
The Random Oracle Model and the Ideal Cipher

Model are Equivalent

Jean-Sébastien Coron1, Jacques Patarin2, and Yannick Seurin2,3

1 University of Luxembourg
2 University of Versailles

3 Orange Labs

Abstract. The Random Oracle Model and the Ideal Cipher Model are
two well known idealised models of computation for proving the security
of cryptosystems. At Crypto 2005, Coron et al. showed that security
in the random oracle model implies security in the ideal cipher model;
namely they showed that a random oracle can be replaced by a block
cipher-based construction, and the resulting scheme remains secure in
the ideal cipher model. The other direction was left as an open problem,
i.e. constructing an ideal cipher from a random oracle. In this paper we
solve this open problem and show that the Feistel construction with 6
rounds is enough to obtain an ideal cipher; we also show that 5 rounds
are insufficient by providing a simple attack. This contrasts with the
classical Luby-Rackoff result that 4 rounds are necessary and sufficient
to obtain a (strong) pseudo-random permutation from a pseudo-random
function.

1 Introduction

Modern cryptography is about defining security notions and then constructing
schemes that provably achieve these notions. In cryptography, security proofs
are often relative: a scheme is proven secure, assuming that some computational
problem is hard to solve. For a given functionality, the goal is therefore to obtain
an efficient scheme that is secure under a well known computational assumption
(for example, factoring is hard). However for certain functionalities, or to get a
more efficient scheme, it is sometimes necessary to work in some idealised model
of computation.

The well known Random Oracle Model (ROM), formalised by Bellare and
Rogaway [1], is one such model. In the random oracle model, one assumes that
some hash function is replaced by a publicly accessible random function (the
random oracle). This means that the adversary cannot compute the result of the
hash function by himself: he must query the random oracle. The random oracle
model has been used to prove the security of numerous cryptosystems, and it has
lead to simple and efficient designs that are widely used in practice (such as PSS
[2] and OAEP [3]). Obviously, a proof in the random oracle model is not fully
satisfactory, because such a proof does not imply that the scheme will remain
secure when the random oracle is replaced by a concrete hash function (such

as SHA-1). Numerous papers have shown artificial schemes that are provably
secure in the ROM, but completely insecure when the RO is instantiated with
any function family (see [7]). Despite these separation results, the ROM still
appears to be a useful tool for proving the security of cryptosystems. For some
functionalities, the ROM construction is actually the only known construction
(for example, for non-sequential aggregate signatures [6]).

The Ideal Cipher Model (ICM) is another idealised model of computation,
similar to the ROM. Instead of having a publicly accessible random function, one
has a publicly accessible random block cipher (or ideal cipher). This is a block
cipher with a κ-bit key and a n-bit input/output, that is chosen uniformly at
random among all block ciphers of this form; this is equivalent to having a family
of 2κ independent random permutations. All parties including the adversary can
make both encryption and decryption queries to the ideal block cipher, for any
given key. As for the random oracle model, many schemes have been proven
secure in the ICM [5, 11, 14, 16]. As for the ROM, it is possible to construct
artificial schemes that are secure in the ICM but insecure for any concrete block
cipher (see [4]). Still, a proof in the ideal cipher model seems useful because it
shows that a scheme is secure against generic attacks, that do not exploit specific
weaknesses of the underlying block cipher.

A natural question is whether the random oracle model and the ideal cipher
model are equivalent models, or whether one model is strictly stronger than the
other. Given a scheme secure with random oracles, is it possible to replace the
random oracles with a block cipher-based construction, and obtain a scheme that
is still secure in the ideal cipher model? Conversely, if a scheme is secure in the
ideal cipher model, is it possible to replace the ideal cipher with a construction
based on functions, and get a scheme that is still secure when these functions
are seen as random oracles?

At Crypto 2005, Coron et al. [9] showed that it is indeed possible to re-
place a random oracle (taking arbitrary long inputs) by a block cipher-based
construction. The proof is based on an extension of the classical notion of in-
distinguishability, called indifferentiability, introduced by Maurer et al. in [18].
Using this notion of indifferentiability, the authors of [9] gave the definition
of an “indifferentiable construction” of one ideal primitive (F) (for example, a
random oracle) from another ideal primitive (G) (for example an ideal block
cipher). When a construction satisfies this notion, any scheme that is secure in
the former ideal model (F) remains secure in the latter model (G), when instan-
tiated using this construction. The authors of [9] proposed a slight variant of the
Merkle-Damg̊ard construction to instantiate a random oracle (see Fig. 1). Given
any scheme provably secure in the random oracle model, this construction can
replace the random oracle, and the resulting scheme remains secure in the ideal
cipher model; other constructions have been analysed in [8].

The other direction (constructing an ideal cipher from a random oracle) was
left as an open problem in [9]. In this paper we solve this open problem and show
that the Luby-Rackoff construction with 6 rounds is sufficient to instantiate an
ideal cipher (see Fig. 2 for an illustration). Actually, it is easy to see that it is

H

21m m Lm

EE EIVIV

mm 1 L

Fig. 1. A Merkle-Damg̊ard like construction [9] based on ideal cipher E (left) to replace
random oracle H (right). Messages blocks mi’s are used as successive keys for ideal-
cipher E. IV is a pre-determined constant.

enough to construct a random permutation instead of an ideal cipher; namely,
a family of 2κ independent random permutations (i.e., an ideal block cipher)
can be constructed by simply prepending a k-bit key to the inner random oracle
functions Fi’s. Therefore in this paper, we concentrate on the construction of a
random permutation. We also show that 5 rounds Luby-Rackoff is insecure by
providing a simple attack; this shows that 6 rounds is actually optimal.

S T

L

P

R
L

1

F

F

F

F

F

2

3

4

5

6

F
R

X

Y

Z

A

S

TS

Fig. 2. The Luby-Rackoff construction with 6 rounds (left), to replace a random per-
mutation P (right).

Our result shows that the random oracle model and the ideal cipher model are
actually equivalent assumptions. It seems that up to now, many cryptographers
have been reluctant to use the Ideal Cipher Model and have endeavoured to
work in the Random Oracle Model, arguing that the ICM is richer and carries
much more structure than the ROM. Our result shows that it is in fact not the
case and that designers may use the ICM when they need it without making a
stronger assumption than when working in the random oracle model. However,
our security reduction is quite loose, which implies that in practice large security
parameters should be used in order to replace an ideal cipher by a 6-round Luby-
Rackoff.

We stress that the “indifferentiable construction” notion is very different from
the classical indistinguishability notion. The well known Luby-Rackoff result

that 4 rounds are enough to obtain a strong pseudo-random permutation from
pseudo-random functions [17], is proven under the classical indistinguishability
notion. Under this notion, the adversary has only access to the input/output of
the Luby-Rackoff (LR) construction, and tries to distinguish it from a random
permutation; in particular it does not have access to the input/output of the in-
ner pseudo-random functions. On the contrary, in our setting, the distinguisher
can make oracle calls to the inner round functions Fi’s (see Fig. 2); the indif-
ferentiability notion enables to accommodate these additional oracle calls in a
coherent definition.

1.1 Related Work

One of the first paper to consider having access to the inner round functions
of a Luby-Rackoff is [20]; the authors showed that Luby-Rackoff with 4 rounds
remains secure if adversary has oracle access to the middle two round functions,
but becomes insecure if adversary is allowed access to any other round functions.

In [15] a random permutation oracle was instantiated for a specific scheme
using a 4-rounds Luby-Rackoff. More precisely, the authors showed that the ran-
dom permutation oracle P in the Even-Mansour [14] block-cipher Ek1,k2

(m) =
k2 ⊕ P (m ⊕ k1) can be replaced by a 4-rounds Luby-Rackoff, and the block-
cipher E remains secure in the random oracle model; for this specific scheme,
the authors obtained a (much) better security bound than our general bound in
this paper.

In [12], Dodis and Puniya introduced a different model for indifferentiabil-
ity, called indifferentiability in the honest-but-curious model. In this model, the
distinguisher is not allowed to make direct calls to the inner hash functions;
instead he can only query the global Luby-Rackoff construction and get all the
intermediate results. The authors showed that in this model, a Luby-Rackoff
construction with a super-logarithmic number of rounds can replace an ideal ci-
pher. The authors also showed that indifferentiability in the honest-but-curious
model implies indifferentiability in the general model, for LR constructions with
up to a logarithmic number of rounds. But because of this gap between log-
arithmic and super-logarithmic, the authors could not conclude about general
indifferentiability of Luby-Rackoff constructions. Subsequent work by Dodis and
Puniya [13] studied other properties (such as unpredictability and verifiablity)
of the Luby-Rackoff construction when the intermediate values are known to the
attacker.

We have an observation about indifferentiability in the honest-but-curious
model: general indifferentiability does not necessarily imply indifferentiability
in the honest-but-curious model. More precisely, we show in Appendix B that
LR constructions with up to logarithmic number of rounds are not indifferen-
tiable from a random permutation in the honest-but-curious model, whereas our
main result in this paper is that 6-rounds LR is indifferentiable from a random
permutation in the general model.

2 Definitions

In this section, we recall the notion of indifferentiability of random systems,
introduced by Maurer et al. in [18]. This is an extension of the classical notion
of indistinguishability, where one or more oracles are publicly available, such as
random oracles or ideal ciphers.

We first motivate why such an extension is actually required. The classical
notion of indistinguishability enables to argue that if some system S1 is indistin-
guishable from some other system S2 (for any polynomially bounded attacker),
then any application that uses S1 can use S2 instead, without any loss of se-
curity; namely, any non-negligible loss of security would precisely be a way of
distinguishing between the two systems. Since we are interested in replacing a
random permutation (or an ideal cipher) by a Luby-Rackoff construction, we
would like to say that the Luby-Rackoff construction is “indistinguishable” from
a random permutation. However, when the distinguisher can make oracle calls
to the inner round functions, one cannot say that the two systems are “indistin-
guishable” because they don’t even have the same interface (see Fig. 2); namely
for the LR construction the distinguisher can make oracle calls to the inner func-
tions Fi’s, whereas for the random permutation he can only query the input and
receive the output and vice versa. This contrasts with the setting of the classical
Luby-Rackoff result, where the adversary has only access to the input/output
of the LR construction, and tries to distinguish it from a random permutation.
Therefore, an extension of the classical notion of indistinguishability is required,
in order to show that some ideal primitive (like a random permutation) can be
constructed from another ideal primitive (like a random oracle).

Following [18], we define an ideal primitive as an algorithmic entity which
receives inputs from one of the parties and delivers its output immediately to
the querying party. The ideal primitives that we consider in this paper are ran-
dom oracles and random permutations (or ideal ciphers). A random oracle [1] is
an ideal primitive which provides a random output for each new query. Identi-
cal input queries are given the same answer. A random permutation is an ideal
primitive that contains a random permutation P : {0, 1}n → {0, 1}n. The ideal
primitive provides oracle access to P and P−1. An ideal cipher is an ideal prim-
itive that models a random block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n. Each
key k ∈ {0, 1}κ defines a random permutation Ek = E(k, ·) on {0, 1}n. The ideal
primitive provides oracle access to E and E−1; that is, on query (0, k, m), the
primitive answers c = Ek(m), and on query (1, k, c), the primitive answers m
such that c = Ek(m). These oracles are available for any n and any κ.

The notion of indifferentiability [18] is used to show that an ideal primitive P
(for example, a random permutation) can be replaced by a construction C that
is based on some other ideal primitive F (for example, C is the LR construction
based on a random oracle F):

Definition 1 ([18]). A Turing machine C with oracle access to an ideal prim-

itive F is said to be (tD, tS , q, ε)-indifferentiable from an ideal primitive P if

there exists a simulator S with oracle access to P and running in time at most

tS, such that for any distinguisher D running in time at most tD and making at

most q queries, it holds that:
∣

∣

∣
Pr

[

DCF ,F = 1
]

− Pr
[

DP,SP

= 1
]
∣

∣

∣
< ε

CF is simply said to be indifferentiable from F if ε is a negligible function of the

security parameter n, for polynomially bounded q, tD and tS.

F P S

D

LR

Fig. 3. The indifferentiability notion.

The previous definition is illustrated in Figure 3, where P is a random permu-
tation, C is a Luby-Rackoff construction LR, and F is a random oracle. In this
paper, for a 6-round Luby-Rackoff, we denote these random oracles F1, . . . , F6

(see Fig. 2). Equivalently, one can consider a single random oracle F and encode
in the first 3 input bits which round function F1, . . . , F6 is actually called. The
distinguisher has either access to the system formed by the construction LR and
the random oracle F , or to the system formed by the random permutation P
and a simulator S. In the first system (left), the construction LR computes its
output by making calls to F (this corresponds to the round functions Fi’s of the
Luby-Rackoff); the distinguisher can also make calls to F directly. In the second
system (right), the distinguisher can either query the random permutation P , or
the simulator that can make queries to P . We see that the role of the simulator
is to simulate the random oracles Fi’s so that no distinguisher can tell whether
it is interacting with LR and F , or with P and S. In other words, 1) the output
of S should be indistinguishable from that of random oracles Fi’s and 2) the
output of S should look “consistent” with what the distinguisher can obtain
from P . We stress that the simulator does not see the distinguisher’s queries to
P ; however, it can call P directly when needed for the simulation. Note that the
two systems have the same interface, so now it makes sense to require that the
two systems be indistinguishable.

To summarise, in the first system the random oracles Fi are chosen at ran-
dom, and a permutation C = LR is constructed from them with a 6 rounds
Luby-Rackoff. In the second system the random permutation P is chosen at
random and the inner round functions Fi’s are simulated by a simulator with
oracle access to P . Those two systems should be indistinguishable, that is the
distinguisher should not be able to tell whether the inner round functions were
chosen at random and then the Luby-Rackoff permutation constructed from it,

or the random permutation was chosen at random and the inner round functions
then “tailored” to match the permutation.

It is shown in [18] that the indifferentiability notion is the “right” notion
for substituting one ideal primitive with a construction based on another ideal
primitive. That is, if CF is indifferentiable from an ideal primitive P , then CF

can replace P in any cryptosystem, and the resulting cryptosystem is at least
as secure in the F model as in the P model; see [18] or [9] for a proof. Our
main result in this paper is that the 6 rounds Luby-Rackoff construction is
indifferentiable from a random permutation; this implies that such a construction
can replace a random permutation (or an ideal cipher) in any cryptosystem, and
the resulting scheme remains secure in the random oracle model if the original
scheme was secure in the random permutation (or ideal cipher) model.

3 Attack of Luby-Rackoff with 5 Rounds

In this section we show that 5 rounds are not enough to obtain the indifferen-
tiability property. We do this by exhibiting for the 5 rounds Luby-Rackoff (see
Fig. 4) a property that cannot be obtained with a random permutation.

F1

F2

F3

F4

F5

L R

Z

Y

X

S

S T

Fig. 4. 5-rounds
Luby-Rackoff.

Let Y and Y ′ be arbitrary values, corresponding to in-
puts of F3 (see Fig. 4); let Z be another arbitrary value,
corresponding to input of F4. Let Z ′ = F3(Y)⊕ F3(Y

′)⊕ Z,
and let:

X = F3(Y)⊕ Z = F3(Y
′)⊕ Z ′ (1)

X ′ = F3(Y
′)⊕ Z = F3(Y)⊕ Z ′ (2)

From X , X ′, Y and Y ′ we now define four couples (Xi, Yi)
as follows:

(X0, Y0) = (X, Y), (X1, Y1) = (X ′, Y)
(X2, Y2) = (X ′, Y ′), (X3, Y3) = (X, Y ′)

and we let Li‖Ri be the four corresponding plaintexts; we
have:

R0 = Y0 ⊕ F2(X0) = Y ⊕ F2(X)

R1 = Y1 ⊕ F2(X1) = Y ⊕ F2(X
′)

R2 = Y2 ⊕ F2(X2) = Y ′ ⊕ F2(X
′)

R3 = Y3 ⊕ F2(X3) = Y ′ ⊕ F2(X)

Let Z0, Z1, Z2, Z3 be the corresponding values as input of F4; we have from (1)
and (2):

Z0 = X0 ⊕ F3(Y0) = X ⊕ F3(Y) = Z, Z1 = X1 ⊕ F3(Y1) = X ′ ⊕ F3(Y) = Z ′

Z2 = X2 ⊕ F3(Y2) = X ′ ⊕ F3(Y
′) = Z, Z3 = X3 ⊕ F3(Y3) = X ⊕ F3(Y

′) = Z ′

Finally, let Si‖Ti be the four corresponding ciphertexts; we have:

S0 = Y0 ⊕ F4(Z0) = Y ⊕ F4(Z), S1 = Y1 ⊕ F4(Z1) = Y ⊕ F4(Z
′)

S2 = Y2 ⊕ F4(Z2) = Y ′ ⊕ F4(Z), S3 = Y3 ⊕ F4(Z3) = Y ′ ⊕ F4(Z
′)

We obtain the relations:

R0 ⊕R1 ⊕R2 ⊕R3 = 0, S0 ⊕ S1 ⊕ S2 ⊕ S3 = 0

Thus, we have obtained four pairs (plaintext, ciphertext) such that the xor of the
right part of the four plaintexts equals 0 and the xor of the left part of the four
ciphertexts also equals 0. For a random permutation, it is easy to see that such
a property can only be obtained with negligible probability, when the number
of queries is polynomially bounded. Thus we have shown:

Theorem 1. The Luby-Rackoff construction with 5 rounds is not indifferen-

tiable from a random permutation.

This contrasts with the classical Luby-Rackoff result, where 4 rounds are
enough to obtain a strong pseudo-random permutation from pseudo-random
functions.

4 Indifferentiability of Luby-Rackoff with 6 Rounds

We now prove our main result: the Luby-Rackoff construction with 6 rounds is
indifferentiable from a random permutation.

Theorem 2. The LR construction with 6 rounds is (tD, tS , q, ε)-indifferentiable

from a random permutation, with tS = O(q4) and ε = 218 · q8/2n, where n is the

output size of the round functions.

Note that here the distinguisher has unbounded running time; it is only
bounded to ask q queries. As illustrated in Figure 3, we must construct a simu-
lator S such that the two systems formed by (LR, F) and (P,S) are indistinguish-
able. The simulator is constructed in Section 4.1, while the indistinguishability
property is proved in Section 4.2.

4.1 The Simulator

We construct a simulator S that simulates the random oracles F1, . . . , F6. For
each function Fi the simulator maintains an history of already answered queries.
We write x ∈ Fi when x belongs to the history of Fi, and we denote by Fi(x)
the corresponding output. When we need to obtain Fi(x) and x does not belong
to the history of Fi, we write Fi(x) ← y to determine that the answer to Fi

query x will be y; we then add (x, Fi(x)) to the history of Fi. We denote by n
the output size of the functions Fi’s. We denote by LR and LR−1 the 6-round
Luby-Rackoff construction as obtained from the functions Fi’s.

We first provide an intuition of the simulator’s algorithm. The simulator
must make sure that his answers to the distinguisher’s Fi queries are coherent
with the answers to P queries that can be obtained independently by the distin-
guisher. In other words, when the distinguisher makes Fi queries to the simulator
(possibly in some arbitrary order), the output generated by the corresponding
Luby-Rackoff must be the same as the output from P obtained independently
by the distinguisher. We stress that those P queries made by the distinguisher
cannot be seen by the simulator; the simulator is only allowed to make his own
P queries (as illustrated in Fig. 3). In addition, the simulator’s answer to Fi

queries must be statistically close to the output of random functions.

The simulator’s strategy is the following: when a “chain of 3 queries” has been
made by the distinguisher, the simulator is going to define the values of all the
other Fi’s corresponding to this chain, by making a P or a P−1 query, so that the
output of LR and the output of P are the same for the corresponding message.
Roughly speaking, we say that we have a chain of 3 queries (x, y, z) when x, y,
z are in the history of Fk, Fk+1 and Fk+2 respectively and x = Fk+1(y)⊕ z.

For example, if a query X to F2 is received, and we have X = F3(Y)⊕Z where
Y , Z belong to the history of F3 and F4 respectively, then the triple (X, Y, Z)

forms a 3-chain of queries. In this case, the simulator defines F2(X)
$
← {0, 1}n

F1

F2

F3

F4

AF5

SF6

L R

Z

Y

X

TS

and computes the corresponding R = Y ⊕ F2(X). It also

lets F1(R)
$
← {0, 1}n and computes L = X ⊕F1(R). Then

it makes a P -query to get S‖T = P (L‖R). It also com-
putes A = Y ⊕ F4(Z). The values of F5(A) and F6(S)
are then “adapted” so that the 6-round LR and the ran-
dom permutation provide the same output, i.e. the sim-
ulator defines F5(A) ← Z ⊕ S and F6(S) ← A ⊕ T , so
that LR(L‖R) = P (L‖R) = S‖T . In summary, given a F2

query, the simulator looked at the history of (F3, F4) and
adapted the answers of (F5, F6).

More generally, given a query to Fk, the simulator pro-
ceeds according to Table 1 below; we denote by + for
looking downward in the LR construction and by − for
looking upward. The simulator must first simulate an ad-
ditional call to Fi (column “Call”). Then the simulator
can compute either L‖R or S‖T (as determined in column
“Compute”). Given L‖R (resp. S‖T) the simulator makes
a P -query (resp. a P−1-query) to obtain S‖T = P (L‖R)
(resp. L‖R = P−1(S‖T)). Finally Table 1 indicates the
index j for which the output of (Fj , Fj+1) is adapted (col-
umn “Adapt”).

Given a query x to Fk, with 2 ≤ k ≤ 3, the simulator
(when looking downward) must actually consider all 3-
chains formed by (x, y, z) where y ∈ Fk+1 and z ∈ Fk+2. Therefore, for k ≤ 2 ≤ 3,

Query Dir History Call Compute Adapt
F1 - (F5, F6) F4 S‖T (F2, F3)
F2 + (F3, F4) F1 L‖R (F5, F6)

F2 - (F̃6, F1) F5 L‖R (F3, F4)
F3 + (F4, F5) F6 S‖T (F1, F2)
F4 - (F2, F3) F1 L‖R (F5, F6)

F5 + (F6, F̃1) F2 S‖T (F3, F4)
F5 - (F3, F4) F6 S‖T (F1, F2)
F6 + (F1, F2) F3 L‖R (F4, F5)

Table 1. Simulator’s behaviour.

one defines the following set:

Chain(+1, x, k) = {(y, z) ∈ (Fk+1, Fk+2) | x = Fk+1(y)⊕ z}

where +1 corresponds to looking downward in the Luby-Rackoff construction.
This corresponds to Lines (F2, +) and (F3, +) in Table 1.

Similarly, given a query t to Fk, with 4 ≤ k ≤ 5, when looking upward the
simulator must consider all 3-chains formed by (y, z, t) where y ∈ Fk−2 and
z ∈ Fk−1; one defines the following set for 4 ≤ k ≤ 5:

Chain(−1, t, k) = {(y, z) ∈ (Fk−2, Fk−1) | t = Fk−1(z)⊕ y}

This corresponds to Lines (F4,−) and (F5,−) in Table 1.
Additionally one must consider the 3-chains obtained from a F6 query S and

looking in (F1, F2) history, with Line (F6, +):

Chain(+1, S, 6) =
{

(R, X) ∈ (F1, F2) | ∃T, P (F1 (R)⊕X‖R) = S‖T
}

(3)

and symmetrically the 3-chains obtained from a F1 query R and looking in
(F5, F6) history, with Line (F1,−):

Chain(−1, R, 1) =
{

(A, S) ∈ (F5, F6) | ∃L, P−1(S‖F6(S)⊕A) = L‖R
}

(4)

One must also consider the 3-chains associated with (F1, F6) history, obtained
either from a F2 query X or a F5 query A, with Lines (F2,−) and (F5, +). Given
a F2 query X , we consider all R ∈ F1, and for each corresponding L = X⊕F1(R),
we compute S‖T = P (L‖R) and determine whether S ∈ F6. Additionally, we
also consider “virtual” 3-chains, where S /∈ F6, but S is such that P (L′‖R′) =
S‖T ′ for some (R′, X ′) ∈ (F1, F2), with L′ = X ′⊕F1(R

′) and X ′ 6= X . Formally,
we denote :

Chain(−1, X, 2) =
{

(R, S) ∈ (F1, F̃6) | ∃T, P (X ⊕ F1(R)‖R) = S‖T
}

(5)

where F̃6 in Chain(−1, X, 2) is defined as:

F̃6 = F6 ∪
{

S | ∃T ′, (R′, X ′) ∈ (F1, F2 \ {X}), P (X ′ ⊕ F1(R
′)‖R′) = S‖T ′

}

and symmetrically:

Chain(+1, A, 5) =
{

(R, S) ∈ (F̃1, F6) | ∃L, P−1(S‖A⊕ F6(S)) = L‖R
}

(6)

F̃1 = F1 ∪
{

R | ∃L′, (A′, S′) ∈ (F5 \ {A}, F6), P−1(S′‖A′ ⊕ F6(S
′)) = L′‖R

}

When the simulator receives a query x for Fk, it then proceeds as follows:

Query(x, k):

1. If x is in the history of Fk then go to step 4.

2. Let Fk(x)
$
← {0, 1}n and add (x, Fk(x)) to the history of Fk.

3. Call ChainQuery(x, k)
4. Return Fk(x).

The ChainQuery algorithm is used to handle all possible 3-chains created by

the operation Fk(x)
$
← {0, 1}n at step 2:

ChainQuery(x, k):

1. If k ∈ {2, 3, 5, 6}, then for all (y, z) ∈ Chain(+1, x, k):
(a) Call CompleteChain(+1, x, y, z, k).

2. If k ∈ {1, 2, 4, 5}, then for all (y, z) ∈ Chain(−1, x, k):
(a) Call CompleteChain(−1, x, y, z, k).

The CompleteChain(b, x, y, z, k) works as follows: it computes the message
L‖R or S‖T that corresponds to the 3-chain (x, y, z) given as input, without
querying (Fj , Fj+1), where j is the index given in Table 1 (column “Adapt”). If
L‖R is first computed, then the simulator makes a P query to obtain S‖T =
P (L‖R); similarly, if S‖T is first computed, then the simulator makes a P−1

query to obtain L‖R = P−1(S‖T). Eventually the output of functions (Fj , Fj+1)
is adapted so that LR(L‖R) = S‖T .

CompleteChain(b, x, y, z, k):

1. If (b, k) = (−1, 2) and z /∈ F6, then call Query(z, 6), without considering in
ChainQuery(z, 6) the 3-chain that leads to the current 3-chain (x, y, z).

2. If (b, k) = (+1, 5) and y /∈ F1, then call Query(y, 1), without considering in
ChainQuery(y, 1) the 3-chain that leads to the current 3-chain (x, y, z).

3. Given (b, k) and from Table 1:

(a) Determine the index i of the additional call to Fi (column “Call”).
(b) Determine whether L‖R or S‖T must be computed first.
(c) Determine the index j for adaptation at (Fj , Fj+1) (column “Adapt”).

4. Call Query(xi, i), where xi is the input of Fi that corresponds to the 3-chain
(x, y, z), without considering in ChainQuery(xi, i) the 3-chain that leads to
the current 3-chain (x, y, z).

5. Compute the message L‖R or S‖T corresponding to the 3-chain (x, y, z).
6. If L‖R has been computed, make a P query to get S‖T = P (L‖R); otherwise,

make a P−1 query to get L‖R = P−1(S‖T).

7. Now all input values (x1, . . . , x6) to (F1, . . . , F6) corresponding to the 3-chain
(x, y, z) are known. Additionally let x0 ← L and x7 ← T .

8. If xj is in the history of Fj or xj+1 is in the history of Fj+1, abort.
9. Define Fj(xj)← xj−1 ⊕ xj+1

10. Define Fj+1(xj+1)← xj ⊕ xj+2

11. Call ChainQuery(xj , j) and ChainQuery(xj+1, j + 1), without considering in
ChainQuery(xj , j) and ChainQuery(xj+1, j) the 3-chain that leads to the cur-
rent 3-chain (x, y, z).

Additionally the simulator maintains an upper bound Bmax on the size of the
history of each of the Fi’s; if this bound is reached, then the simulator aborts;
the value of Bmax will be determined later. This terminates the description of
the simulator.

We note that all lines in Table 1 are necessary to ensure that the simulation
of the Fi’s is coherent with what the distinguisher can obtain independently from
P . For example, if we suppress the line (F2, +) in the table, the distinguisher
can make a query for Z to F4, then Y to F3 and X = F3(Y) ⊕ Z to F2, then
A = F4(Z) ⊕ Y to F5 and since it is not possible anymore to adapt the output
of (F1, F2), the simulator fails to provide a coherent simulation.

Our simulator makes recursive calls to the Query and ChainQuery algorithms.
The simulator aborts when the history size of one of the Fi’s is greater than
Bmax. Therefore we must prove that despite these recursive calls, this bound
Bmax is never reached, except with negligible probability, for Bmax polynomial
in the security parameter. The main argument is that the number of 3-chains
in the sets Chain(b, x, k) that involve the P permutation (equations (3), (4), (5)
and (6)), must be upper bounded by the number of P/P−1-queries made by the
distinguisher, which is upper bounded by q. This gives an upper bound on the
number of recursive queries to F3, F4, which in turn implies an upper bound
on the history of the other Fi’s. Additionally, one must show that the simulator
never aborts at Step 8 in the CompleteChain algorithm, except with negligible
probability. This is summarised in the following lemma:

Lemma 1. Let q be the maximum number of queries made by the distinguisher

and let Bmax = 5q2. The simulator S runs in time O(q4), and aborts with

probability at most 214 · q8/2n, while making at most 105 · q4 queries to P or

P−1.

Proof. Due to space restriction, in Appendix A we only show that the simulator’s
running time is O(q4) and makes at most 105 · q4 queries to P/P−1. The full
proof of Lemma 1 is given in the full version of this paper [10].

4.2 Indifferentiability

We now proceed to prove the indifferentiability result. As illustrated in Figure
3, we must show that given the previous simulator S, the two systems formed
by (LR, F) and (P,S) are indistinguishable.

P S

D D

LR F

Game 3Game 0

P

D

F

Game 1

P S’

T

D

LR

F

Game 2

S’

T’

Fig. 5. Sequence of games for proving indifferentiability.

We consider a distinguisherD making at most q queries to the system (LR, F)
or (P,S) and outputting a bit γ. We define a sequence Game0, Game1, . . . of
modified distinguisher games. In the first game Game0, the distinguisher interacts
with the system formed by the random permutation P and the previously defined
simulator S. In the subsequent games the system is modified so that in the last
game the distinguisher interacts with (LR, F). We denote by Si the event in
game i that the distinguisher outputs γ = 1.

Game0: the distinguisher interacts with the simulator S and the random permu-
tation P .

Game1: we make a minor change in the way Fi queries are answered by the
simulator, to prepare a more important step in the next game. In Game0 we have

that a Fi query for x can be answered in two different ways: either Fi(x)
$
← {0, 1},

or the value Fi(x) is “adapted” by the simulator. In Game1, instead of letting

Fi(x)
$
← {0, 1}, the new simulator S′ makes a query to a random oracle Fi which

returns Fi(x); see Fig. 5 for an illustration. Since we have simply replaced one
set of random variables by a different, but identically distributed, set of random
variables, we have:

Pr[S0] = Pr[S1]

Game2: we modify the way P and P−1 queries are answered. Instead of returning
P (L‖R) with random permutation P , the system returns LR(L‖R) by calling
the random oracles Fi’s (and similarly for P−1 queries).

We must show that the distinguisher’s view has statistically close distribution
in Game1 and Game2. For this, we consider the subsystem T with the random
permutation P/P−1 and the random oracles Fi’s in Game1, and the subsystem
T ′ with Luby-Rackoff LR and random oracle Fi’s in Game2 (see Fig. 5). We show
that the output of systems T and T ′ is statistically close; this in turn shows that
the distinguisher’s view has statistically close distribution in Game1 and Game2.

4

4 We do not claim that subsystems T and T
′ are indistinguishable for any possible

sequence of queries (this is clearly false); we only show that T and T
′ have statisti-

In the following, we assume that the distinguisher eventually makes a se-
quence of Fi-queries corresponding to all previous P/P−1 queries made by the
distinguisher; this is without loss of generality, because from any distinguisher D
we can build a distinguisher D′ with the same output that satisfies this property.

The outputs to Fi queries provided by subsystem T in Game1 and by subsys-
tem T ′ in Game2 are the same, since in both cases these queries are answered by
random oracles Fi. Therefore, we must show that the output to P/P−1 queries
provided by T and T ′ have statistically close distribution, when the outputs to
Fi queries provided by T or T ′ are fixed.

We can distinguish two types of P/P−1 queries to T or T ′:

– Type I: P/P−1 queries made by the distinguisher, or by the simulator during
execution of the CompleteChain algorithm. From Lemma 1 there are at most
Bmax + q ≤ 6q2 such queries.

– Type II: P/P−1 queries made by the simulator when computing the sets
Chain(+1, S, 6), Chain(−1, R, 1), Chain(+1, A, 5) and Chain(−1, X, 2), which
are not of Type I. From Lemma 1 there are at most QP = 105 · q4 such
queries.

We first consider Type I queries. Recall that the distinguisher is assumed to
eventually make all the Fi queries corresponding to his P/P−1 queries; conse-
quently at the end of the distinguisher’s queries, the CompleteChain algorithm
has been executed for all 3-chains corresponding to P/P−1 queries of Type I.
We consider one such P query L‖R (the argument for P−1 query is similar) of
Type I. In Game2 the answer S‖T can be written as follows:

(S, T) = (L ⊕ r1 ⊕ r3 ⊕ r5, R⊕ r2 ⊕ r4 ⊕ r6) (7)

where r1 = F1(R), r2 = F2(X), r3 = F3(Y), r4 = F4(Z), r5 = F5(A) and
r6 = F6(S), and (X, Y, Z, A) are defined in the usual way.

Let j be the index used at steps 9 and 10 of the corresponding CompleteChain

execution, and let xj , xj+1 be the corresponding inputs. If the simulator does
not abort during CompleteChain, this implies that the values rj = Fj(xj) and
rj+1 = Fj+1(xj+1) have not appeared before in the simulator’s execution. This
implies that rj = Fj(xj) and rj+1 = Fj+1(xj+1) have not appeared in a previ-
ous P/P−1-query (since otherwise it would have been defined in the correspond-
ing CompleteChain execution), and moreover Fj(xj) and Fj+1(xj+1) have not
been queried before to subsystem T ′. Since the values rj = Fj(xj) and rj+1 =
Fj+1(xj+1) are defined by the simulator at steps 9 and 10 of CompleteChain, these
values will not be queried later to T ′. Therefore we have that rj = Fj(xj) and
rj+1 = Fj+1(xj+1) are not included in the subsystem T ′ output; T ′ output can
only include randoms in (r1, . . . , rj−1, rj+2, . . . , r6). Therefore, we obtain from
equation (7) that for fixed randoms (r1, . . . , rj−1, rj+2, . . . , r6) the distribution
of S‖T = LR(L‖R) in Game2 is uniform in {0, 1}2n and independent from the
output of previous P/P−1 queries.

cally close outputs for the particular sequence of queries made by the simulator and
the distinguisher.

In Game1, the output to query L‖R is S‖T = P (L‖R); since there are at
most q+Bmax ≤ 6 ·q2 Type I queries to P/P−1, the statistical distance between
P (L‖R) and LR(L‖R) is at most 6 · q2/22n. This holds for a single P/P−1 query
of Type I. Since there are at most 6 · q2 such queries, we obtain the following
statistical distance δ between outputs of systems T and T ′ to Type I queries,
conditioned on the event that the simulator does not abort:

δ ≤ 6 · q2 ·
6 · q2

22n
≤

36 · q4

22n
(8)

We now consider P/P−1 queries of Type II; from Lemma 1 there are at
most QP = 105 · q4 such queries. We first consider the sets Chain(+1, S, 6)
and Chain(−1, X, 2), and we consider a corresponding query L‖R to P , where
L = F1(R)⊕X . By definition this query is not of Type I, so no CompleteChain ex-
ecution has occurred corresponding to this query. Given (R, X) ∈ Chain(+1, S, 6)
or for (R, S) ∈ Chain(−1, X, 2), we let Y = F2(X)⊕R. If Y is not in the history

of F3, we let F3(Y)
$
← {0, 1}n; in this case, Z = X ⊕ F3(Y) has the uniform

distribution in {0, 1}n; this implies that Z belongs to the history of F4 with
probability at most |F4|/2n ≤ 2q/2n. If Y belongs to the history of F3, then we
have that Z cannot be in the history of F4, otherwise 3-chain (X, Y, Z) would al-
ready have appeared in CompleteChain algorithm, from Line (F2, +) and (F4,−)
in Table 1. Therefore, we have that for all P queries L‖R of Type II, no cor-
responding value of Z belongs to the history of F4, except with probability at
most QP · 2q/2n.

We now consider the sequence (Li, Ri) of distinct P -queries of Type II corre-
sponding to the previous sets Chain(+1, S, 6) and Chain(−1, X, 2). We must show
that in Game2 the output (Si, Ti) provided by T ′ has a distribution that is statis-
tically close to uniform, when the outputs to Fi queries provided by T ′ are fixed.
We consider the corresponding sequence of (Yi, Zi); as explained previously, no
Zi belongs to the simulator’s history of F4, except with probability at most
QP · 2q/2n. We claim that F4(Zi) ⊕ Yi 6= F4(Zj) ⊕ Yj for all 1 ≤ i < j ≤ QP ,
except with probability at most (QP)2/2n. Namely, if Zi = Zj for some i < j,
then F4(Zi)⊕Yi = F4(Zj)⊕Yj implies Yi = Yj , which gives (Li, Ri) = (Lj , Rj),
a contradiction since we have assumed the (Li, Ri) queries to be distinct. More-
over, for all i < j such that Zi 6= Zj, we have that F4(Zi) ⊕ Yi = F4(Zj) ⊕ Yj

happens with probability at most 2−n; since there are at most (QP)2 such i, j,
we have that F4(Zi)⊕Yi = F4(Zj)⊕Zj for some i < j happens with probability
at most (QP)2/2n.

This implies that the elements Ai = Yi ⊕ F4(Zi) are all distinct, except
with probability at most (QP)2/2n. Therefore elements Si = Zi ⊕ F5(Ai) are
uniformly and independently distributed in {0, 1}n; this implies that elements
Si are all distinct, except with probability at most (QP)2/2n, which implies
that elements Ti = Ai ⊕ F6(Si) are uniformly and independently distributed
in {0, 1}n. For each (Si, Ti), the statistical distance with P (Li‖Ri) in Game1 is
therefore at most QP /22n. The previous arguments are conditioned on the event
that no Ai or Si belongs to the simulator’s history for F5 and F6, which for

each Ai or Si happens with probability at most Bmax/2n. The reasoning for
the sets Chain(−1, R, 1), Chain(+1, A, 5) is symmetric so we omit it. We obtain
that the statistical distance δ2 between the output of Type II P/P−1 queries in
Game1 and Game2 is at most (conditioned on the event that the simulator does
not abort):

δ2 ≤ 2 ·

(

QP · 2q

2n
+ 2 ·

(QP)2

2n
+

(QP)2

22n
+

QP · Bmax

2n

)

≤
216 · q8

2n
(9)

Let denote by Abort the event that the simulator aborts in Game1; we obtain
from Lemma 1 and inequalities (8) and (9) :

|Pr[S2]− Pr[S1]| ≤ Pr[Abort] + δ + δ2 ≤
214 · q8

2n
+

36 · q4

22n
+

216 · q8

2n
≤

217 · q8

2n

Game3: the distinguisher interacts with random system (LR, F). We have that
system (LR, F) provides the same outputs as the system in Game2 except if
the simulator fails in Game2. Namely, when the output values of (Fj , Fj+1) are
adapted (steps 9 and 10 of CompleteChain algorithm), the values Fj(xj) and
Fj+1(xj+1) are the same as the one obtained directly from random oracles Fj

and Fj+1, because in Game2 the P/P−1 queries are answered using LR/LR−1.
Let denote by Abort2 the event that simulator aborts in Game2; we have:

Pr[Abort2] ≤ Pr[Abort] + δ + δ2 ≤
214 · q8

2n
+

36 · q4

22n
+

216 · q8

2n
≤

217 · q8

2n

which gives:

|Pr[S3]− Pr[S2]| ≤ Pr[Abort2] ≤
217 · q8

2n

From the previous inequalities, we obtain the following upper bound on the
distinguisher’s advantage:

|Pr[S3]− Pr[S0]| ≤
218 · q8

2n

which terminates the proof of Theorem 2.

5 Conclusion and Further Research

We have shown that the 6 rounds Feistel construction is indifferentiable from
a random permutation, a problem that was left open in [9]. This shows that
the random oracle model and the ideal cipher model are equivalent models. A
natural question is whether our security bound in q8/2n is optimal or not. We
are currently investigating:
– a better bound for 6 rounds (or more),
– best exponential attacks against 6 rounds (or more),
– other models of indifferentiability with possibly simpler proofs.

Acknowledgements: we would like to thank the anonymous referees of Crypto
2008 for their useful comments.

References

1. M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing
efficient protocols, In Proceedings of the 1st ACM Conference on Computer and
Communications Security (1993), 62 -73.

2. M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin. Proceedings of Eurocrypt’ 96, LNCS vol. 1070, Springer-
Verlag, 1996, pp. 399-416.

3. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Proceedings of Eu-
rocrypt’ 94, LNCS vol. 950, Springer-Verlag, 1994, pp. 92-111.

4. J. Black, The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based
Hash Function, Proceedings of FSE 2006: 328-340.

5. J. Black, P. Rogaway, T. Shrimpton, Black-Box Analysis of the Block Cipher-Based
Hash-Function Constructions from PGV, in Advances in Cryptology - CRYPTO
2002, California, USA.

6. D. Boneh, C. Gentry, H. Shacham, and B. Lynn, Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps. In proceedings of Eurocrypt 2003, LNCS
2656, pp. 416-432, 2003

7. R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited,
In Proceedings of the 30th ACM Symposium on the Theory of Computing (1998),
ACM Press, pp. 209 -218.

8. D. Chang, S. Lee, M. Nandi and M. Yung, Indifferentiable Security Analysis of
Popular Hash Functions with Prefix-Free Padding. Proceedings of ASIACRYPT
2006: 283-298.

9. J.S. Coron, Y. Dodis, C. Malinaud and P. Puniya, Merkle-Damg̊ard Revisited:
How to Construct a Hash Function. Proceedings of CRYPTO 2005: 430-448.

10. J.S. Coron, J. Patarin and Y. Seurin, The Random Oracle Model and the Ideal
Cipher Model are Equivalent. Full version of this paper. Cryptology ePrint Archive,
Report 2008/246, http://eprint.iacr.org/.

11. A. Desai, The security of all-or-nothing encryption: Protecting against exhaus-
tive key search, In Advances in Cryptology - Crypto’ 00 (2000), LNCS vol. 1880,
Springer-Verlag.

12. Y. Dodis and P. Puniya, On the Relation Between the Ideal Cipher and the Random
Oracle Models. Proceedings of TCC 2006: 184-206.

13. Y. Dodis, P. Puniya, Feistel Networks Made Public, and Applications. In Proceed-
ings of EUROCRYPT 2007, LNCS vol. 4515, Springer-Verlag, 2007, pp. 534-554.

14. S. Even and Y. Mansour, A construction of a cipher from a single pseudorandom
permutation, In Advances in Cryptology - ASIACRYPT’ 91 (1992), LNCS vol.
739, Springer-Verlag, pp. 210 -224.

15. C. Gentry and Z. Ramzan, Eliminating Random Permutation Oracles in the Even-
Mansour Cipher, In Advances in Cryptology - ASIACRYPT 2004, Springer-Verlag.

16. J. Kilian and P. Rogaway, How to protect DES against exhaustive key search (An
analysis of DESX), Journal of Cryptology 14, 1 (2001), 17 -35.

17. M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseu-
dorandom functions, SIAM Journal of Computing, 17(2):373-386, 1988.

18. U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. Theory of
Cryptography - TCC 2004, Lecture Notes in Computer Science, Springer-Verlag,
vol. 2951, pp. 21-39, Feb 2004.

19. J. Patarin, Pseudorandom Permutations Based on the DES Scheme, EUROCODE
’90, LNCS vol. 514, Springer, 1990, pp. 193-204.

20. Z. Ramzan and L. Reyzin, On the Round Security of Symmetric-Key Crypto-
graphic Primitives, Proceedings of CRYPTO 2000, Springer-Verlag.

A Proof of Lemma 1

We first give an upper bound on the total number of executions of algorithm
CompleteChain(b, x, y, z, k) for (b, k) ∈ {(+1, 6), (−1, 2), (−1, 1), (+1, 5)}. We first
consider the set:

Chain(+1, S, 6) =
{

(R, X) ∈ (F1, F2) | ∃T, P (X ⊕ F1(R)‖R) = S‖T
}

that generates executions of CompleteChain(+1, S, R, X, 6). We denote by bad6

the event that CompleteChain(+1, S, R, X, 6) was called while X ⊕F1(R)‖R has
not appeared in a P/P−1 query made by the distinguisher.

Similarly, considering the set Chain(−1, X, 2), we denote by bad2 the event
that CompleteChain(−1, X, R, S, 2) was called while X ⊕ F1(R)‖R has not ap-
peared in a P/P−1 query made by the distinguisher. Symmetrically, we denote
by bad1 and bad5 the corresponding events for CompleteChain(−1, R, A, S, 1) and
CompleteChain(+1, A, R, S, 5). We denote bad = bad1 ∨ bad2 ∨ bad5 ∨ bad6.

Lemma 2. The total number of executions of CompleteChain(b, x, y, z, k) for

(b, k) ∈ {(+1, 6), (−1, 2), (−1, 1), (+1, 5)} is upper bounded by q, unless event

bad occurs, which happens with probability at most:

Pr[bad] ≤
5 · (Bmax)4

2n
(10)

Proof. If event bad has not occurred, then the distinguisher has made a P/P−1

query corresponding to all pairs (x, y) in CompleteChain(b, x, y, z, k) for (b, k) ∈
{(+1, 6), (−1, 2), (−1, 1), (+1, 5)}; since the distinguisher makes at most q que-
ries, the total number of executions is then upper bounded by q.

We first consider event bad6 corresponding to Chain(+1, S, 6). If L‖R with
L = X⊕F1(R) has never appeared in a P/P−1 query made by the distinguisher,
then the probability that P (L‖R) = S‖T for some T is at most 2−n. For a single
S query to F6, the probability that bad6 occurs is then at most |F1| · |F2|/2n ≤
(Bmax)2/2n. Since there has been at most Bmax such queries to F6, this gives:

Pr[bad6] ≤
(Bmax)3

2n

Symmetrically, the same bound holds for event bad1.
Similarly, for event bad2, if the distinguisher has not made a query for P (L‖R)

where L = X ⊕ F1(R), then the probability that P (L‖R) = S‖T with S ∈ F̃6

is at most |F̃6|/2n, where |F̃6| ≤ |F6|+ |F1| · |F2| ≤ 2 · (Bmax)2. For a single X

query, this implies that event bad2 occurs with probability at most |F1| · |F̃6|/2n;
since there are at most Bmax such queries, this gives:

Pr[bad2] ≤ Bmax ·
|F1| · |F̃6|

2n
≤

2 · (Bmax)4

2n

Symmetrically, the same bound holds for event bad5. From the previous inequal-
ities we obtain the required bound for Pr[bad]. ⊓⊔

Lemma 3. Taking Bmax = 5 · q2, the history size of the simulator Fi’s does not

reach the bound Bmax, unless event bad occurs, which happens with probability

at most:

Pr[bad] ≤
212 · q8

2n
(11)

Proof. The 3-chains from Lines (F6, +), (F2,−), (F1,−) and (F5, +) in Table
1 are the only ones which can generate recursive calls to F3 and F4, since
the other 3-chains from Lines (F2, +), (F3, +), (F4,−) and (F5,−) always in-
clude elements in F3 and F4 histories. Moreover from Lemma 2 the total num-
ber of corresponding executions of CompleteChain(b, x, y, z, k) where (b, k) ∈
{(+1, 6), (−1, 2), (−1, 1), (+1, 5)} is upper bounded by q, unless event bad oc-
curs. This implies that at most q recursive queries to F3 and F4 can occur,
unless event bad occurs. Since the distinguisher himself makes at most q queries
to F3 and F4, the total size of F3 and F4 histories in the simulator is upper
bounded by q + q = 2 · q.

The 3-chains from Lines (F2, +), (F3, +), (F4,−) and (F5,−) always include
elements from both F3 and F4 histories. Therefore, the number of such 3-chains
is upper bounded by (2q)2 = 4 · q2. This implies that the simulator makes at
most 4q2 recursive queries to F1, F2, F5 and F6. Therefore, taking:

Bmax = 5 · q2 (12)

we obtain that the simulator does not reach the bound Bmax, except if event
bad occurs; from inequality (10) and equation (12) we obtain (11). ⊓⊔

Lemma 4. With Bmax = 5 · q2, the simulator makes at most 105 · q4 queries to

P/P−1 and runs in time O(q4).

Proof. The simulator makes queries to P/P−1 when computing the four sets
Chain(+1, S, 6), Chain(−1, R, 1), Chain(+1, A, 5) and Chain(−1, X, 2) and also
when completing a 3-chain with CompleteChain algorithm. Since the history size
of the Fi’s is upper bounded by Bmax = 5 · q2, we obtain that the number QP

of P/P−1-queries made by the simulator is at most:

QP ≤ 4 · (Bmax)2 + Bmax ≤ 105 · q4 (13)

From this we have that the simulator runs in time O(q4). ⊓⊔

Lemma 2, 3 and 4 complete the first part of the proof. The remaining part
consists in showing that the simulator never aborts at Step 8 in algorithm
CompleteChain, except with negligible probability, and appears in the full version
of this paper [10].

B A Note on Indifferentiability in the Honest-but-Curious

Model

In this section, we show that LR with up to logarithmic number of rounds is
not indifferentiable from a random permutation in the honest-but-curious model
[12]; combined with our main result in the general model, this provides a sepa-
ration between the two models. Note that this observation does not contradict
any result formally proven in [12]; it only shows that honest-but-curious indif-
ferentiability is not necessarily weaker than general indifferentiability.

Roughly speaking, in the honest-but-curious indifferentiability model, the dis-
tinguisher cannot query the Fi’s directly. It can only make two types of queries:
direct queries to the LR/LR−1 construction, and queries to the LR/LR−1 con-
struction where in addition the intermediate results of the Fi’s is provided. When
interacting with the random permutation P and a simulator S, the first type
of query is sent directly to P , while the second type is sent to S who makes
the corresponding query to P , and in addition provides a simulated transcript
of intermediate Fi results. Note that the simulator S is not allowed to make ad-
ditional queries to P apart from forwarding the queries from the distinguisher;
see [12] for a precise definition.

The authors of [12] define the notion of a transparent construction. Roughly
speaking, this is a construction CF such that the value of random oracle F (x)
can be computed efficiently for any x, by making a polynomial number of queries
to CF and getting the F outputs used by CF to answer each query. The authors
show that Luby-Rackoff with up to logarithmic number of rounds is a transparent
construction. Namely the authors construct an extracting algorithm E such that
when given oracle access to LR and the intermediate values Fi used to compute
LR, the value Fi(x) can be computed for any x at any round i. We note that
algorithm E does not make queries to LR−1, only to LR.

Algorithm E implies that for a LR construction with up to logarithmic num-
ber of rounds, it is possible to find an input message L‖R such that the value S in
S‖T = LR(L‖R) has a predetermined value, by only making forward queries to
LR; namely this is how algorithm E can obtain Fℓ(S), where ℓ is the last round.
But this task is clearly impossible with a random permutation P : it is infeasible
to find L‖R such that S in S‖T = P (L‖R) has a pre-determined value while
only making forward queries to P . This implies that a simulator in the honest-
but-curious model will necessarily fail (recall that such a simulator only forwards
queries from the distinguisher to P and cannot make his own queries to P/P−1).
Therefore, LR with up to logarithmic number of rounds is not indifferentiable
from a random permutation in the honest-but-curious model. Since our main
result is that LR with 6 rounds is indifferentiable from a random permutation
in the general model, this provides a separation between the two models.

