J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 80–97. Springer, 1999.

5. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th STOC, pages
1–10. ACM, 1988.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067. Revised version of [7].

7. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-
016, 2001. Previous version “A unified framework for analyzing security of proto-
cols” availabe at the ECCC archive TR01-016. Extended abstract in FOCS 2001.

8. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security
with global setup. In TCC, 2007.

9. R. Canetti and M. Fischlin. Universally composable commitments. Report
2001/055, Cryptology ePrint Archive, July 2001. Extended abstract appeared
in CRYPTO 2001.

10. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally com-
posable two-party computation without set-up assumptions. In E. Biham, editor,
EUROCRYPT, volume 2656 of Lecture Notes in Computer Science. Springer, 2003.

11. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. J. Cryptology,
19(2):135–167, 2006.

12. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party computation. In Proc. 34th STOC, pages 494–503. ACM, 2002.

13. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In Proc. 20th STOC, pages 11–19. ACM, 1988.

14. B. Chor and Y. Ishai. On privacy and partition arguments. Information and
Computation, 167(1):2–9, 2001.

15. B. Chor and E. Kushilevitz. A zero-one law for boolean privacy (extended ab-
stract). In STOC, pages 62–72. ACM, 1989.

16. B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM J. Discrete
Math., 4(1):36–47, 1991.

17. C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

18. O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In
ACM, editor, Proc. 19th STOC, pages 218–229. ACM, 1987.

19. D. Harnik, Y. Ishai, E. Kushilevitz, and J. B. Nielsen. Ot-combiners via secure
computation. To appear in TCC 2008, 2008.

20. D. Harnik, M. Naor, O. Reingold, and A. Rosen. Completeness in two-party secure
computation: A computational view. J. Cryptology, 19(4):521–552, 2006.

21. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure
multiparty computation. In STOC, pages 21–30. ACM, 2007.

22. Y. T. Kalai, Y. Lindell, and M. Prabhakaran. Concurrent general composition of
secure protocols in the timing model. In STOC, pages 644–653. ACM, 2005.

23. D. Kidron and Y. Lindell. Impossibility results for universal composability in
public-key models and with fixed inputs. Cryptology ePrint Archive, Report
2007/478, 2007. http://eprint.iacr.org/2007/478.

24. J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31.
ACM, 1988.

25. J. Kilian. A general completeness theorem for two-party games. In STOC, pages
553–560. ACM, 1991.

26. J. Kilian. More general completeness theorems for secure two-party computation.
In Proc. 32th STOC, pages 316–324. ACM, 2000.

27. J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and complete-
ness in private computations. SIAM J. Comput., 29(4):1189–1208, 2000.

28. E. Kushilevitz. Privacy and communication complexity. In FOCS, pages 416–421.
IEEE, 1989.

29. E. Kushilevitz. Privacy and communication complexity. SIAM J. Discrete Math.,
5(2):273–284, 1992.

30. E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in
multi-party private computations. In FOCS, pages 478–489. IEEE, 1994.

31. Y. Lindell. General composition and universal composability in secure multi-party
computation. In Proc. 44th FOCS. IEEE, 2003.

32. Y. Lindell. Lower bounds for concurrent self composition. In Theory of Cryptog-
raphy Conference (TCC), volume 1, 2004.

33. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In ACM Conference on Computer and Communications Security,
pages 245–254, 2000.

34. M. Prabhakaran. New Notions of Security. PhD thesis, Department of Computer
Science, Princeton University, 2005.

35. M. Prabhakaran and M. Rosulek. Cryptographic complexity of multi-party compu-
tation problems: Classifications and separations. Electronic Colloquium on Com-
putational Complexity (ECCC), 15(50), 2008.

36. M. Prabhakaran and A. Sahai. New notions of security: achieving universal com-
posability without trusted setup. In STOC, pages 242–251. ACM, 2004.

37. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In Proc. 21st STOC, pages 73–85. ACM, 1989.

38. A. C. Yao. Protocols for secure computation. In Proc. 23rd FOCS, pages 160–164.
IEEE, 1982.

