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Abstract. In this paper we introduce the notion of a Public-Key En-
cryption Scheme that is also a Locally-Decodable Error-Correcting Code
(PKLDC). In particular, we allow any polynomial-time adversary to read
the entire ciphertext, and corrupt a constant fraction of the bits of the
entire ciphertext. Nevertheless, the decoding algorithm can recover any
bit of the plaintext with all but negligible probability by reading only a
sublinear number of bits of the (corrupted) ciphertext.
We give a general construction of a PKLDC from any Semantically-
Secure Public Key Encryption (SS-PKE) and any Private Information
Retrieval (PIR) protocol. Since Homomorphic encryption implies PIR,
we also show a reduction from any Homomorphic encryption protocol to
PKLDC.
Applying our construction to the best known PIR protocol (that of Gen-
try and Ramzan), we obtain a PKLDC, which for messages of size n and
security parameter k achieves ciphertexts of size O(n), public key of size
O(n + k), and locality of size O(k2). This means that for messages of
length n = ω(k2+ε), we can decode a bit of the plaintext from a cor-
rupted ciphertext while doing computation sublinear in n.

Keywords: Public Key Cryptography, Locally Decodable Codes, Error
Correcting Codes, Bounded Channel Model, Chinese Remainder Theo-
rem, Private Information Retrieval.

1 Introduction

Error correction has been an important field of research since Shannon laid
the groundwork for a mathematical theory of communication in the nineteen
forties, and active research continues until this day. An error correcting code is
a pair of algorithms C and D such that given a message x, C(x) is a codeword
such that, given a string y, if the Hamming Distance between d(C(x), y) is
“small”, then D(C(x)) = x. When speaking of an error correcting code, two of
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its most important characteristics are the information rate, which is the ratio
of the message size to the codeword size |x|

|C(x)| , and the error rate which is the
smallest ε such that if d(C(x), y) > ε|C(x)| then D(C(x)) fails to recover x
uniquely. Since the field’s inception, many codes have been found that exhibit
both constant information rate, and constant error rate, which, in a sense, is
optimal. These codes all share the property that to recover even a small portion
of the message x from the codeword y, the receiver must decrypt the entire
codeword. In [1], Katz and Trevisan posed the question: can codes be found
in which a single bit of the message can be recovered by decoding only a small
number of bits from the codeword? Codes of this type are called locally-decodable,
and would be immensely useful in encoding large amounts of data which only
need to be recovered in small portions, for example any kind of database or
archive. Currently the best known locally-decodable codes are due to Yekhanin
[2]; they can tolerate a constant error rate, but achieve only slightly better than
exponentially small information rates3.

In 1994, Lipton examined the notion of error-correction in the computa-
tionally bounded channel model [3]. In this model, errors are not introduced in
codewords at random, but in a worst case fashion by a computationally bounded
adversary who can corrupt up to a constant fraction of the entire codeword.
This realistic restriction on the power of the channel allowed for the introduc-
tion of cryptographic tools into the problem of error correction. In Lipton [3]
and Gopalan, Lipton, Ding [4] it was shown how, assuming a shared private key,
one can use hidden permutations to achieve improved error correcting codes in
the private key setting. Recently, Micali, Peikert, Sudan and Wilson used the
computationally bounded channel model to show how existing error correcting
codes could be improved in the public-key setting [5]. After seeing the dramatic
improvement of error-correcting codes in the computationally bounded channel
model, a natural question then becomes whether locally-decodable codes can
also be improved in this model.

The first progress in this setting was by Ostrovsky, Pandey and Sahai [6],
where they construct a constant information-rate, constant error-rate locally-
decodable code in the case where the sender and receiver share a private key.
This left open the question whether the same can be accomplished in the Public-
Key setting, which does not follow from their results. Indeed, a näıve proposal
(that does not work) would be to encrypt the key needed by [6] separately and
then switch to the private-key model already solved by [6]. This however leaves
unresolved the following question: how do you encrypt the private key from [6]
in a locally-decodable fashion? Clearly, if we allow the adversary to corrupt a
constant fraction of all the bits (including encryption of the key and the message),
and we encrypt the key separately, then the encryption of the key must consume
a constant fraction of the message, otherwise it can be totally corrupted by an
Adversary. But if this is the case all hope for local decodability is lost. Another

3 Yekhanin achieves codewords of size 2n1/ log log n

for messages of length n, assuming
there exist infinitely many Mersenne primes.



suggestion is to somehow hide the encryption of the key inside the encryption
of the actual message, but it is not clear how this can be done.

A more sophisticated, but also flawed, idea is to use Lipton’s code-scrambling
approach [3]. In his paper, Lipton uses a private shared permutation to “scram-
ble” the code and essentially reduce worst-case error to random error. A first
observation is that we can use PIR to implement a random permutation in the
public-key setting. We would then proceed as follows: the receiver would gen-
erate a random permutation σ ∈ Sr, and the receiver’s public key would be a
set of PIR queries Q1, . . . , Qr, where Qi is a PIR query for the σ(i)th block of
an r block database, using some known PIR protocol. The sender would then
break their message x into blocks, x1, . . . , xr, apply standard error correction
to each block, calculate the Q1, . . . , Qr on their message, apply standard er-
ror correction to each PIR response Ri = Qi(ECC(x)), and send the message
ECC(R1), . . . ,ECC(Rr). If ECC and PIR have constant expansion rates, as is
the case with many ECCs and the Gentry-Ramzan PIR [7], the resulting code
has only constant expansion rate. But an adversary can still destroy a single
block, by focusing damage on a single PIR response. If we add redundancy by
copying the message c times, and publishing cr PIR queries, the adversary can
still destroy a block with non-negligible probability by destroying constant num-
ber of blocks at random, and with non-negligible probability the adversary will
destroy all c responses corresponding to the same block, and the information
in that block will be lost. Recall that we demand that no bit of information
should be destroyed except with negligible probability. Hence this method does
not work. Of course, this can be fixed by increasing the redundancy beyond a
constant amount, but then the codeword expansion becomes more than constant
as does the public key size. Thus, this solution does not work, and new ideas are
needed. Indeed, in this paper, we use PIR to implement a hidden permutation,
but we achieve a PKLDC which can recover from constant error-rate with only
constant ciphertext expansion.

1.1 Previous Work

The first work on error correction in the computationally bounded channel model
was done by Lipton in [3]. In Lipton [3] and Gopalan, Lipton, Ding [4] it was
shown how to use hidden permutations to achieve improved error correcting
codes in the private key setting. In [5], Micali, Peikert, Sudan and Wilson demon-
strate a class of binary error correcting codes with positive information rate, that
can uniquely decode from 1

2 − ε error rate, under the assumption that one-way
functions exist. These codes decode from an error rate above the proven upper
bound of 1

4 − ε in the (unbounded) adversarial channel model. The first ap-
plication of the computationally bounded channel to Locally Decodable Codes
was given by Ostrovsky, Pandey and Sahai [6], although their work was in the
private-key setting, and does not extend to the public-key setting.

In addition to extending the work in the computationally bounded channel
model, our work draws heavily from the field of Computational Private Infor-
mation Retrieval (PIR). The first computational PIR protocol was given by



Ostrovsky and Kushilevitz [8], and since then there has been much progress. For
a survey of work relating to computational PIR see [9].

1.2 Our Results

In this paper, we present a general reduction from semantically-secure encryp-
tion and a PIR protocol to a Public Key Encryption system with local decod-
ability (PKLDC). We also present a general reduction from any homomorphic
encryption to a PKLDC. In §5 we present the first Locally Decodable Code with
constant information-rate which does not require the sender and receiver to share
a secret key. To achieve this, we work in the Computationally Bounded Channel
Model, which allows us to use cryptographic tools that are not available in the
Adversarial Channel Model. Our system presents an improvement in communi-
cation costs over the best codes in the information-theoretic setting. We create
codes with constant information-rate, as compared with the best known locally
decodable codes [2] in the information-theoretic setting which have an almost
exponentially small information rate.

Informally, our results can be summarized as follows,

Main Theorem (informal). Given a computational PIR protocol with query
size |Q|, and response size |R| which retrieves dk bits per query, and a semantically-
secure encryption scheme, there exists a Public Key Locally Decodable Code
which can recover from a constant error-rate in the bits of the message, which
has public key size O(n|Q|/(dk2) + k) and ciphertexts of size O(n|R|/(dk2)),
where n is the size of the plaintext and k is the security parameter. The resulting
code has locality O(|R|k/d), i.e. to recover a single bit from the message we must
read O(|R|k/d) bits of the codeword.

Combining the main theorem with the general reduction from homomorphic
encryption to PIR, we obtain

Corollary 1. Under any homomorphic encryption scheme which takes plain-
texts of length m to ciphertexts of length αm, there is a Public-Key Locally
Decodable Code which can recover from a constant error-rate in the bits of the
message, with public key size O(nkβ β

√
n) and ciphertexts of size O(nαβ−1k), for

any β ∈ N, where n is the size of the plaintext and k is the security parameter.
The resulting code has locality O(αβ−1k2), i.e. to recover a single bit from the
message we must read O(αβ−1k2) bits of the codeword.

We can further improve efficiency if we have a Length-Flexible Additively
Homomorphic Encryption like D̊amgard-Jurik [10], using this cryptosystem we
obtain

Corollary 2. Under the Decisional Composite Residuousity Assumption [11]
there is a Public-Key Locally Decodable Code which can recover from a constant
error-rate in the bits of the message, with public key size O(n log2(n) + k) and
ciphertexts of size O(n log(n)), where n is the size of the plaintext and k is the
security parameter. The resulting code has locality O(k2 log(n)), i.e. to recover
a single bit from the message we must read O(k2 log(n)) bits of the codeword.



We also give a specific construction of a system based on the Φ-hiding as-
sumption first introduced by Cachin, Micali and Stadler in [12], and later used
by Gentry and Ramzan in [7]. Under this assumption we obtain

Corollary 3. Under the Small Primes Φ-Hiding Assumption there is a Public-
Key Locally Decodable Code which can recover from a constant error-rate in the
bits of the message, with public key size O(n) and ciphertexts of size O(n), where
n is the size of the plaintext and k is the security parameter. The resulting code
has locality O(k2), i.e. to recover a single bit from the message we must read
O(k2) bits of the codeword.

Note that in full generality, our main result requires two assumptions, the
existence of a PIR protocol and a semantically-secure encryption protocol. In
practice, however, two separate assumptions are usually not needed, and all the
corollaries apply under a single hardness assumption.

Our construction does have a few disadvantages over the information-theoretic
codes. First, our channel is computationally limited. This assumption is fairly
reasonable, but it is also necessary one for any type of public key encryption. In
[5], Micali et al. show that if a true adversarial channel exists, which can always
introduce errors in a worst-case fashion, then one-way functions cannot exist.
Second, our code has a larger “locality” than most information-theoretic codes.
For example, in Yekhanin’s Codes, the receiver is only required to read three
letters of the codeword to recover one letter of the message. In our code in §5
the receiver must read O(k2) bits to recover 1 bit of the plaintext, where k is the
security-parameter. It should be noted, however, that to maintain the semantic
security of the cryptosystem, the receiver must read ω(log k) bits to recover any
single bit of the message. It is an interesting question whether the locality of our
code can be reduced from O(k2) to O(k). For long messages (i.e. n = ω(k2+ε))
our code still presents a very significant improvement in locality over standard
error correcting codes.

2 Computationally Locally Decodable Codes

2.1 Modelling Noisy Channels

When discussing error correcting, or locally-decodable codes, it is important to
consider how the errors are introduced by the channel. While it may be natural
to assume the errors are introduced “at random”, small changes in the exact
nature of these errors can result in substantial changes in the bounds on the
best possible codes.

The first definition of a noisy channel is due to Claude Shannon [13]. Shannon
defined the symmetric channel where each message symbol is independently
changed to a random different symbol with some fixed probability, called the
error rate. An alternative definition of a noisy channel is Hamming’s adversarial
channel, where one imagines an adversary corrupting bits of the message in a
worst-case fashion, subject only to the total number of bits that can be corrupted
per block.



In 1994, Lipton [3] observed that the adversarial channel model assumes that
the adversarial channel itself is computationally unbounded. In that paper, Lip-
ton proposed a new model of computationally bounded noise, which is similar
to Hamming’s adversarial channel, except the adversary is restricted to compu-
tation which is polynomial in the block length of the code. This restriction on
the channel’s ability to introduce error is a natural one, and it is implied by the
existence of any one-way function [5]. Throughout this paper, we use Lipton’s
model.

2.2 Definitions

We use the standard definition of computational indistinguishability for public
key encryption, where we also view the size of the plaintext as a function of the
security parameter. That is, we set the plaintext x to be of length kα, where k
is the security parameter and α > 1.

The primary difference between our definition and the standard definition of
semantic security is the local decodability property of the cryptosystem. Roughly,
this says that given an encryption c of a message x, and a corrupted encryption
c′ such that the hamming distance of c and c′ is less than δ|c|, the time it takes
the decoder to decode any bit xi of the plaintext x from c′ is much shorter than
the length of the message, and does not increase as the message length increases.

Definition 1. We call a Public Key Cryptosystem semantically-secure (in the
sense of indistinguishability) and δ-computationally locally-decodable if there is
a triple of probabilistic polynomial-time algorithms (G, E,D), such that for all k
and for all α sufficiently large

– (PK, SK)← G(1k, α),
– c← E(PK, x, r) (where |x| = kα is a plaintext message of length polynomial

in k, and r is the randomness of the encryption algorithm);
– b′ ← D(SK, c′, i)

so that for all probabilistic polynomial-time adversaries A,A′:

Pr[(PK, SK)← G(1k, α); {x0, x1, γ} ← A(PK);A′(E(PK, xb, r), γ) = b] <
1
2
+ν(k),

where x0 and x1 must both be of length kα, and the probability is taken over
the key generation algorithm’s randomness, b, randomness r used in the encryp-
tion algorithm E and the internal randomness of A and A′.4 Furthermore, it is
computationally, locally-decodable. That is, for all probabilistic polynomial-time
adversaries A′′ and A′′′,

Pr[(PK, SK)← G(1k, α); (x, γ)← A′′(PK);
c← E(PK, x, r); {c′, i} ← A′′′(c, γ) :

D(SK, c′, i) = xi] > 1− ν(k),
4 As is standard practice, we allow the adversary A to pass state information γ, which

could include information about the plaintexts x0, x1, which might be of use in
determining which plaintext is encrypted by E(PK, xb, r).



where xi denotes the ith bit of x, x must be of the length kα, c′ and c must be of
the same length and the hamming distance between c′ and c is at most δ|c|, and
where the probability is taken over the key generation algorithm’s randomness,
the randomness r used in the encryption algorithm E and the internal random-
ness of both A′′ and A′′′. The information-rate is |m|

|c| and we call the decryption
algorithm locally-decodable if its running time is o(kα), and the efficiency of the
local decodability is measured as a function of k and α.

3 Building Blocks

Our construction relies on a number of standard cryptographic tools and for
completeness we briefly review them here.

3.1 Private Information Retrieval

A computational Private Information Retrieval protocol (PIR) is a protocol in
which a user or client wants to query a position from a database, while keeping
the position queried hidden from the server who controls the database. In partic-
ular the user generates a decryption key DPIR, picks a position j and generates
a query Qj . Then, given Qj , the server who has a database (or message) x, can
execute query Qj on x and obtain a response Rj . The privacy requirement is
that the server cannot guess the position j with probability noticeably greater
than random. The correctness requirement is that given DPIR, and Rj the user
can correctly recover the jth position of the message x. The efficiency of a PIR
protocol is measured in the communication complexity, i.e. the sizes of Q and
R. Currently, the most efficient PIR protocol is that of Gentry and Ramzan [7],
which has |Q| = |R| = O(k) where k is a security parameter, and each query
successfully retrieves approximately k/4 bits of the message x.

Formal definitions and concrete constructions of computational Private In-
formation Retrieval protocols can be found in [8], [14], [12], [15] or [7].

3.2 Semantically-Secure Public Key Encryption

Our construction requires a semantically-secure encryption protocol, SSE. The
only requirement we make on the protocol SSE, is that for a message x, |SSE(x)| =
O(|x|). For concreteness, we assume |SSE(x)| = c1|x| for some constant c1. This
is achieved by many cryptosystems for example [11], [10], [16], [17], or the Φ-
hiding based scheme in described §5.1.

To avoid making additional intractability assumptions, it is natural to choose
a hardness assumption that yields both a semantically-secure encryption proto-
col as well as a PIR protocol. In practice this is almost always the case, for
example Paillier’s Cryptosystem [11] and Chang’s PIR [15], or Gentry-Ramzan
[7] (or Cachin-Micali-Stadler PIR [12]) and the encryption protocol outlined in
Section 5.1. It is also worth noting that since [14] shows that any homomorphic



encryption protocol immediately yields a PIR protocol, if we have a homomor-
phic encryption, we need not make an additional assumption to obtain a PIR
protocol.

3.3 Reed-Solomon Codes

The Reed-Solomon Error Correcting Code (RS-ECC) works as follows: first we
fix a prime p of length k, and all computations are done in the field Z/pZ.
Then, given a plaintext x of length n, we represent x as a polynomial fx of
degree n/k−1 over Z/pZ. This can be done in many ways, perhaps the simplest
is to break x into blocks of size k and view these as the coefficients of fx.
Then, the encoding of x is simply the evaluation of fx at a number of points in
Z/pZ. We need at least n/k evaluations to uniquely determine a polynomial of
degree n/k − 1, the RSECC adds redundancy by evaluating fx at more points,
RSECC(x) = (fx(1), . . . , fx(ρn/k)) for some ρ > 1. For distinct plaintexts x, y,
we have fx − fy 6= 0. Since a nonzero polynomial of degree n/k − 1 has at most
n/k − 1 zeros, and RSECC(x) and RSECC(y) must have hamming distance at
least (ρ − 1)n/k + 1, this code can recover from (ρ − 1)n/(2k) errors in the
evaluation points, i.e. it can recover from an error rate of 1

2 −
1
2ρ in the digits of

the code.
From now on we will view RSECC(x) as a ρn/k-tuple which can be success-

fully decoded from an error rate of 1
2 −

1
2ρ in its digits.

3.4 Binary Error Correction

A desirable property of any error-correcting code is the ability to recover from a
constant fraction of errors among the bits of the codeword. A drawback of many
error-correcting codes, and locally-decodable codes, is that they are defined over
large alphabets, and can only recover from a constant fraction of errors in the
alphabet of the code. The natural alphabet of the RSECC described above is the
field Z/pZ. In practice, all these codes are implemented on computers, where the
natural alphabet is {0, 1}. Thus when we say that a code like the Reed-Solomon
code can tolerate a constant fraction of errors, we mean a constant fraction of
errors in their natural alphabet. In the Reed Solomon code, if one bit of each
evaluation point is corrupted, there are no guarantees that the message will not
be corrupted. Binary error correcting codes do exist, but they are generally not
as efficient as codes over larger alphabets.

To allow our code to tolerate a constant fraction of errors in the bits of the
ciphertext, we will make use of a binary error correcting code ECC, with two
properties. First, |ECC(x)| = c2|x| for some constant c2, and second ECC can
recover from an error-rate of 1

2−δ in the bits of ECC(x). Such codes exist, for δ >
1
4 in the unbounded adversarial channel model, and δ > 0 in the computationally
bounded channel model. See the full version of this paper for a more in-depth
discussion.



4 Construction

4.1 High Level Outline of Our Construction

A public key will be a list of t PIR queries Q1, . . . , Qt, along with the public key
to the semantically-secure encryption SSE. The private key will be the private
key for the semantically-secure encryption, the private key for the PIR protocol
and a permutation σ ∈ St such that Qj is a query for the σ(j)th position of
the message. To encrypt an n-bit message X, we first divide X into r blocks
X1, . . . , Xr, then we encrypt each block using our semantically-secure encryp-
tion (this can be done by further subdividing the block if necessary). Then we
encode each block using the Reed-Solomon code, thus obtaining a list of evalu-
ation points that constitute the Reed-Solomon encoding of this block. Next, we
concatenate the evaluation points for all the blocks, and, treating this list as a
single database, we evaluate all t PIR queries on it. Finally, we encode each PIR
response with a standard binary error correcting code ECC.

In more detail, we assume that when we evaluate a PIR query Q on a mes-
sage X, the PIR response R encodes dk bits of X where k is our security
parameter and d depends on the specific PIR protocol used. For example the
Gentry-Ramzan protocol has d ≈ 1

4 , while a PIR protocol like [12] which only
retrieves a single bit at a time has d = 1/k. Next, we fix a prime p of length
k which will determine the base-field of the RSECC. Then, we set r = n/(`k),
thus each block Xi has |Xi| = `k, where ` is the parameter that will determine
the “spread” of our code. Next we encrypt each block Xi using SSE, obtaining
SSE(X1), . . . ,SSE(Xr) where |SSE(Xi)| = c1`k. Then we encode each encrypted
block as c1ρ` field elements in Z/pZ using RSECC. Thus we can recover any
block Xi as long as no more than 1

2 −
1
2ρ of the field elements that encode it

are corrupted. Finally, we concatenate all c1rρ` field elements, thus at this point
our “database” is c1rρ`k = c1nρ bits. Next we evaluate all t queries Q1, . . . , Qt

on this database. Since we wish to retrieve all the information in X, we need
t = c1nρ/(dk). Thus we obtain t PIR responses R1, . . . , Rt. Finally, we send the
t-tuple (ECC(R1), . . . ,ECC(Rt)).

Thus our final encryption is of size c1c2nρ|Rj |/(dk). If |Rj | ≈ k as is case
in [12], [15], [7], then our encryption will be of length c1c2ρn/d. If we use the
PIR protocol in [7] then, d will be constant, thus our code will have constant
information rate. Notice that the spread parameter ` has no effect on the length
of the encryption. This encryption is error correcting because as long as no
more than 1

2 −
1
2ρ of the responses that encode a given block are corrupted,

the block can be recovered correctly by first decoding each point using ECC,
and then reconstructing the block using the RSECC. This cryptosystem is also
locally-decodable since to decrypt a given block, it suffices to read the c1ρ`

dk PIR
responses that encode it.

4.2 Error Correcting Public Key Encryption

We now define a triple of algorithms G, E,D for our encryption scheme.



Key Generation: G(1k, α).

– Fix a prime p of length k.
– Generate public-key private-key pair for SSE, PKE , SKE .
– Generate a PIR decryption key DPIR.
– Generate a random permutation σ ∈ St.
– Generate t PIR queries Q1, . . . , Qt, where Qj queries the block of dk bits at

position (σ(j)− 1)c1dk + 1 of a c1nρ bit database.

The public key will then be

PK = (PKE , Q1, . . . , Qt)

and the secret key will be

SK = (σ, SKE , DPIR)

Thus the public key will be of length t|Q| + |SKE | = c1nρ|Q|/(dk). If we
use [7], then |Q| = k and d is constant, so assuming |SKE | = O(k), we obtain
|PK| = O(n + k).
Encryption: given an n-bit message X,

– Break X into r = n
`k blocks Xi of size `k.

– Encrypt each block using SSE. If SSE can only encrypt strings of length k,
we simply divide Xi into shorter strings, encrypt the shorter strings and then
concatenate the encryptions.

– For each encrypted block, SSE(Xi) we encode it as a list of c1ρ` field elements
Zi,1, . . . , Zi,c1ρ` in Z/pZ using the RSECC.

– Concatenate all the evaluations, creating X̃ = Z1,1, . . . , Z1,c1ρ`, . . . , Zr,1, Zr,c1ρ`.
Thus |X̃| = rc1ρ`k = c1nρ bits, and we run each PIR query {Q1, . . . , Qt}
on X̃ receiving responses R1, . . . , Rt. Since each PIR query recovers dk bits,
we will need c1/d queries to recover each field element Z.

– Encode each Rj individually using the binary error correcting code ECC.
– The encryption is then the t-tuple (ECC(R1), . . . ,ECC(Rt)).

Decryption: to recover the ith block, of a message X from the t-tuple
(ECC(R1), . . . ,ECC(Rt))

– We wish to retrieve the encoding Zi,1, . . . , Zi,c1ρ`, which are the bits of X̃ in
positions (i− 1)c1ρ`/d + 1, . . . , ic1ρ`/d, Thus we select the c1ρ`/d responses
that encode Xi, {ECC(Rσ−1((i−1)c1ρ`/d+1)), . . . ,ECC(Rσ−1(ic1ρ`/d))}.

– Decode each ECC(Rj) to obtain {Rσ−1((i−1)c1ρ`/d+1), . . . , Rσ−1(ic1ρ`/d)}.
– Decode each of the c1ρ`/d PIR responses Rj to obtain Zi,1, . . . , Zi,c1ρ`.
– Using the RSECC reconstruct SSE(Xi) from Zi,1, . . . , Zi,c1ρ`.
– Decrypt SSE(Xi).

Notice that to recover block Xi we only need to read c1c2|R|ρ`/d bits of the
encryption. In the Gentry-Ramzan PIR |R| = k and d = 1/4, so we are reading
only O(`k) bits of the message. For correctness we will choose ` = k, thus in this
case our scheme will achieve locality O(k2).



4.3 Local-Decodability

One of the most interesting features of our construction is the local-decodability.
To recover a small portion of the message X, only a small portion of the cipher-
text (ECC(R1), . . . ,ECC(Rt)) needs to be decoded. During encryption the mes-
sage X is broken into blocks of length `k bits, and this is the smallest number of
bits that can be recovered at a time. To recover a single bit of X, or equivalently
the entire block Xi that contains it, we must read c1ρ`/d blocks of the ciphertext
{ECC(Rσ−1((i−1)c1ρ`/d+1)), . . . ,ECC(Rσ−1(ic1ρ`/d))}. Since |ECC(Rj)| = c2|Rj |,
we must read a total of c1c2|R|ρ`/d bits. Since the probability of error will be
negligible in `, we will set ` = k. Here c2 and ρ are parameters that determine
the error-rate of our code.

Using the Gentry-Ramzan PIR, we have |R| = k and d = 1/4, so the locality
is O(k2). Using the Chang’s PIR [15] based on Paillier’s cryptosystem [11] we
have |R| = 2k and d = 1/2 so we achieve the same encryption size and locality,
although in this situation the public key size is O(n3/2) instead of O(n) in the
Gentry-Ramzan case.

4.4 Proof of Security

The semantic security of our scheme follows immediately from the semantic
security of the underlying encryption SSE. The full proof of the correctness
(i.e. local decodability) of our scheme requires some care. The formal proof can
be found in the full version of this paper. Here, we outline only the high-level
ideas of the proof. The structure of the proof is as follows. Given an encryption
(ECC(R1), . . . ,ECC(Rt)), the outer ECC forces an adversary to concentrate their
errors among only a few Rj . Thus, we may assume that the adversary is only
allowed to introduce errors into a constant fraction of the Rj . Then, we note that
any polynomial-time adversary cannot tell which remainders Rj encode which
block Xi by the privacy of the PIR protocol. Thus any errors introduced in the
Rj will be essentially uniform among the Z’s that make up the Reed-Solomon
encryptions. Next, we show that our code has sufficient “spread” so that errors
introduced uniformly among the Rj will cluster on the Rj encoding a given block
Xi with only negligible probability. Finally, if the errors are not clustered among
the Rj that encode a given block, we show that the RSECC will correctly recover
that block.

Thus we arrive at the following result

Main Theorem. Given a computational PIR protocol with query size |Q|, and
response size |R| which retrieves dk bits per query, and a semantically-secure
encryption protocol SSE, there exists a Public Key Locally Decodable Code which
can recover from a constant error-rate in the bits of the message, which has
public key size O(n|Q|/(dk2) + k) and ciphertexts of size O(n|R|/(dk2)), where
n is the size of the plaintext and k is the security parameter. The resulting code
has locality O(|R|k/d), i.e. to recover a single bit from the message we must read
O(|R|k/d) bits of the codeword.



4.5 Extensions

For convenience, in our proof of correctness, we set the parameter ρ equal to 1/2.
It should be clear that this value is somewhat arbitrary and that by increasing ρ
we increase the error tolerance of the code along with the ciphertext expansion.
Similarly, in our proof we set the parameter ` to be the security parameter k. We
can change `, and an increase in ` corresponds to a decrease in the probability
that the channel succeeds in introducing an error, and a decrease in the locality
of the code. In particular our code fails with probability that is negligible in
`, and the smallest number of bits that can be recovered from the message is
O(`k).

Our protocol also benefits nicely from the idea of Batch Codes [18]. Since
our protocol requires making multiple PIR queries to the same message, this
is an ideal application of Batch Codes, which can be used to amortize the cost
of making multiple PIR queries to a fixed database. By first “batching” the
message X̃ in §4.2, we can significantly decrease server computation by slightly
increasing ciphertext expansion, or we can decrease ciphertext expansion by
paying a slight increase in server computation. It should be noted that batch
codes are perfect, in the sense that batching the message in this way does not
change the probability of correctness.

We can also increase the efficiency of our construction by further taking
advantage of the bounded channel model. If in addition to the sender knowing
the receiver’s public key, we assume that the receiver knows the verification
key to the senders signature algorithm (a reasonable assumption since anyone
receiving messages from the sender should be able to verify them), our scheme
benefits nicely from the sign and list-decode methods described in [5]. The use of
digital signatures before applying the RSECC or the binary ECC has the effect
of increasing the maximum tolerable error-rate, and decreasing the codeword
expansion. Unlike the application of Batch Codes above, this sign and list-decode
technique will slightly increase the probability that a message fails to decrypt,
although it still remains negligible.

4.6 Constructions Based on Homomorphic Encryption

It was shown in [14] that any homomorphic encryption protocol yields a PIR
protocol, thus our construction can be achieved based on any homomorphic
encryption protocol. In this situation, it is unnecessary to first encrypt each
block Xi before applying the RSECC since the PIR protocol described in [14]
is already semantically-secure. Thus the idea of coupling encryption and error-
correction is even more natural in this situation. Using the construction in [9]
to construct a PIR protocol from a homomorphic encryption protocol and then
applying our construction yields

Corollary 1. Under any homomorphic encryption protocol which takes plain-
texts of length m to ciphertexts of length αm, there is a Public-Key Locally
Decodable Code which can recover from a constant error-rate in the bits of the



message, with public key size O(nkβ β
√

n) and ciphertexts of size O(nαβ−1k), for
any β ∈ N, where n is the size of the plaintext and k is the security parameter.
The resulting code has locality O(αβ−1k2), i.e. to recover a single bit from the
message we must read O(αβ−1k2) bits of the codeword.

Using a Length-Flexible Additively Homomorphic Encryption protocol such
as the one described in [10] yields an even more efficient PIR protocol. Using the
methods outlined in [9] and applying our construction we arrive at the following
result

Corollary 2. Under the Decisional Composite Residuousity Assumption [11]
there is a Public-Key Locally Decodable Code which can recover from a constant
error-rate in the bits of the message, with public key size O(n log2(n) + k) and
ciphertexts of size O(n log(n)), where n is the size of the plaintext and k is the
security parameter. The resulting code has locality O(k2 log(n)), i.e. to recover
a single bit from the message we must read O(k2 log(n)) bits of the codeword.

5 A Concrete Protocol Based on Φ-Hiding

We now present a concrete example of our reduction based on the Gentry-
Ramzan [7] PIR protocol. A straightforward application of our main construction
in §4.2 already yields a PKLDC with public key size O(n) and constant cipher-
text expansion, but the Gentry-Ramzan PIR protocol has many nice properties
which can be exploited to simplify the construction and further increase the effi-
ciency of the protocol. The construction we present here differs from the straight-
forward application of our general reduction to the Gentry-Ramzan protocol in
two ways. First, we are able to integrate the basic semantically-secure encryp-
tion protocol into our construction, thus reducing the ciphertext expansion by
a constant factor, and eliminating the need for another hardness assumption.
Second, we use the Chinese Remainder Theorem Error Correcting Code (CRT-
ECC) instead of the Reed-Solomon code used in the general construction. This
is because the Φ-hiding assumption allows us to do hidden chinese-remaindering,
and so it is a more natural code to use in this context. This does not change the
arguments in any substantial way, since from the ring-theoretic perspective, the
CRT-ECC and the Reed-Solomon ECC are exactly the same.5

5.1 A Φ-hiding based Semantically-Secure Encryption Protocol

Here, we describe a simple semantically-secure public key encryption scheme,
BasicEncrypt that will be an essential building block of our construction. The
encryption protocol consists of three algorithms, G, E,D described below.

To generate the keys, G(1k) first selects a small prime-power π, then generates
m ∈ Hπ

k , i.e. m = pq, where p, q ∈R Pk
6, subject to π | p − 1. The public key

5 See the full version for a more detailed discussion of this point.
6 We use the notation ∈R to denote selecting uniformly at random from a set.



will be PK = (g,m, π) where g is a generator for the cyclic group Gm, and
SK = ϕ(m)

π .
To encrypt a message x ∈ Z/πZ, we have

E(x) = gx+πr mod m,

for a random r ∈ Z/mZ. To decrypt, we do

D(y) = yϕ(m)/π = gxϕ(m)/π mod ϕ(m) mod m =
(
gϕ(m)/π

)x

mod m,

then, using the Pohlig-Hellman algorithm to compute the discrete logarithm in
the group 〈gϕ(m)/π〉, we can recover x mod π = x. If a is a small prime, and
π = ac, the Pohlig-Hellman algorithm runs in time c

√
a. Thus the decryption

requiresO(log(m/π)+c
√

a) group operations in Gm which is acceptable for small
primes a. In our locally decodable code, we will require multiple different prime
powers π1, . . . , πt, and we will choose the small primes a, as the first primes,
i.e. π1 = 5e1 , π2 = 7e2 , π3 = 11e3 . If we require t prime powers πi, the Prime
Number Theorem implies that the largest a will be approximately t log t. Since
t will be less than the message length, n,

√
a will be polynomial in the message

length, and hence polynomial in the security parameter k.
It is worth noticing that this scheme is additively homomorphic over the

group Z/πZ, although we do not have an explicit use for this property. When
π = 2, this is just Goldwasser-Micali Encryption [19], for larger π it was described
in [20] and [21]. An extension of this scheme is described in [16].

While this protocol is not new, none of the previous descriptions of this
protocol make use of the Φ-hiding assumption, and instead their security is
based on some form of composite residuousity assumption, i.e. it is impossible
to tell whether a random group element h belongs to the subgroup of order π
in Gm. We are able to prove security under the Φ-hiding assumption because
the Φ-hiding assumption is strictly stronger than these other assumptions. The
proof that this protocol is semantically-secure under the Φ-hiding assumption is
in the full version [22].

5.2 Outline of Our Φ-hiding based Construction

We begin by fixing a list of t prime powers {π1, . . . , πt} as part of the public
parameters. For concreteness we choose π1 = 5e1 , π2 = 7e2 , . . . as in §5.1. A
public key will be a list of t RSA moduli {m1, . . . ,mt}, such that each mj Φ-
hides some prime power πj′ . The Private key will be the factorizations of the mj ,
more specifically ϕ(m1), . . . , ϕ(mt), along with a random permutation σ ∈ St

such that mj Φ-hides πσ(j). To encrypt a message X ∈ {0, 1}n, we first divide X
into blocks Xi of size `k. Where k is the security parameter, and ` is a parameter
determining the “spread” of the code. As in the Gentry-Ramzan PIR scheme,
we view each block as a number in the range

{
0 . . . 2`k

}
. Our public key will

be t = ρn
dk RSA moduli {m1, . . . ,m ρn

dk
} such that each modulus Φ-hides a prime

power πj . We will use s = dρ`/de of the πj to encode each block Xi. Since



there are dn/`ke blocks, and for each block we use dρ`/de prime powers, we
use a total of n

`k ·
ρ`
d = ρn

dk = t prime powers. The parameter ρ determines the
redundancy of the CRT-ECC, hence increasing ρ increases the error tolerance
and also the ciphertext expansion. Recall that d is the information rate of the
Gentry-Ramzan PIR, so d is some fixed constant less than 1/4, for concreteness
we may assume d = 1/5. Exactly which prime is hidden by which modulus will
be chosen at random at the time of key generation, and is part of the receiver’s
secret key. For each block Xi, the sender encrypts Xi modulo the s prime powers
{π(i−1)s+1, . . . , πis}, where each πj is roughly of size dk. Notice here that we have
used ρ times as many moduli πj as necessary to encode each block, thus for each
block Xi we have effectively calculated an encoding of Xi under the CRT-ECC
which can tolerate

(
1
2 −

1
2ρ

)
`
d corrupted moduli.7 We do this for each block,

and thus the resulting encryption is ρ`
d ·

n
`k residues. Since each residue is of size

k, the encryption of the whole message is now n
`k

ρ`
d = ρn

dk encryptions of size
k. Finally, we encode each of the ρn/(kd) encryptions independently using the
error correcting code in §3.4. So our final encryption is of size ρc2n/d bits, which
is a constant multiple of n. This encryption is error correcting because as long
as no more than 1

2 −
1
2ρ of the residues that encode a given block are corrupted,

the block can be recovered correctly by first decrypting each residue, and then
reconstructing the CRT-ECC. This cryptosystem is also locally-decodable since
to decrypt a given block, it suffices to decrypt the ρ`

d encryptions that encode it.

5.3 Error Correcting Public Key Encryption Based on Φ-hiding

We now define a triple of algorithms G, E,D for our encryption scheme.

Key Generation: G(1k, α).

– Let p1, . . . , pt be primes with 5 ≤ p1 < p2 < · · · < pt, and choose ej =⌊
k

4 log pj

⌋
, thus ej is the largest integer such that log

(
p

ej

j

)
< dk, for some

d < 1
4 . Set πj = p

ej

j . To encrypt n-bit messages, we will need to choose

t = ρn
dk . Since we assume n = kα, this becomes t = ρkα−1

d .
– Generate a random permutation σ ∈R St, the symmetric group on t elements.
– Generate moduli m1, . . . ,mt such that mj ∈ H

πσ(j)

k , i.e. mj Φ-hides πσ(j).
– Find generators {gj} of the cyclic groups {Gmj}.

The public key will then be

PK = ((g1,m1, π1), . . . , (gt,mt, πt)),

and the secret key will be

SK =
(

σ,
ϕ(m1)
πσ(1)

, . . . ,
ϕ(mt)
πσ(t)

)
.

7 See the full version for a more in-depth discussion of the error tolerance of the
CRT-ECC



Encryption: given an n-bit message X,

– Break X into n
`k blocks Xi of size `k, and treat each Xi as an integer in the

range {0 . . . 2`k}.
– For block Xi, we will use the s prime powers π(i−1)s+1, . . . , πis to encode Xi.

Since the moduli mσ−1((i−1)s+1), . . . ,mσ−1(is) that correspond to these π’s is
unknown to the sender, he must apply the Chinese Remainder Theorem using
all the πj ’s. Thus for each block Xi, using the CRT, the sender generates
X̃i ∈ [1, . . . , (π1 · · ·πt)], such that

X̃i =
{

Xi mod πj for j ∈ [(i− 1)s + 1, . . . , is],
0 mod πj for j ∈ [1, . . . , (i− 1)s] ∪ [is + 1, . . . , t].

To recover from error-rate 1
2 −

1
2ρ , we set s = ρ`

d .

– The sender then sets X̃ =
∑ n

`k
i=1 X̃i. Thus for each j, X̃ = Xi mod πσ(j) for

the unique i such that (i− 1)s + 1 ≤ σ(j) ≤ is.
– For j ∈ [1, . . . , t], generate a random rj ∈ {0, . . . , π1 · · ·πt}.
– Then calculate hj = g

X̃+rjπ1···πt

j mod mj for each j ∈ {1, . . . , t}. Thus

hj = E
(
X̃ mod πσ(j)

)
= E(Xi mod πσ(j)),

where (i − 1)s + 1 ≤ σ(j) ≤ is, and E is the encryption protocol described
in §5.1. At this point, partial information about the block Xi is spread over
s of the hj ’s.

– Apply the binary Error Correcting Code ECC to each hj individually.
– The encryption is then the t-tuple (ECC(h1),ECC(h2), . . . ,ECC(ht)).

Decryption: to recover the ith block, of a message X from the t-tuple (h1, . . . , ht)

– Select the s encryptions that encode Xi, {ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}.
– Decode each ECC(hj) to find obtain {hσ−1((i−1)s+1), . . . , hσ−1(is)}.
– Decrypt each of the s encryptions using the decryption algorithm from §5.1.

This gives a1, . . . , as where aj = Xi mod (π(i−1)s+j).
– Using the Chinese Remainder Code Decoding Algorithm, reconstruct Xi

from the s remainders a1, . . . , as. Note that if there are no errors introduced,
this step can be replaced by simple Chinese Remaindering.

5.4 Analysis

The proof of security remains essentially the same as in the general setting.
For the locality, we note that to recover a single bit of X, or equivalently

the entire block Xi that contains it, we must read s blocks of the ciphertext
{ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}. Since |hj | = k and |ECC(hj)| = c2k,
we must read a total of sc2k = ρc2`k

d bits. Since the probability of error will be
negligible in `, we set ` ≈ k, and since d < 1

4 , we find that we need to read



5c2ρk2 bits of the ciphertext to recover one bit of the plaintext, where c and ρ
are parameters that determine the error-rate of our code. Thus our system only
achieves local-decodability for n = Ω(k2+ε). For n ≈ k3, our system already
offers a significant improvement over standard error-correcting codes.

Thus we arrive at the following result

Corollary 3. Under the Small Primes Φ-Hiding Assumption there is a Public-
Key Locally Decodable Code which can recover from a constant error-rate in the
bits of the message, with public key size O(n) and ciphertexts of size O(n), where
n is the size of the plaintext and k is the security parameter. The resulting code
has locality O(k2), i.e. to recover a single bit from the message we must read
O(k2) bits of the codeword.
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