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Abstract. We introduce new and general complexity theoretic hard-
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1 Introduction

The state-of-the-art in complexity theory forces cryptographers to base their
schemes on unproven hardness assumptions. Such assumptions can be general
(e.g., the existence of one-way functions) or specific (e.g., the hardness of RSA
or the Discrete logarithm problem). Specific hardness assumptions are usually
stronger than their general counterparts; however, as such assumptions consider
primitives with more structure, they lend themselves to constructions of more
efficient protocols, and sometimes even to the constructions of objects that are
not known to exist when this extra structure is not present. Indeed, in recent
years, several new and more exotic specific hardness assumptions have been intro-
duced (e.g., [12, 4, 11]) leading to, among other things, signatures schemes with
improved efficiency, but also the first provably secure construction of identity-
based encryption.

In this paper, we introduce a new class of strong but general hardness as-
sumptions, and show how these assumptions can be used to resolve certain long-
standing open problems in cryptography. Our assumptions are all abstractions
of concrete properties of a random oracle. As such, our results show that for the
problems we consider, random oracles are not necessary; rather, provably secure
constructions can be based on concrete hardness assumptions.
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08-1-0197, BSF Grant No. 2006317.
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1.1 Adaptive Hardness Assumptions

We consider adaptive strengthenings of standard general hardness assumptions,
such as the existence of one-way functions and pseudorandom generators. More
specifically, we introduce the notion of collections of adaptive 1-1 one-way func-
tions and collections of adaptive pseudorandom generators. Intuitively,

– A collection of adaptively 1-1 one-way functions is a family of 1-1 functions
Fn = {ftag : {0, 1}n 7→ {0, 1}n} such that for every tag, it is hard to invert
ftag(r) for a random r, even for an adversary that is granted access to an
“inversion oracle” for ftag′ for every tag 6= tag′. In other words, the func-
tion ftag is one-way, even with access to an oracle that invert all the other
functions in the family.

– A collection of adaptive pseudo-random generators is a family of functions
Gn = Gtag : {0, 1}n 7→ {0, 1}m such that for every tag, Gtag is a pseudoran-
dom even if given access to an oracle that decides whether given y is in the
range of Gtag′ for tag′ 6= tag.

Both the above assumptions are strong, but arguably not “unrealistically” strong.
Indeed, both these assumptions are satisfied by a (sufficiently) length-extending
random oracle.4 As such, they provide concrete mathematical assumptions that
can be used to instantiate random oracles in certain applications. We also present
some concrete candidate instantiations of these assumptions. For the case of
adaptive 1-1 one-way functions, we provide construction based on the the “adap-
tive security” of Factoring, or the Discrete Log problem. For the case of adaptive
PRGs, we provide a candidate construction based on a generalization of the ad-
vanced encryption standard (AES).

Related Assumptions in the Literature. Assumptions of a related flavor have
appeared in a number of works. The class of “one-more” assumptions introduced
by Bellare, Namprempre, Pointcheval and Semanko [4] are similar in flavor.
Informally, the setting of the one-more RSA-inversion problem is the following:
The adversary is given values z1, z2, . . . , zk ∈ Z∗

N (for a composite N = pq, a
product of two primes) and is given access to an oracle that computes RSA
inverses. The adversary wins if the number of values that it computes an RSA
inverse of, exceeds the number of calls it makes to the oracle. They prove the
security of Chaum’s blind-signature scheme under this assumption. This flavor
of assumptions has been used in numerous other subsequent works [5, 6].

Even more closely related, Prabhakaran and Sahai [31] consider an assump-
tion of the form that there are collision-resistant hash functions that are secure
even if the adversary has access to a “collision-sampler”. In a related work,
Malkin, Moriarty and Yakovenko [24] assume that the discrete logarithm prob-
lem in Z∗

p (where p is a k-bit prime) is hard even for an adversary that has
access to an oracle that computes discrete logarithms in Z∗

q for any k-bit prime

4 Note that a random function over, say, {0, 1}n → {0, 1}4n is 1-1 except with expo-
nentially small probability.



q 6= p. Both these works use the assumption to achieve secure computation in a
relaxation of the universal composability framework. (In a sense, their work cou-
ples the relaxed security notion to the hardness assumption. In contrast, we use
adaptive hardness assumptions to obtain protocols that satisfy the traditional
notion of security.)

1.2 Our Results

Non-Interactive Concurrently Non-Malleable Commitment Schemes. Non-malleable
commitment schemes were first defined and constructed in the seminal paper of
Dolev, Dwork and Naor [17]. Informally, a commitment scheme is non-malleable
if no adversary can, upon seeing a commitment to a value v, produce a com-
mitment to a related value (say v − 1). Indeed, non-malleability is crucial to
applications which rely on the independence of the committed values. A stronger
notion—called concurrent non-malleability–requires that no adversary, after re-
ceiving commitments of v1, . . . , vm, can produce commitments to related values
ṽ1, . . . , ṽm; see [28, 23] for a formal definition.

The first non-malleable commitment scheme of [17] was interactive, and re-
quired O(log n) rounds of interaction, where n is a security parameter. Barak [1]
and subsequently, Pass and Rosen [29, 28] presented constant-round non-malleable
commitment schemes; the protocols of [29, 28] are the most round-efficient (re-
quiring 12 rounds) and the one of [28] is additionally concurrently non-malleable.
We note that of the above commitment schemes, [17] is the only one with a black-
box proof of security, whereas the schemes of [1, 29, 28] rely on the non-black-box
proof technique introduced by Barak [1].5

Our first result is a construction of a non-interactive, concurrently non-
malleable string commitment scheme, from a family of adaptive one-way permu-
tations; additionally our construction only requires a black-box proof of security.

Theorem 1 (Informal). Assume the existence of collections of adaptive 1-1
permutations. Then, there exists a non-interactive concurrently non-malleable
string commitment scheme with a black-box proof of security.

If instead assuming the existence of adaptive PRGs, we show the existence
of 2-round concurrent non-malleable commitment with a black-box proof of se-
curity.

Theorem 2 (Informal). Assume the existence of collections of adaptive PRGS.
Then, there exists a 2-round concurrently non-malleable string commitment scheme
with a black-box proof of security.

5 Subsequent to this work, Lin, Pass and Venkitasubramaniam [23] have presented
constructions of concurrent non-malleable commitments using a black-box security
proof, based on only one-way functions. Their construction, however, uses O(n)
communication rounds.



Round-optimal Black-box Non-malleable Zero-knowledge. Intuitively, a zero-
knowledge proof is non-malleable if a man-in-the-middle adversay, receiving a
proof of a statement x, will not be able to provide a proof of a statement x′ 6= x
unless he could have done so without hearing the proof of x. Dolev, Dwork and
Naor [17] defined non-malleable zero-knowledge (ZK) and presented an O(log n)-
round ZK proof system. Barak [1] and subsequently, Pass and Rosen [29] pre-
sented constant-round non-malleable ZK argument system. Again, the protocol
of [17] is the only one with a black-box proof of security.

We construct a 4-round non-malleable ZK argument system with a black-box
proof of security (that is, a black-box simulator). Four rounds is known to be
optimal for black-box ZK [20] (even if the protocol is not required to be non-
malleable) and for non-malleable protocols (even if they are not required to be
ZK) [22].

Theorem 3 (Informal). Assume the existence of collections of adaptive 1-1
one-way function. Then, there exists a 4-round non-malleable zero-knowledge
argument system with a black-box proof of security. Assume, instead, the ex-
istence of collections of adaptive one-way permutations. Then, there exists a
5-round non-malleable zero-knowledge argument system with a black-box proof of
security.

It is interesting to note that the (seemingly) related notion of concurrent
zero-knowledge cannot be achieved in o(log n) rounds with a black-box proof of
security. Thus, our result shows that (under our new assumptions), the notion
of non-malleability and concurrency in the context of ZK are quantitatively
different.

Efficient Chosen-Ciphertext Secure Encryption. Chosen ciphertext (CCA) se-
curity was introduced in the works of [26, 32] and has since been recognized
as a sine-qua-non for secure encryption. Dolev, Dwork and Naor [17] gave the
first construction of a CCA-secure encryption scheme based on general assump-
tions. Their construction, and the subsequent construction of Sahai [33], uses
the machinery of non-interactive zero-knowledge proofs, which renders them
less efficient than one would like. In contrast, the constructions of Cramer and
Shoup [15, 16] are efficent, but are based on specific number-theoretic assump-
tions.

Bellare and Rogaway [7] proposed an encryption scheme that is CCA-secure
in the random oracle model (see below for more details about the random oracle
model). We show complexity-theoretic assumptions that are sufficient to replace
the random oracle in this construction. We mention that, previously, Canetti [13]
showed how to replace random oracles in a related construction to get a seman-
tically secure encryption scheme, but without CCA security. In a more recent
work, Boldyreva and Fischlin [10] also show how to obtain a weakened notion of
non-malleability, but still without CCA security.

Interactive Arguments for which Parallel-repetition does not reduce the sound-
ness error. A basic question regarding interactive proofs is whether parallel



repetition of such protocols reduces the soundness error. Bellare, Impagliazzo
and Naor [3] show that there are interactive arguments (i.e., computationally-
sound) proofs in the Common Reference String (CRS) model, for which parallel-
repetition does not reduce the soundness error. Their construction relies on non-
malleable encryption, and makes use of the CRS to select the public-key for
this encryption scheme. However, if instead relying on a non-interactive concur-
rent non-malleable commitment scheme in their construction, we can dispense
of the CRS altogether. Thus, by Theorem 1, assuming the existence of collec-
tions of adaptive 1-1 one-way functions, we show that there exists an interactive
argument for which parallel repetition does not reduce the soundness error. We
also mention that the same technique can be applied also to the strengthened
construction of [30].

Our Techniques. Our constructions are simple and efficient. In particular, for
the case of non-malleable commitment schemes, we show that appropriate in-
stantiations of the Blum-Micali [9] or Naor [25] commitment schemes in fact are
non-malleable. The proof of these schemes are also “relatively straight-forward”
and follow nicely from the adaptive property of the underlying primitives.

Next, we show that by appropriately using our non-malleable commitment
protocols in the Feige-Shamir [18] ZK argument forNP, we can also get a round-
optimal black-box non-malleable ZK proof for NP. Although the construction
here is straight-forward, its proof of correctness is less so. In particular, to show
that our protocol is non-malleable, we rely on a techniques that are quite differ-
ent from traditional proofs of non-malleability: in particular, the power of the
“adaptive” oracle will only be used inside hybrid experiments; the simulation,
on the other hand, will proceed by traditional rewinding. Interestingly, to get a
round-optimal solution, our proof inherently relies on the actual Feige-Shamir
protocol and high-lights some novel features of this protocol.

Interpreting Our Results. We offer two interpretations of our results:

– The optimistic interpretation: Although our assumptions are strong, they
nonetheless do not (a priori) seem infeasible. Thus, if we believe that e.g.,
AES behaves as an adaptively secure PRG, we show efficient solutions to
important open questions.

– The conservative interpretation: As mentioned, our constructions are black-
box; namely, both the construction of the cryptographic objects and the
associated security proof utilize the underlying primitive—adaptive one-way
permutations or adaptive PRGs—as a black-box, and in particular, do not
refer to a specific implementation of these primitives. Thus, a conservative
way to view our results is that to show even black-box lower-bounds and im-
possibility results for non-interactive concurrent non-malleable commitments
and non-malleable zero-knowledge proofs, one first needs to to refute our as-
sumptions. Analogously, it means that breaking our CCA-secure encryptions
scheme, or proving a general parallel-repetition theorem for interactive ar-
guments, first requires refuting our assumptions.



A cryptographer could choose to make “mild” assumptions such as P 6= NP,
“relatively mild” ones such as the existence of one-way functions, secure encryp-
tion schemes or trapdoor permutations, or “preposterous” ones such as “this
scheme is secure”. Whereas preposterous assumptions clearly are undesirable,
mild assumptions are—given the state-of-the-art in complexity theory—too weak
for cryptographic constructions of non-trivial tasks. Relatively mild assumptions,
on the other hand, are sufficient for showing the feasibility of essentially all known
cryptographic primitives.

Yet, to obtain efficient constructions, such assumptions are—given the current-
state-of-art—not sufficient. In fact, it is a priori not even clear that although
feasibility of a cryptographic task can be based on a relatively mild assump-
tions, that an “efficient” construction of the primitive is possible (at all!). One
approach to overcome this gap is the random oracle paradigm, introduced in
the current form by Bellare and Rogaway [7]: the proposed paradigm is to prove
the security of a cryptographic scheme in the random-oracle model—where all
parties have access to a truly random function—and next instantiate the random
oracle with a concrete function “with appropriate properties”. Nevertheless, as
pointed out in [14] (see also [21, 2]) there are (pathological) schemes that can be
proven secure in the random oracle model, but are rendered insecure when the
random oracle is replaced by any concrete function (or family of functions).

In this work we, instead, investigate a different avenue for overcoming this
gap between theory and practice, by introducing strong, but general, hardness
assumption. When doing so, we, of course, need to be careful to make sure that
our assumptions (although potentially “funky”) are not preposterous. One cri-
terion in determining the acceptability of a cryptographic assumption A is to
consider (1) what the assumption is used for (for instance, to construct a primi-
tive P , say) and (2) how much more “complex” the primitive P is, compared to
A. For example, a construction of a pseudorandom generator assuming a one-way
function is non-trivial, whereas the reverse direction is not nearly as interesting.
Unfortunately, the notion of “complexity” of an assumption is hard to define.
We here offer a simple interpretation: view complexity as “succinctness”. Gen-
eral assumption are usually more succinct than specific assumptions, one-way
functions are “easier” to define than, say, pseudorandom functions. Given this
point of view, it seems that our assumptions are not significantly more complex
than traditional hardness assumption; yet they allow us to construct consider-
ably more complex objects (e.g., non-malleable zero-knowledge proofs).

On Falsifiability/Refutability of Our Assumptions. Note that the notions of non-
malleable commitment and non-malleable zero-knowledge both are defined using
simulation-based definitions. As such, simply assuming that a scheme is, say,
non-malleable zero-knowledge, seems like a very strong assumption, which is
hard to falsify6—in fact, to falsify it one needs to show (using a mathematical
proof) that no Turning machine is a good simulator. In contrast, to falsify our

6 Recall that falsifiability is Popper’s classical criterion for distinguishing scientific and
“pseudo-scientific” statements.



assumptions it is sufficient to exhibit an attacker (just as with the traditional
cryptographic hardness assumptions).

To make such “qualitative” differences more precise, Naor [27] introduced a
framework for classifying assumptions, based on how “practically” an assump-
tion can refuted. Whereas non-malleability, a priori, seems impossible to falsify
(as there a-priori is not a simple way to showing that no simulator exists). In
contrast, traditional assumptions such as “factoring is hard” can be easily re-
futed simply by publishing challenges that a “falsifier” is required to solve. Our
assumptions cannot be as easily refuted, as even if a falsifier exhibits an attack
against a candidate adaptive OWF, it is unclear how to check that this attack
works. However, the same can be said also for relatively mild (and commonly
used) assumptions, such as “factoring is hard for subexponential-time”.7

Additionally, we would like to argue that our assumptions enjoy a similar
“win/win” situation as traditional cryptographic hardness assumptions. The
adaptive security of the factoring or discrete logarithm problems seem like nat-
ural computational number theoretic questions. A refutation of our assumptions
(and its implication to factoring and discrete logarithm problem) would thus be
interesting in its own right. Taken to its extreme, this approach suggest that
we might even consider assumptions that most probably are false, such as e.g.,
assuming that AES is an (adaptive one-way) permutation, as long as we believe
that it might be hard to prove that the assumption is false.

2 New Assumptions and Definitions

The following sections introduce our definitions of adaptively secure objects—
one-way functions, pseudorandom generators and commitment schemes—and
posit candidate constructions for adaptively secure one-way functions and pseudo-
random generators.

2.1 Adaptive One-Way Functions

In this paper, we define a family of adaptively secure injective one-way functions,
where each function in the family is specified by an index tag ∈ {0, 1}n. The
adaptive security requirement says the following: consider an adversary that
picks an index tag∗ and is given y∗ = ftag∗(x∗) for a random x∗ in the domain of
ftag∗ , and the adversary is supposed to compute x∗. The adversary, in addition,
has access to a “magic oracle” that on input (tag, y) where tag 6= tag∗, and
get back f−1

tag (y). In other words, the magic oracle helps invert all functions ftag

different from the “target function” ftag∗ . The security requirement is that the

7 Note that the assumption that factoring is hard for subexponential-time can be
falsified by considering a publishing a very “short” challenge (of length polylogn).
However, in the same vein, our assumption can be falsified by considering challenges
of length log n; then it is easy to check if someone can exhibit an efficient attack on
the adaptive security of an assumed one-way function, since the inverting oracle can
also be efficiently implemented.



adversary have at most a negligible chance of computing x∗, even with this added
ability. Note that the magic oracle is just a fictitious entity, which possibly does
not have an efficient implementation (as opposed to the decryption oracle in the
definition of CCA-security for encryption schemes which can be implemented
efficiently given the secret-key). More formally,

Definition 1 (Family of Adaptive One-to-one One-way Functions). A
family of injective one-way functions F = {ftag : Dtag 7→ {0, 1}∗}tag∈{0,1}n is
called adaptively secure if,

– (Easy to sample and compute.) There is an efficient randomized domain-
sampler D, which on input tag ∈ {0, 1}n, outputs a random element in
Dtag. There is a deterministic polynomial algorithm M such that for all
tag ∈ {0, 1}n and for all x ∈ Dtag, M(tag, x) = ftag(x).

– (Adaptive One-wayness.) Let O(tag, ·, ·) denote an oracle that, on input
tag′ and y outputs f−1

tag′(y) if tag′ 6= tag, |tag′| = |tag| and ⊥ otherwise.
The family F is adaptively secure if, for any probabilistic polynomial-time
adversary A, there exists a negligible function µ such that for all n, and for
all tags tag ∈ {0, 1}n,

Pr[x← Dtag : AO(tag,·,·)(tag, ftag(x)) = x] ≤ µ(n)

where the probability is over the random choice of x and the coin-tosses of
A.

A potentially incomparable assumption is that of an adaptively secure injec-
tive one-way function (as opposed to a family of functions); here the adversary
gets access to an oracle that inverts the function on any y′ that is different from
the challenge y (that the adversay is supposed to invert). However, it is easy
to see that an adaptively secure one-way function with subexponential security
and a dense domain implies a family of adaptively secure one-way functions, as
defined above. In fact, our construction of a family of adaptively secure one-way
functions based on factoring goes through this construction.

Hardness Amplification. A strong adaptively secure one-way function is one
where no adversary can invert the function with probability better than some
negligible function in k (even with access to the inversion oracle). A weak one,
on the other hand, only requires that the adversary not be able to invert the
function with a probability better than 1 − 1/poly(k) (even with access to the
inversion oracle).

We remark that we can construct a collection of strong adaptively secure
one-way function from a collection of weak adaptively secure one-way function.
The construction is the same as Yao’s hardness amplification lemma. We defer
the details to the full version.

Candidates We now present candidates for adaptively secure one-way func-
tions, based on assumptions related to discrete-log and factoring.



Factoring. First, we show how to build an adaptively secure one-way function
(not a family of functions) from the factoring assumption. Then, we show how
to turn it into a family of functions, assuming, in addition, that factoring is
subexponentially-hard.

The domain of the function f is {(p, q) | p, q ∈ Pn, p < q}, where Pn is the
set of all n-bit primes. Given this notation, f(p, q) is defined to be pq. Assuming
that it is hard to factor a number N that is a product of primes, even with
access to an oracle that factors all other products of two primes, this function is
adaptively secure.

We now show how to turn this into a family of adaptively secure one-way
functions. The index is simply an n′ = n1/ε-bit string (for some ε > 0) i = (i1, i2).
The domain is the set of all strings (j1, j2) such that p = i1 ◦ j1 and q = i2 ◦ j2
are both n-bit primes. The function then outputs pq. Since we reveal the first
n′ = n1/ε bits of the factors of N = pq, we need to assume that factoring is
subexponentially hard (even with access to an oracle that factors other products
of two primes). The function is clearly injective since factoring forms an injective
function. In the full version, we additionally provide candidates for adaptive one-
way functions based on the RSA and Rabin functions.

Discrete Logarithms. The family of adaptive OWFs FDL is defined as follows:
The domain of the function is a tuple (p, g, x) such that p is a 2n-bit prime p
whose first n bits equal the index i, g is a generator for Z∗

p and x is a 2n − 1-
bit number. The domain is easy to sample–the sampler picks a “long-enough”
random string r and a 2n− 1-bit number x. The function fi uses r to sample a
2n-bit prime p whose first n bits equal i (this can be done by repeated sampling,
and runs in polynomial time assuming a uniformness conjecture on the density
of primes in large intervals) and a generator g ∈ Z∗

p. The output of the function
on input (p, g, x) is (p, g, gx mod p). fi is injective since the output determines
p and g; given p and g, gx mod p next determines x uniquely since x < 22n−1

and p, being a 2n-bit prime, is larger than 22n−1.
We also mention that the adaptive security of this family can be based on the

subexponential adaptive security of the one-way function (as opposed to family)
obtained by simply sampling random p, g, x (or even random p being a safe
prime) and outputting p, g, gx. (In the full version of the paper, we additionally
show how to obtain our results under a different variant of polynomial-time
adaptive hardness of the above one-way function; roughly speaking, the variant
we require here is that the adversary gets access to an oracle that inverts the
function on any input length.)

2.2 Adaptive Pseudorandom Generator

A family of adaptively secure pseudorandom generators G = {Gtag}tag∈{0,1}∗ is
defined in a similar way to an adaptive one-way function. We require that the
output of the generator G, on a random input x and an adversarially chosen tag
be indistinguishable from uniform, even for an adversary that can query a magic



oracle with a value (tag′, y) (where tag′ 6= tag) and get back 0 or 1 depending
on whether y is in the range of Gtag′ or not.

Definition 2 (Adaptive PRG). A family of functions G = {Gtag : {0, 1}n 7→
{0, 1}s(n)}tag∈{0,1}n is an adaptively secure pseudorandom generator (PRG) if
|Gtag(x)| = s(|x|) for some function s such that s(n) ≥ n for all n and,

– (efficient computability.) There is a deterministic polynomial-time al-
gorithm MG such that MG(x, tag) = Gtag(x).

– (Adaptive Pseudorandomness.) Let O(tag, ·, ·) denote an oracle that, on
input (tag′, y) such that tag′ 6= tag, |tag′| = |tag|, outputs 1 if y is in the
range of Gtag′ and 0 otherwise.
The PRG G is adaptively secure if, for any probabilistic polynomial-time
adversary A, there exists a negligible function µ such that for all n and for
all tags tag ∈ {0, 1}n,∣∣ Pr[y ← Gtag(Un) : AO(tag,·,·)(y) = 1]−Pr[y ← Um : AO(tag,·,·)(y) = 1]

∣∣ ≤ µ(n)

where the probability is over the random choice of y and the coin-tosses of
A.

Candidates For the case of adaptive PRGs, we provide a candidate construc-
tion based on the advanced encryption standard (AES). AES is a permutation on
128 bits; that is, for a 128-bit seed s, AESs is a permutation defined on {0, 1}128.
However, due to the algebraic nature of the construction of AES, it can easily be
generalized to longer input length. Let AESn denote this generalized version of
AES to n-bit inputs. Our candidate adaptive pseudorandom generator AESGtag

is simply AESGtag(s) = AESs(tag ◦ 0) ◦ AESs(tag ◦ 1).

2.3 Adaptively Secure Commitment Schemes

In this subsection, we define adaptively secure commitment schemes. Let {Comtag =
〈Stag, Rtag〉}tag∈{0,1}∗ denote a family of commitment protocols, indexed by a
string tag. We require that the commitment scheme be secure, even against an
adversary that can query a magic oracle on the transcript of a commitment
interaction and get back a message that was committed to in the transcript.
More precisely, the adversary picks an index tag and two equal-length strings
x0 and x1 and gets a value yb = Comtag(xb; r), where b is a random bit and
r is random. The adversary can, in addition, query a magic oracle on (y′, tag′)
where tag′ 6= tag and get back the some x′ such that y′ ∈ Comtag′(x′; r′) (if y′

is a legal commitment) and ⊥ otherwise. 8 The security requirement is that the
adversary cannot distinguish whether yb was a commitment to x0 or x1, even
with this extra power.
8 In case the transcript corresponds to the commitment of multiple messages, the

oracle returns a canonical one of them. In fact, one of our commitment schemes is
perfectly binding and thus, does not encounter this problem.



Definition 3 (Adaptively-Secure Commitment). A family of functions
{Comtag}tag∈{0,1}∗ is called an adaptively secure commitment scheme if Stag and
Rtag are polynomial-time and

– Statistical Binding: For any tag, over the coin-tosses of the receiver R,
the probability that a transcript 〈S∗, Rtag〉 has two valid openings is negligible.

– Adaptive Security: Let O(tag, ·, ·) denote the oracle that, on input tag′ 6=
tag, |tag′| = |tag| and c, returns an x ∈ {0, 1}`(n) if there exists strings rS

and rR, such that c is the transcript of the interaction between S with input
x and random coins rS and R with random coins rR, and ⊥ otherwise.
For any probabilistic polynomial-time oracle TM A, there exists a negligible
function µ(·) such that for all n, for all tag ∈ {0, 1}n and for all x, y ∈
{0, 1}`(n), ∣∣ Pr[c← 〈Stag(x), Rtag〉;AO(tag,·,·)(c, tag) = 1]−

Pr[c← 〈Stag(y), Rtag〉;AO(tag,·)(c, tag) = 1]
∣∣ ≤ µ(n)

3 Non-Malleable Commitment Schemes

In this section, we construct non-malleable string-commitment schemes. We first
construct adaptively-secure bit-commitment schemes based on an adaptively
secure injective OWF and an adaptively secure PRG—the first of these con-
structions is non-interactive and the second is a 2-round commitment scheme.
We then show a simple “concatenation lemma”, that constructs an adaptively
secure string commitment scheme from an adaptively-secure bit-commitment
scheme. Finally, we show that an adaptively secure commitment scheme are also
concurrently non-malleable. The complete proofs are deferred to the full version.

Lemma 1. Assume that there exists a family of adaptively secure injective one-
way functions. Then, there exists an adaptively secure bit-commitment scheme.
Furthermore, the commitment scheme is non-interactive.

Further, assuming the existence of a family of adaptively secure pseudoran-
dom generators, there exists a 2-round adaptively secure bit-commitment scheme.

The first of these constructions follows by replacing the injective one-way func-
tion in the Blum-Micali [9] commitment scheme, with an adaptively secure one,
and the second follows from the Naor commitment scheme [25] in an analogous
way.

Lemma 2 (Concatenation Lemma). If there is an adaptively secure family
of bit-commitment schemes, then there is an adaptively secure family of string-
commitment schemes.

The concatenation lemma follows by simply committing to each bit of the mes-
sage independently using a single-bit commitment scheme Comtag.

Finally, in the full version we show that any adaptively secure commitment
scheme is concurrenly non-malleable according to the definition of [23]. The
proof is essentially identical to the proof of [17] that any CCA-secure encryption
scheme is also non-malleable.



Lemma 3. If {Comtag}tag∈{0,1}n is a tag-based adaptively secure commitment
scheme, then it is also concurrently non-malleable.

4 Four-Round Non-Malleable Zero-Knowledge

In this section, we present a 4-round non-malleable zero-knowledge argument
system. We start by reviewing the notion of non-malleable zero-knowledge [17]
and refer the reader to [29] for a formal definition of the notion we consider in
this work.

Non-malleable ZK proofs: An informal definition. Let Πtag be a tag-based family
of ZK proofs. Consider a man-in-the-middle adversary that participates in two
interactions: in the left interaction the adversary A is verifying the validity of
a statement x by interacting with an honest prover P using tag. In the right
interaction A proves the validity of a statement x′ to the honest verifier V
using tag′ 6= tag. The objective of the adversary is to convince the verifier in
the right interaction. Πtag is, roughly speaking, non-malleable, if for any man-
in-the-middle adversary A, there exists a stand-alone prover S that manages to
convince the verifier with essentially the same probability as A (without receiving
a proof on the left).

Our protocol. The argument system is the Feige-Shamir protocol [18], compiled
with an adaptively secure commitment scheme. In our analysis we rely on the
following properties of the Feige-Shamir protocol:

– The first prover message is (perfectly) independent of the witness used by
the prover (and even the statement). This property has previously been used
to simplify analysis, but here we inherently rely on this property to enable
our analysis.

– Given a random accepting transcript, and the openings of the commitments
in the first message, it is possible to “extract a witness”. In other words, any
transcript implicitly defines a witness; additionally, given a random tran-
script, this witness will be valid with a high probability (if the transcript is
accepting).

In what follows, we present a sketch of the protocol and the proof. The
complete proof is deferred to the full version.

4.1 An Adaptively Secure WI Proof of Knowledge

The main component in the NMZK protocol is a three-round witness-
indistinguishable (WI) proof of knowledge (POK); see [19] for a definition of
witness indistinguishability and proof of knowledge. The protocol is simply a
parallelization of the 3-round ZK proof Π̃ for the NP-complete language of
Hamiltonicity [8, 18], with the only change that the commitment scheme used in
the proof is adaptively secure. Let Πtag denote this family of protocols; it is a
family which is parameterized by the tag of the adaptively secure commitment.

We show that this family of protocols satisfy two properties:



– it has an “adaptive WI” property which, roughly stated, means that the
transcripts of the protocol when the prover uses two different witnesses w1

and w2 are computationally indistinguishable, even if the distinguisher has
access to a magic oracle that inverts all commitments Comtag′ , where tag′ 6=
tag.

– a random transcript of Π̃tag uniquely defines a witness (even though not
it is not computable in polynomial-time). We define this to be the witness
implicit in the transcript in an instance of Πtag. Furthermore, we show that
the implicit witness in Πtag is computable given access to O(tag′, ·, ·) for any
tag′ 6= tag.

4.2 The Non-Malleable Zero-Knowledge Argument System

The non-malleable ZK protocol consists of two instances of the protocol Πtag

running in conjunction, one of them initiated by the verifier and the other initi-
ated by the prover. We will denote the copy of Πtag initiated by the verifier as
ΠV

tag and the one initiated by the prover as ΠP
tag.

Recall that Πtag is a parallelized version of a 3-round protocol Π̃tag; let Ai, Ci

and Zi denote the messages in the i’th repetion in these three rounds. In the
description of the protocol, we let messages in the protocol ΠV

tag (resp. ΠP
tag)

appear with a superscript of V (resp. P ).

Theorem 4. Assume that Com is a non-interactive adaptively secure commit-
ment scheme. Then, the protocol in Figure 1 is a 4-round non-malleable zero-
knowledge argument system.

Proof (Sketch). Completeness, soundness and zero-knowledge properties of the
protocol follow directly from the corresponding properties of the Feige-Shamir
protocol. In Lemma 4, we show that the protocol non-malleable.

In other words, for every man-in-the-middle adversary A that interacts with
the prover Ptag on a statement x and convinces the verifier Vtag′ (for a tag′ 6= tag)
in a right-interaction on a statement x′ (possibly the same as x), we construct a
stand-alone prover that convinces the verifier on x′ with the same probability as
A, but without access to the left-interaction. The construction of the stand-alone
prover in the proof of non-malleability (see Lemma 4) relies on the adaptive
security of the commitment scheme Comtag. It is important to note that the
stand-alone prover itself runs in classical polynomial-time, and in particular does
not use any oracles. Access to the commitment-inversion oracle is used only to
show that the stand-alone prover works as expected (and in particular, that it
convinces the verifier with the same probability as does the MIM adversary).

Lemma 4. The protocol NMtag in Figure 1 is non-malleable.

Proof (Sketch). For every man-in-the-middle adversary A, we construct a stand-
alone prover S: the construction of the stand-alone prover S proceeds in three
steps.



Non-Malleable Zero-Knowledge Argument NMtag

Common Input: An instance x ∈ {0, 1}n, presumably in the language L.
Prover Input: A witness w such that (x, w) ∈ RL.
round 1: (Verifier) Pick w1 and w2 at random and compute xi = f(wi) for

i ∈ {1, 2}.
Let the NP-relation RV = {((x1, x2), w

′) | either f(w′) = x1 or f(w′) = x2}.
Initiate the WI protocol ΠV

tag with the statement (x1, x2) ∈ LV . In particular,
V→ P : Send (x1, x2) to P . Send AV

1 , AV
2 , . . . , AV

n to P .
round 2: (Prover) Let the NP-relation RP be

{((x, x1, x2), w) | either (x, w) ∈ RL or f(w) = x1 or f(w) = x2}

Initiate a WI protocol ΠP
tag with common input (x, x1, x2). Also, send the second-

round messages of the protocol ΠV
tag. In particular,

(2a) P→ V: Send AP
1 , AP

2 , . . . , AP
n to V .

(2b) P→ V: Send CV
1 , CV

2 , . . . , CV
n to V .

round 3: (Verifier) Send round-2 challenges of the protocol ΠP
tag and round-3

responses of ΠV
tag.

(3a) V→ P: Send CP
1 , . . . , CP

n to P .
(3b) V→ P: Send ZV

1 , . . . , ZV
n to P .

round 4: (Prover) P verifies that the transcript {(AV
i , CV

i , ZV
i )}i∈[n] is accepting

for the subprotocol ΠV
tag. If not, abort and send nothing to V . Else,

P→ V: Send ZP
1 , . . . , ZP

n to V .
V accepts iff the transcript {(AP

i , CP
i , ZP

i )}i∈[n] is accepting for the subprotocol
ΠP

tag.

Fig. 1. Non-Malleable Zero-knowledge Protocol NMtag for a language L

1. Run the adversary A with “honestly generated” verifier-messages on the right
interaction, and extract the witness for the WIPOK ΠV

tag that the adversary
initiates on the left interaction.

2. Use the witness thus obtained to simulate the left-interaction of the adver-
sary A and rewind the WI proof of knowledge ΠP

tag′ it initiates on the right
interaction to extract the witness w′ for the statement x′.

3. Finally provide an honest proof to the outside verifier of the statement x′

using the tag tag′ and witness w′.

Carrying out this agenda involves a number of difficulties. We first describe how
to accomplish Step 1. This is done by invoking the simulator for the Feige-Shamir
protocol, and is described below. Informally, S extracts the witness w′ that the
MIM A uses in the subprotocol ΠV

tag in the left-interaction. Then, S acts as the
honest prover using the witness w′ in the protocol ΠP

tag.
We now describe how to carry out Step 2 of the agenda, and show that at the

end of Step 2, S extracts a witness for the statement x′ that the MIM adversary
A uses in the right-interaction with essentially the same probability that A con-
vinces the verifier on the right-interaction. S starts by running the protocol in



the left-interaction using the witness w′ it extracted using the strategy in Step
1. Consider the moment when A outputs the first message on the left (that is,
the first message in the subprotocol ΠV

tag). Consider two cases.

Ptag x A x′ Vtag′

←−−−−
(1)←−−−−−−−−→ −−−−→

(3′)←−−−−←−−−−−−−−→ −−−−→

Ptag x A x′ Vtag′

←−−−−−−−−→
(3′)←−−−−

(1)←−−−−−−−−→←−−−−−−−−→ −−−−→

Fig. 2. Two scheduling strategies (i) on the left and (ii) on the right

Case One: In the first case, A has not yet received the round-3 messages in
the right interaction (that is, the challenges in the subprotocol ΠP

tag′) (See Fig-
ure 2(i)). In this case, the Round-1 message that A sends on the left interaction
is independent of the Round-3 message in the right interaction. Now, S proceeds
as follows: S runs the left-interaction as a normal prover Ptag would with the
fake-witness w′, and rewinds the protocol ΠP

tag′ on the right-interaction to ex-
tract a witness for the statement x′. Since the rewinding process does not change
the messages in the right-interaction before round 3, S can use w′ to produce
the left-interaction just as an honest prover with witness w′ would; note that
we here rely on the property of the Feige-Shamir protocol that the first message
sent by the prover (i.e., round 2) is independent of the statement and witness
used.

Case Two: In the second case, A has already received the challenges in the
subprotocol ΠP

tag′ in the right interaction (See Figure 2(ii)). In this case, trying
to rewind in the WIPOK ΠP

tag′ on the right is problematic, since A could change
the first message on the left, every time it is fed with a different challenge in
round-3 on the right-interaction. In this case, S proceeds as follows: Every time
the extractor for the WIPOK ΠP

tag′ in the right-interaction rewinds, S repeats
the entire procedure in Step 1 of the agenda to extract a witness w′ correspond-
ing to the (potentially new) Round-1 message in the left interaction. S then
simulates the left-interaction with the witness thus extracted. Note that due to
the particular scheduling, the extraction procedure on the right-interaction is
unaffected by the rewinding on the left.

To analyze the correctness of the above simulator, we first show that the
view generated by S following Step 1 of the agenda is indistinguishable from
the view of A in a real interaction, even to a distinguisher that has access to
the oracle O(tag, ·, ·) that inverts Comtag′ for any tag′ 6= tag. Then, we use
this to show that the implicit witness in the transcript of the subprotocol ΠP

tag′

in the right-interaction is indistinguishable between the simulated and the real



execution. This means that the witness that S extracts from the right interaction
of A is computationally indistinguishable from the witness that A uses in the
real interaction. We defer an analysis of the running-time to the full version;
intuitively it follows that the running-time in expectation is polynomial since
when performing rewinding on the right, we can perfectly emulate the messages
on the left with the same distribution as when generating the initial view in
Stage 1.

5 CCA2-Secure Encryption Scheme

Bellare and Rogaway [7] showed how to construct an efficient encryption scheme
that is CCA2-secure in the random oracle model, starting from any trapdoor
permutation. We show that the same scheme is CCA2-secure in the standard
model (that is, without assuming random oracles) by instantiation their scheme
with adaptively secure primitives.

To prove security of the construction, we assume an adaptively secure variant
of perfectly one-way hash functions (defined by Canetti [13]), and a family of
trapdoor permutations that is hard to invert even with access to an oracle that
inverts the perfectly one-way hash function. We note that Canetti [13] (define
and) use perfectly one-way hashing with auxiliary input to prove IND-CPA
security (semantic security) of the [7] construction.

We sketch the notion of adaptively secure perfectly one-way hashing w.r.t
auxiliary information and give a high-level intuition of the security proof; the
complete definition and proof is deferred to the full version. Consider a family
of functions H such that for a random function H ← H, it is computationally
infeasible to distinguish between h ← H(r; s) (for random r, s) and a random
value, even if the adversary is given (1) g(r), where g is an uninvertible function
evaluated on the input r, and (2) access to an oracle that inverts every h′ 6= h
(namely, the oracle, given any h′ 6= h, computes (r′, s′) such that h′ = H(r′; s′)).

Theorem 5. Let TDPGen be a family of trapdoor permutations that are unin-
vertible with access to the H-inverting oracle, and let H be an adaptively secure
perfectly one-way hash family with auxiliary information. Then, the scheme in
Figure 3 is an IND-CCA2-secure encryption scheme.

Proof (Idea). The proof is analogous to that for the two-key paradigm of Naor
and Yung [26]. The main idea of the proof is that there are two ways to decrypt a
ciphertext – the first is using the trapdoor f−1 (as the legal decryption algorithm
Dec does), and the second is using an oracle that inverts H. Given a ciphertext
c = (c0, c1, c2, s1, s2) and access to such an oracle, we first compute r′ such that
H((r′, s1, c1); s2) = c2, and check that c0 = f(r′). If the check passes, output
m = c1 ⊕ H(r′; s1), otherwise output ⊥. This allows the simulator to answer
the decryption queries of the adversary, given access to an oracle that inverts
H. Even with access to such an oracle, the adversary can neither (1) invert f(r)
on a new value r (since f is uninvertible even with access to the H-inverting



Gen(1n) : Run TDPGen(1n) and get a pair (f, f−1). Run PHGen(1k) to get a
perfectly one-way hash function H. Let pk = (f, H) and sk = f−1.

Enc(pk, m) :
1. Pick random r ← {0, 1}n. Compute c0 = f(r) and c1 = m ⊕H(r; s1) for

random s1.
2. Let c′ = (r, s1, c1). Compute c2 = H(c′; s2) for random s2.

Output the ciphertext c = (c0, c1, c2, s1, s2).
Dec(sk, c) : Parse c as (c0, c1, c2, s1, s2).

1. Compute r′ = f−1(c0), and m′ = c1 ⊕H(r′; s1).
2. Let c′ = (r′, s1, c1). Output m′ if H(c′; s2) = c2. Otherwise output ⊥.

Fig. 3. An IND-CCA2-secure encryption scheme.

oracle), nor (2) distinguish H(r; ·) from random (since H is an adaptively secure
perfectly one-way hash family). Thus, even with access to the decryption oracle,
the scheme is semantically secure; that is to say that the scheme itself is IND-
CCA2-secure.
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