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Abstract. The common random string model introduced by Blum, Feldman and
Micali permits the construction of cryptographic protocols that are provably im-
possible to realize in the standard model. We can think of this model as a trusted
party generating a random string and giving it to all parties in the protocol. How-
ever, the introduction of such a third party should set alarm bells going off: Who
is this trusted party? Why should we trust that the string is random? Even if the
string is uniformly random, how do we know it does not leak private information
to the trusted party? The very point of doing cryptography in the first place is to
prevent us from trusting the wrong people with our secrets.

In this paper, we propose the more realistic multi-string model. Instead of having
one trusted authority, we have several authorities that generate random strings.
We do not trust any single authority; we only assume a majority of them generate
the random string honestly. This security model is reasonable, yet at the same time
it is very easy to implement. We could for instance imagine random strings being
provided on the Internet, and any set of parties that want to execute a protocol
just need to agree on which authorities’ strings they want to use.

We demonstrate the use of the multi-string model in several fundamental crypto-
graphic tasks. We define multi-string non-interactive zero-knowledge proofs and
prove that they exist under general cryptographic assumptions. Our multi-string
NIZK proofs have very strong security properties such as simulation-extractability
and extraction zero-knowledge, which makes it possible to compose them with
arbitrary other protocols and to reuse the random strings. We also build effi-
cient simulation-sound multi-string NIZK proofs for circuit satisfiability based
on groups with a bilinear map. The sizes of these proofs match the best construc-
tions in the single common random string model.

We suggest a universally composable commitment scheme in the multi-string
model. It has been proven that UC commitment does not exist in the plain model
without setup assumptions. Prior to this work, constructions were only known
in the common reference string model and the registered public key model. One
of the applications of the UC commitment scheme is a coin-flipping protocol in
the multi-string model. Armed with the coin-flipping protocol, we can securely
realize any multi-party computation protocol.
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1 Introduction

In the common random string model, the parties executing a protocol have access to a
uniformly random bit-string. A generalization of this model is the common reference
string (CRS) model, where the string may have a non-uniform distribution. Blum, Feld-
man and Micali [BFM88] introduced the CRS model to construct non-interactive zero-
knowledge (NIZK) proofs. Some setup assumption was needed, since only languages
in BPP can have non-interactive or two-round NIZK proofs in the plain model [GO94].
There are other examples of protocols that cannot be realized in the standard model but
are possible in the CRS model, for instance universally composable (UC) commitment
[CFO1]. The CRS-model is therefore widely used in cryptographic protocols.

Using the CRS-model creates a problem: Where does the CRS come from? One
option is to have a trusted third party that generates the CRS, but this raises a trust
issue. It is very possible that the parties cannot find a party that they all trust. Would
Apple trust a CRS generated by Microsoft? Would US government agencies be willing
to use a CRS generated by their Russian counterparts?

Alternatively, the parties could generate the CRS themselves at the beginning of the
protocol. If a majority is honest, they could for instance use multi-party computation
to generate a CRS. However, this makes the whole protocol more complicated and
requires them to have an initial round of interaction. They could also trust a group of
parties to jointly generate a CRS; however, this leaves them with the task of finding
a volunteer group of authorities to run a multi-party computation protocol whenever
a CRS is needed. There is also no guarantee that different sets of parties can agree on
trusting the same group of authorities, so potentially this method will require authorities
to participate in many generations of CRS’s.

Barak, Canetti, Nielsen and Pass [BCNPO04] suggest the registered public key model
as a relaxed setup that makes multi-party computation possible. In the registered public
key model, parties can only register correctly generated keys. While there is no longer
a common reference string in the registered public key model, the underlying prob-
lem still persists: who is the trusted party that will check that the parties only register
correctly generated public keys?

THE MULTI-STRING MODEL. We propose the multi-string model as a solution to the
above mentioned problem. In this model, we have a number of authorities that assist the
protocol execution by providing random strings. If a majority of these authorities are
honest the protocol will be secure.

There are two reasons that the multi-string model is attractive. First, the authori-
ties play a minimal role in the protocol. They simply publish random strings, they do
not need to perform any computation, be aware of each other or any other parties, or
have any knowledge about the specifics of the protocol to be executed. This permits
easy implementation, the parties wishing to execute a protocol can for instance simply
download a set of random strings from agreed upon authorities on the internet. Second,
the security of the protocols only needs to rely on a majority of the authorities being
honest at the time they created the strings. Even if they are later corrupted, the random
strings can still be used. Also, no matter how untrustworthy the other parties in your
protocol are, you can trust the protocol if a majority of the authorities is honest. The



honesty of a small group of parties that are minimally involved can be magnified and
used by a larger set of parties.

The multi-string model is a very reasonable setup assumption. The next question is
whether there are interesting protocols that can be securely realized in the multi-string
model. We will answer this question affirmatively by constructing non-interactive zero-
knowledge proofs, UC commitment and general UC-secure multi-party computation in
the multi-string model in the presence of adaptive adversaries.

1.1 Non-interactive Zero-Knowledge

A zero-knowledge proof [GMR89,GMWS87] is a two-party protocol, where a prover
tries to convince a verifier about the truth of some statement, typically membership
of an NP-language. The proof should have the following three properties: complete-
ness, soundness and zero-knowledge. Completeness means that a prover who has an
NP-witness can convince the verifier. Soundness means that if the statement is false,
then it is impossible to convince the verifier. Zero-knowledge means that the verifier
does not learn anything else from the proof than the fact that the statement is true. In-
teractive zero-knowledge proofs are known to exist in the standard model, however,
non-interactive and 2-round zero-knowledge proofs only exist for trivial languages
[GO9%4]. Instead, much research has gone into constructing non-interactive zero knowl-
edge proofs in the CRS-model, see for instance [BFM88,BDMP91,FLS99,Dam92],
[DP92,DDP99,DDP02,KP98,Sah01,DDO*02,GOS06b,GOS06a].

MULTI-STRING NIZK. We define the notion of multi-string NIZK proofs in Section 2.
In the definitions, we let the adversary see many honestly generated strings and pick the
ones it likes. We also allow the adversary to generate some of the strings itself, possibly
in a malicious and adaptive manner. Our definition of multi-string NIZK proofs calls for
completeness, soundness and zero-knowledge to hold in a threshold manner. If ¢, out of
n common reference strings are honest, then the prover holding an NP-witness for the
truth of the statement should be able to create a convincing proof. If ¢, out of n common
reference strings are honest, then it should be infeasible to convince the verifier about a
false statement. If ¢, out of n common reference strings are honestly generated, then it
should be possible to simulate the proof without knowing the witness.

It is desirable to minimize t.,ts,t,. As we shall see, t. = 0 is achievable, how-
ever, multi-string soundness and multi-string zero-knowledge are complementary in the
sense that there is a lower bound ¢ + ¢, > n for non-trivial languages, see Section 2.

A natural question is under which assumptions we can obtain multi-string NIZK
proofs. We prove that if hard on average languages exist in NP then single-string NIZK
implies the existence of multi-string NIZK and vice versa.

BEYOND VANILLA MULTI-STRING NIZK. It is undesirable to require a group of au-
thorities to produce random strings for each proof we want to make. We prefer it to be
possible to use the same strings over and over again, so each authority has to produce
only one single random string. We must therefore consider a setting, where multiple
protocols may be running concurrently and may be requiring the use of multi-string
NIZK proofs. When the protocol designer has to prove security in such a setting, it may
very well be that some of the proofs are simulated, while we still need other proofs to
be sound. Moreover, in some cases we may want to extract the witness from a proof. To



deal with this realistic setting, where we have both simulations of some proofs and wit-
ness extraction of other proofs going on at the same time, we introduce the notions of
simulation-extractable multi-string NIZK and extraction zero-knowledge multi-string
NIZK.

In simulation-extractable multi-string NIZK, we require that it be possible to ex-

tract a witness from the proof if ¢4 strings are honestly generated, even if the adversary
sees simulated proofs for arbitrary other statements. In extraction zero-knowledge, we
require that if there are ¢, honest strings, then even if the adversary sees extractions
of witnesses in some proofs, the other proofs remain zero-knowledge and reveal noth-
ing. We offer a multi-string NIZK proof based on general assumptions, which is both
simulation-extractable and extraction zero-knowledge.
MULTI-STRING NIZK PROOFS FROM BILINEAR GROUPS. Recently Groth, Ostrovsky
and Sahai [GOS06b,GOS06a] have shown how to construct NIZK proofs from groups
with a bilinear map. Their CRS contains a description of a bilinear group and a set
of group elements. The group elements can be chosen such that the CRS gives either
perfect soundness or perfect zero-knowledge. Soundness strings and simulation strings
are computationally indistinguishable, so this gives a NIZK proof in the CRS model.

There is a major technical hurdle to overcome when trying to apply their techniques
in the multi-string model: the single-string NIZK proofs rely on the common reference
string to contain a description of a bilinear group. In the multi-string model, the authori-
ties generate their random strings completely oblivious of the other authorities. There is
therefore no agreement on which bilinear group to use. One might try to let the prover
pick the bilinear group, however, this too causes problems since now we need to set up
the random strings such that they will work for many choices of bilinear groups.

We resolve these problems by inventing a novel technique to “translate” common
reference strings in one group to common reference strings in another group. Each au-
thority picks its own bilinear group and the prover also picks a bilinear group. Using our
translation technique, we can translate simulation reference strings chosen by the au-
thorities to simulation reference strings in the prover’s bilinear group. Similarly, we can
translate soundness reference strings chosen by the authorities to soundness reference
strings in the prover’s bilinear group.

The resulting multi-string NIZK proofs for circuit satisfiability have size O(n +
|C|)k, where n is the number of random strings, |C| is the size of the circuit, and k is
the security parameter, i.e., the size of a group element. We will typically have n much
smaller than |C'|, so this matches the best single-string NIZK proofs [GOS06b,GOS06a]
that have complexity O(|C|k).

1.2 Multi-party Computation

Canetti’s UC framework [CanO1] defines secure execution of a protocol under concur-
rent execution of arbitrary protocols. Informally a protocol is UC secure if its execution
is equivalent to handing protocol input to an honest trusted party that computes every-
thing securely and returns the resulting outputs.

UC COMMITMENT. It is known that in the plain model, any (well-formed) ideal func-
tionality can be securely realized if a majority of the parties are honest. On the other
hand, if a majority may be corrupt, there are certain functionalities that are provably



impossible to realize. One such example is UC commitment [CFO1]. We demonstrate
that in the multi-string model UC commitment can be securely realized. The key idea
in this construction is to treat each common random string as the key for a commitment
scheme. By applying threshold secret-sharing techniques, we can spread the message
out on the n commitment scheme in a way such that we can tolerate a minority of fake
common reference strings.

MULTI-PARTY COMPUTATION. Canetti, Lindell, Ostrovsky and Sahai [CLOS02] show
that any (well-formed) ideal functionality can be securely realized in the CRS-model,
even against adversaries that can adaptively corrupt arbitrary parties and where parties
are not assumed to be able to securely erase any of their data. However, it was an
open question where this CRS should come from, since the parties provably could not
compute it themselves.

Armed with our UC commitment it is straightforward to solve this problem. We

simply run a coin-flipping protocol to create a CRS. This result points out a nice feature
of the multi-string model; it scales extremely well. We just require a majority of the
authorities to be honest. Then no matter which group of parties, even if it is a large group
of mostly untrustworthy parties, we can magnify the authorities” honesty to enable this
entire group to do secure computation.
REMARK. The multi-string model is described in the UC framework as an ideal func-
tionality that provides random strings and allows the adversary to inject a minority
of malicious strings as well. This functionality is easy to implement with a set of au-
thorities that just provide random strings. It is important though that these strings are
local to the protocol, we do not guarantee security of other protocols that use the same
strings. Canetti, Dodis, Pass and Walfish [RCWO07] have demonstrated that it is not
possible to have a fixed global common random string that is used for multiple and ar-
bitrary different protocol executions and this result extends to the multi-string model.
REMARK. Building on our multi-string NIZK, an alternative proof of our multiparty
computation result was shown by [PPS06].

2 Definitions
Let R be an efficiently computable binary relation. For pairs (z,w) € R we call x the
statement and w the witness. Let L be the NP-language consisting of statements in R.

A multi-string proof system for a relation R consists of probabilistic polynomial
time algorithms K, P, V', which we will refer to as respectively the key generator, the
prover and the verifier. The key generation algorithm can be used to produce common
reference strings o. In the present paper, we can implement our protocols with a key
generator that outputs a uniformly random string of polynomial length ¢(k), however,
for the sake of generality, we include a key generator in our definitions.

The prover takes as input (t.,ts,t,, 0,2z, w), where o is a set of n common ref-
erence strings and (z,w) € R, and produces a proof 7. The verifier takes as input
(te,ts,t.,0,x,m) and outputs 1 if the proof is acceptable and 0 if rejecting the proof.
We call (K, P,V) a (t.,ts,t,,n)-NIZK proof system for R if it has the completeness,
soundness and zero-knowledge properties described below. We remark that (1, 1,1, 1)-
NIZK proof systems correspond closely to the standard notion of NIZK proofs in the
CRS-model.



(te,ts,t.,n)-COMPLETENESS. We will say that (K, P, V) is (t., ts, t,, n)-complete if
the prover can convince the verifier of a true statement, when at least ¢, string have been
generated honestly. As we shall see later, our protocols will have perfect (¢, ts,t,,n)-
completeness for all 0 < t. < n. In other words, even if the adversary chooses all
common reference strings itself, we still have probability 1 of outputting an acceptable
proof.

Definition 1. (K, P,V) is (t¢,ts,t,,n)-complete if for all non-uniform polynomial
time adversaries A we have

Pr|S:= Qa (U,.T,U)) = AK,TF — P(t03t37tzao'7x7w) :
V(teyts,tz,0,2,m) =0and (z,w) € Rand |o \ S| > t.| ~ 0,
where K on query i outputs o; — K (1¥) and sets S := S U {o;}.

(te,ts,t.,n)-SOUNDNESS. The goal of the adversary in the soundness definition is
to forge a proof using n common reference strings, even if ¢; of them are honestly
generated. The adversary gets to see possible choices of correctly generated common
reference strings and can adaptively choose n of them, it may also in these n common
reference strings include up to n — t, fake common reference strings chosen by itself.

Definition 2. We say (K, P, V) is (tc,ts,t.,n)-sound if for all non-uniform polyno-
mial time adversaries A we have

Pr [S = 0;(o,z,7) — AKX . V(t,, ts,t,,0,z,7) =1andz ¢ L and |o\S| > ts} ~ 0,
where K is an oracle that on query i outputs o; +— K (1) and sets S := S U {0;}.

(te,ts,ts,n)-ZERO-KNOWLEDGE. We wish to formulate that if ¢, common reference
strings are correctly generated, then the adversary learns nothing from the proof. As
is standard in the zero-knowledge literature, we will say this is the case, when we can
simulate the proof given only the statement x. Let therefore S; be an algorithm that
outputs (o, 7), respectively a simulation reference string and a simulation trapdoor. Let
furthermore, Ss be an algorithm that takes input (¢, ts,t., o, 7,2, w) and simulates a
proof 7 if T contains ¢, simulation trapdoors for common reference strings in o.

We will strengthen the standard definition of zero-knowledge, by splitting the def-
inition into two parts. The first part simply says that the adversary cannot distinguish
real common reference strings from simulation reference strings. The second part, says
that even with access to the simulation trapdoors the adversary cannot distinguish the
prover from the simulator on a set of simulated reference strings.

Definition 3. We say (K, P,V,S1,52) is (L., ts,t,,n)-zero-knowledge if we have ref-
erence string indistinguishability and simulation indistinguishability as described be-
low.

REFERENCE STRING INDISTINGUISHABILITY. For all non-uniform polynomial time
adversaries A we have

Pr [0 — K(1%): A(o) = 1} ~ Pr [(a, ) S1(1F) : A(o) = 1].



(te,ts,ts,m)-SIMULATION INDISTINGUISHABILITY. For all non-uniform interactive
polynomial time adversaries A we have

Pr [S =0; (o, 7, 2,w) — Asl(lk);ﬂ — P(te,ts, t,,0,z,w) :
A(r) =1and (z,w) € Rand o\ S| > tz}
~ Pr [S =0; (o, 7,2, w) — .Asl(lk);w — So(teyts, tz, 00,1, 2)

A(r) =1 and (v, w) € Rand |o'\ 8] > t.],

where Sy on query i outputs (0;,7;) < S1(1¥) and sets S := SU{0;}, and T contains
t, simulation trapdoors corresponding to o;’s in o generated by S'.

LOWER BOUNDS FOR MULTI-STRING NIZK PROOFS. Soundness and zero-knowledge
are complementary. The intuition is that if an adversary controls enough strings to sim-
ulate a proof, then he can prove anything and we can no longer have soundness. We
capture this formally in the following theorem.

Theorem 1. If L is a language with a proof system (K, P,V) that has (t.,ts,t,,n)-
completeness, soundness and zero-knowledge then L € P /poly orts +t, > n.

Proof. Assume we have an (t., ts,t,,n)-NIZK proof system for R defining L and ¢5 +
t, < n. Given an element x, we wish to decide whether x € L or not. We simulate ¢,
common reference strings (o;,7;) « S;1(1¥) and generate n — t, common reference
strings o; < K(1%) setting 7; = L. We then simulate the proof 7 « Sz(o, T, ).
Output V (o, z, ).

Let us analyze this algorithm. If z € L, then by (¢, ts, ¢, n)-completeness a prover
with access to a witness w would output a proof that the verifier accepts if all common
reference strings are generated correctly. By reference string indistinguishability, we
will therefore also accept the proof when some of the common reference strings are
simulated. By (¢, ts, t,, n)-simulation indistinguishability, where we give (z,w) as
non-uniform advice to A, we will output 1 with overwhelming probability on = € L.

On the other hand, if ¢ L, then by the (¢, ts, t.,n)-soundness we output 0 with
overwhelming probability, since n — ¢, > t; common reference strings have been
generated correctly. This shows that L € BPP /poly. By [Ad178] we have P /poly =
BPP /poly, which concludes the proof. O

In general, the verifier wishes to minimize ¢ to make it more probable that the protocol
is sound, and at the same time the prover wishes to minimize ¢, to make it more probable
that the protocol is zero-knowledge. In many cases, choosing n odd, and setting t; =
t, = "T'H will be a reasonable compromise. However, there are also cases where it
might be relevant to have an unbalanced setting. Consider the case, where Alice wants
to e-mail a NIZK proof to Bob, but does not know Bob’s preferences with respect
to common reference strings. She may pick a set of common reference strings and
make a multi-string proof. Bob did not participate in deciding which common reference

strings to use, however, if they came from trustworthy authorities he may be willing to



believe that one of the authorities is honest. On the other hand, Alice gets to choose the
authorities, so she may be wiling to believe that all of them are honest. The appropriate
choice in this situation, is a multi-string proof with ¢, = 1,¢, = n.

ADVANCED ZERO-KNOWLEDGE PROOFS. Multi-string NIZK proofs can have more
advanced properties. In a multi-string proof of knowledge, the reference strings can
be generated with an extraction trapdoor. If you hold at least ¢4 extraction keys, it is
possible to extract a witness from the multi-string NIZK proof. We say a multi-string
NIZK proof has extraction zero-knowledge, if it is zero-knowledge even to an adversary
that can ask for arbitrary extractions of witnesses. This latter notion is similar in nature
to CCA-secure encryption.

Another way of strengthening soundness is to say that even after seeing arbitrary
simulated proofs, even on false statements, it should not be able to prove another false
statement. We call this simulation soundness. This notion can be extended and com-
bined with proofs of knowledge to simulation-extractability, which means that even if
we give the adversary access to see simulated multi-string proofs, it cannot produce
another proof without us being able to extract a witness from it.

We refer to the full paper [GOO07] for formal definitions of multi-string proofs of
knowledge, simulation soundness, simulation-sound extractability and extraction zero-
knowledge.

3 Multi-string NIZK Proofs based on General Assumptions
MULTI-STRING NIZK PROOFS. As a warm-up, we will start out with a simple con-
struction of a multi-string NIZK proof that works for ¢. = 0 and all choices of t5,%,,n
so ts+t, > n. This construction is used in the full paper [GO07] to prove the following
theorem connecting single-string NIZK proofs and multi-string NIZK proofs.

Theorem 2. Assuming hard on average languages exist in NP, the existence of NIZK
proofs for NP in the common random string model is equivalent to the existence of
multi-string NIZK proofs for NP in the common random strings model. The equivalence
preserves perfect completeness.

We use two tools in the construction: a zap (€,ap, Prap, Vaap) and a pseudorandom
generator PRG. Zaps, introduced by Dwork and Naor [DN02], are two-round public
coin witness-indistinguishable proofs, where the verifier’s first message is a random
string that can be fixed once and for all and be reused in subsequent zaps.

A common random string in our multi-string NIZK proof will consist of a random
value r and an initial message o for the zap. Given a statement = € L, the prover makes
n zaps using respectively initial messages o1, . . ., o, for

x € L or therearet, common reference strings where r; is a pseudorandom value.

In the simulation, we create simulation reference strings as r := PRG(7) enabling the
simulator to make zaps without knowing a witness w for x € L.

MULTI-STRING SIMULATION-EXTRACTABLE NIZK PROOF. We will now construct

more advanced multi-string NIZK proofs of knowledge that are (0, ¢, ¢, n)-simulation-
extractable and (0, ¢, t., n)-extraction zero-knowledge.



To permit the extraction of witnesses, we include a public key for a CCA2-secure
cryptosystem in each common reference string. In a proof, the prover will make a
(ts,n)-threshold secret sharing of the witness and encrypt the shares under the n public
keys. To extract the witness, we will decrypt ts of these ciphertexts and combine the
shares to get the witness.

To avoid tampering with the proof, we will use a strong one-time signature. The
prover generates a key (Vksots; Sksots) < Ksots(1%) that he will use to sign the proof.
The implication is that the adversary, who sees simulated proofs, must use a different
vksots in his forged proof, because he cannot forge the strong one-time signature.

The common reference string will contain a value, which in a simulation string will
be a pseudorandom 2k-bit value. The prover will prove that he encrypted a (ts,n)-
threshold secret sharing of the witness, or that he knows how to evaluate ¢, pseudoran-
dom functions on vks.s using the seeds of the respective common reference strings.
On a real common reference string, this seed is not known and therefore he cannot
make such a proof. On the other hand, in the simulation the simulator does know these
seeds and can therefore simulate without knowing the witness. Simulation soundness
follows from the adversary’s inability to guess the pseudorandom functions’ evaluations
on vksots, even if he knew the evaluations on many other verification keys.

Zero-knowledge under extraction attack follows from the CCA2-security of the
cryptosystem. Even after having seen many extractions, the ciphertexts reveal nothing
about the witness, or even whether the trapdoor has been used to simulate a proof.

Common reference string/simulation string: (pk1, dk1), (pko, dks) «+ Kccas(1%);
r— {0,1}%%; 0« {0,1}42r(®) Return X := (pky, pka, 7, 0).

The simulators and extractors Sy, F1, SFE; will generate the simulated reference
strings in the same way, except for choosing 7 « {0, 1}* and r := PRF,(0). We
use the simulation trapdoor 7 and the extraction key & := dk;.

Proof: P(0,ts,t,,(X1,...,%,),z, w)where (x,w) € Rruns as follows: First, gener-
ate a key pair for a strong one-time signature scheme (vkgots, Sksots) < Ksots(1¥).
Use (ts,n)-threshold secret sharing to get shares wy, ..., w, of w. Encrypt the
shares as ¢1; := Epg,, (Wi, Vksots; T1:)- Also encrypt dummy values cg; «— Epp,, (0).
Consider the statement: “All ¢y; encrypt (w;, vksots ), Where wy, ..., wy is a (ts,n)-
secret sharing of a witness w so (z,w) € R or there exist at least ¢, seeds 7; so
r; = PRF,(0) and co; encrypts PRF ., (vksots).” We can reduce this statement to a
polynomial size circuit C' and a satisfiability witness W. For all i’s we create a zap
7; — Puap(oi, C,W) for C being satisfiable. We sign everything using the one-

time signature sig <« Signg,  (vksots, T, X1, €11, C21, M1, -+ s X, Ciny Cons Tn).
The proof is IT := (vVksots, C11,C21, T1, - - -, Cln, Con, Tn, SG).

Verification: To verify II on the form described above, verify the strong one-time
signature and verify the n zaps 7y, ..., T,.

Extraction: To extract a witness check that the proof is valid. Next, use the first ¢4
extraction keys in £ to decrypt the corresponding ¢ ciphertexts. We combine the ¢
secret shares to recover the witness w.

Simulated proof: To simulate a proof, pick the first ¢, simulation trapdoors in T.
These are 7; so ; = PRF,,(0). As in the proof generate (vksots, Sksots) —
Kiots(1%). Create t, pseudorandom values v; := PRF., (vksots). Encrypt the val-
ues as ¢o; «— Epp,, (v;). For the other reference strings, just let cg; «— Ep,, (0).



Let wy,...,w, be a (ts,n)-threshold secret sharing of 0. We encrypt also these
values as ¢1; < Epg,, (w;, vksots). Let again C' be the circuit corresponding to the
statement “All ¢y; encrypt (w;, vksots), Where wy, ..., wy, is a (s, n)-secret shar-
ing of a witness w  or there exist at least ¢, seeds 7; so r; = PRF.,(0) and
ca; encrypts PRF., (vksots).” From the creation of the ciphertexts cz; we have a
witness W for C being satisfiable. Create zaps m; «— P,ap(0;, C, W) for C be-
ing satisfiable. Finally, make a strong one-time signature on everything sig <«
Signg, . (VEsots, T, X1, €11, €21, T1, -+, X, Ciny Con, T ). The simulated proof is
IT := (Vksots; C11, €215 1y - - - s Cln, C2ny Ty S1G).

Theorem 3. The above protocol is a (0,ts,t,,n)-NIZK proof for all choices of ts +
t, > n. Ithas (0,ts,t,, n)-simulation-soundness, (0, ts,t,, n)-extraction zero-knowledge
and statistical (0,ts,t,,n)-knowledge. It can be securely implemented if enhanced
trapdoor permutations exist, and it can be implemented with random strings if dense
cryptosystems [DP92] and enhanced trapdoor permutations exist.

We refer to the full paper [GO07] for the proof.

4 Multi-string NIZK Proofs from Groups with a Bilinear Map
SETUP. We will use bilinear groups generated by (p, G, Gz, e, g) + G(1¥) such that:

— pis a k-bit prime.

- G, G are cyclic groups of order p.

— g is a generator of G.

- ¢ : G x G — Gr is a bilinear map such that e(g, g) generates G and for all
a,b € Z, we have: e(g%, g°) = e(g, 9)*°.

— Group operations, group membership, and the bilinear map are efficiently com-
putable.

— Given a description (p, G, G, e, g) it is verifiable that indeed it is a bilinear group
and that g generates G.

— There is a decoding algorithm that given a random string of (n 4 1)k bits interprets
it as n random group elements. The decoding algorithm is reversible, such that
given n group elements we can pick at random one of the (n + 1)k-bit strings that
decode to the n group elements.

— The length of the description of (p, G, Gr, e, g) is at most 4k bits.!

— When working in the random multi-string model, we will assume G simply outputs
a uniformly random 4k-bit string, from which (p, G, Gr, e, g) can be sampled.

We use the decisional linear assumption introduced by Boneh, Boyen and Shacham
[BBS04], which says that given group elements (f, g, h, f”, g%, ht) it is hard to tell
whether t = r 4+ s or t is random. Throughout the paper, we use bilinear groups
(p,G,Gr,e,g) «+ G(1*) generated such that the DLIN assumption holds for G.

"It is easy to modify the protocol to work whenever the description of the bilinear group is O (k)
bits.



Example. We will offer a class of candidates for DLIN groups as described above.
Consider the elliptic curve > = z? + 1 mod ¢, where ¢ = 2 mod 3 is a prime. It
is straightforward to check that a point (x,y) is on the curve. Furthermore, picking
y € Z, at random and computing z = (y* — 1)%rl mod q gives us a random point
on the curve. The curve has a total of ¢ + 1 points, where we include also the point at
infinity. When generating bilinear groups, we will pick p as a k-bit prime. We then let ¢
be the smallest prime? so p|q + 1 and define G to be the order p subgroup of the curve.
The target group is the order p subgroup of IE‘;Z and the bilinear map is the modified
Weyl-pairing [BF03]. Verification of (p, G, Gr, e, g) being a group with bilinear maps
is straightforward, since it corresponds to checking that p, ¢ are primes so p|g + 1 and
¢ = 2mod 3 and g is an order p element on the curve. A random point in the group
G can be sampled by picking a random point (x, y) on the curve and raising it to atl
Reverse sampling is possible, since multiplying a group element with a random point
of order % gives a random (z, y) on the curve that would generate the group element.

MULTI-STRING NIZK PROOFS FROM DLIN GROUPS. We will constructa (0, ¢, t.,n)-
simulation-sound NIZK proof for circuit satisfiability consisting of O((n + |C|)k) bits,
where |C| is the number of gates in the circuit and & is the security parameter. Typically,
n is much smaller than |C/, so the complexity matches the best known NIZK proofs for
circuit satisfiability in the single common reference string model [GOS06b,GOS06a]
that have proofs of size O(|C|k).

One could hope that the construction from Section 3 could be implemented effi-
ciently using groups with a bilinear map. This strategy does not work because each
common reference string is generated at random and independently of the others. This
means that even if the common reference strings contain descriptions of groups with
bilinear maps, most likely they are different and incompatible groups.

In our construction, we let all the common reference strings describe different
groups and we also let the prover pick a group with a bilinear map. Our solution to
the problem described above, is to translate simulation reference strings created by the
authorities into simulation reference strings in the prover’s group. This translation will
require the use of a pseudorandom generator, which we construct from the DLIN as-
sumption in the full paper [GOO07]. This pseudorandom generator is constructed in such
a way that there exist efficient simulation-sound NIZK proofs for a value being pseudo-
random [Gro06].

Consider a common reference string with group G; and the prover’s group G. We
will let the common reference string contain a random string r;. The prover will choose
a string s;. Consider the pair of strings (r; @ s;, ;). Since strings can be interpreted as
group elements, we have corresponding sets of group elements in respectively G; and
G. However, since r; is chosen at random it is unlikely that both r; & s; corresponds
to a pseudorandom value in G; and at the same time s; corresponds to a pseudorandom
value in G. Of course, the prover has some degree of freedom in choosing the group
G, but if one is careful and chooses a pseudorandom generator that stretches the input

% In other words, ¢ is the smallest prime in the arithmetic progression 3p — 1,6p — 1,9p —
1,.... Granville and Pomerance [GP90] has conjectured that it requires O (k?) steps in this
progression to encounter a prime q.



sufficiently then one can use an entropy argument for it being unlikely that both strings
are pseudorandom values.

Now we use non-interactive zaps and NIZK proofs to bridge the two groups. The
prover will select s; so 7; & s; is a pseudorandom value in G; specified by the common
reference string and give an NIZK proof for this using that common reference string. In
his own group, he gets n values s1, .. ., s, and proves that ¢, of those are pseudorandom
or C'is satisfiable. In the simulation, he knows the simulation trapdoors for ¢, reference
strings and he can therefore simulate NIZK proofs of r; & s; being pseudorandom. This
means, he can select the corresponding s;’s as pseudorandom values and use this to
prove that there are at least ¢, pseudorandom values in his own group, so he does not
need to know the satisfiability witness w for C' being satisfiable to carry out the proof
in his own bilinear group.

There is another technical detail to consider. We want the construction to be efficient
in n. Therefore, instead of proving directly that there are ¢, pseudorandom values or C'
is satisfiable, we use a homomorphically encrypted counter. In the simulation, we set
the counter to 1 for each pseudorandom value and to O for the rest of the values in the
prover’s group. The homomorphic property enables us to multiply these ciphertexts and
get an encrypted count of ¢,. It is straightforward to prove that the count is ¢, or C' is
satisfiable.

These ideas describe how to get soundness. We can set up the common reference
strings such that they enable us to make simulation-sound NIZK proofs in their bilinear
groups. With a few extra ideas, we then geta (0, ¢, ¢, n)-simulation-sound NIZK proof
for circuit satisfiability when t5 + ¢, > n.

Common reference string/simulation reference string: Generate a DLIN group
(p,G,Gr,e,g) «— G(1%). Generate a common reference string for a simulation-
sound NIZK proof on basis of this group X' «— Kgim—sound(P; G, Gr, e, g) as in
[Gro06]. Pick a random string r « {0, 1}5'%. Output ¥ := (p, G, G, e, g, 0,7).
Provided one can sample groups from random strings, this can all be set up in the
random multi-string model.

When generating a simulation reference string, use the simulator for the simulation-
sound NIZK proof to generate (¢, 7) < Ssim—sound (P, G, G, €, g). Output X as
described above and simulation trapdoor 7.

Proof: Given ¢,, (X,...,%,),C,w so C(w) = 1 do the following. Pick a group

(p,G,Gr,e,g) «+ G(1¥). Pick also keys for a strong one-time signature scheme
(Vksotss Sksots) «— Ksots(1¥). Encode vkgots as a tuple of O(1) group elements
from G.
For each common reference string X; do the following. Pick a pseudorandom value
with 6 key pairs, 6 input pairs and 36 structured elements, as described in the full
paper [GOO7]. This gives us a total of 60 group elements from G;. Concatenate
the tuple of 60 group elements with vkgts to get O(1) group elements from G;.
Make a simulation-sound NIZK proof, using o;, for these O(1) group elements
being of a form such that the first 60 of them constitute a pseudorandom value.
From [Gro06] we know that the size of this proof is O(1) group elements from
G;. Choose s; € {0, 1}61k to be a random string such that r; & s; parses to the 60
elements from the pseudorandom value.



From now on we will work in the group (p, G, G, e, g) chosen by the prover. Pick
pk := (f, h) as two random group elements. This gives us a CPA-secure cryptosys-
tem, encrypting a message m € G with randomness 7, s € Zj as E,,(m;7,s) ==
(f7,h%,g""*m). Foreachi = 1,...,n we encrypt 1 = g% as ¢; « Epx(1). Also,
we take s; and parse it as 60 group elements. Call this tuple z;.

Make a non-interactive zap 7 using the group (p, G, Gr, e, g) and combining tech-
niques of [GOS06a] and [Gro06] for the following statement:

n
C satisfiable V (H ¢; encrypts g'* A Vi : ¢; encrypts g° or gt
i=1

A Vi : z;is a pseudorandom value V ¢; encrypts go).

The zap consists of O(n + |C|) group elements and has perfect soundness.

Sign everything sig <« Signg,  (vksots, C, X1, 51,71, ¢15 -+, X, Sny Ty Cny Dy
G,Gr,e,qg, f,h,m).

The proof is IT := (Vksots, S1,T1,Cly - - - » Sns Ty Cny D, G, Gy €, g, fo b, 7, sig).

Verification: Given common reference strings X, ...,%,, a circuit C' and a proof
as described above, do the following. For all ¢ check the simulation-sound NIZK
proofs m; for r; @& s; encoding a pseudorandom structure in G; using common
reference string o;. Verify (p, G, Gr, e, g) is a group with a bilinear map. Verify
the zap 7. Verify the strong one-time signature on everything. Output 1 if all checks
are ok.

Simulated proof: We are given reference strings X, ..., Y),. t, of them are simula-
tion strings, where we know the simulation trapdoors 7; for the simulation-sound
NIZK proofs. We wish to simulate a proof for a circuit C' being satisfiable.

We start by choosing a group (p, G, Gr, e, g) « G(1¥) and public key f,h «— G.
We create ciphertexts ¢; «— Ep( gl) for the ¢, simulation reference strings, where
we know the trapdoor 7;, and set ¢; « E,;(g°) for the rest. We also choose a
strong one-time signature key pair (vksots, Sksots) < Ksots(1¥).

For ¢, of the common reference strings, we know the simulation key 7;. This per-
mits us to choose an arbitrary string s; and simulate a proof 7; that r; & s; encodes
a 60 element pseudorandom structure. This means, we are free to choose s; so it
encodes a pseudorandom structure z; in GO0, For the remaining n — t, < t4 refer-
ence strings, we select s; so r; @ s; does encode a pseudorandom value in G; and
carry out a real simulation-sound NIZK proof 7; for it being a pseudorandom value
concatenated with vkgois.

For all i we have ¢; encrypting g°, where b € {0, 1}. We have []}_, ¢; encrypting
g'=. We also have for the ¢, simulation strings, where we know 7; that s; encodes a
pseudorandom structure, whereas for the other common reference strings we have
¢; encrypts g°. This means we can create the non-interactive zap 7 without knowing
C’s satisfiability witness.

Sign everything sig « Signg,  (vVksots, C; X1, 81,71, €15+ -y Xy Spy Tny Cny Dy
G,Gr,e, g, f,h,n). The simulated proof is IT := (vVksots, $1, 71, €1, - - - » Sn, Tny Cns
p,G,Gr,e, g, f,h,T,sig).



Theorem 4. Assuming we have a DLIN group as described above, then the construc-
tion above gives us a (0, ts, t, n)-simulation-sound NIZK proof for circuit satisfiability,
where the proofs have size O((n + |C|)k) bits. The proof has statistical (0,ts,t.,n)-
soundness. The scheme can be set up in the random multi-string model if we can sample
groups with bilinear maps from random strings.

The proof can be found in the full paper [GOO07].

5 UC Commitment in the Multi-String Model

In the rest of the paper, we will work in Canetti’s UC framework. We refer to Canetti
[CanO1] for a detailed description. Very briefly, the UC framework compares a real
world execution of a protocol with an ideal process where the parties have access to an
ideal functionality that handles all protocol execution honestly and securely.

IDEAL FUNCTIONALITIES. Let us first formalize the multi-string model in the UC
framework. Figure 1 gives an ideal multi-string functionality Fyicrs. We will con-
struct universally composable commitments, see Figure 2, in the multi-string model.

Functionality Fyicrs

Parameterized by polynomial ¢mcrs, and running with parties P, ..., Py and adversary S.
String generation: On input (crs, sid) from S, pick o « {0, 1}*mers(®) and store it. Send
(crs, sid, o) to S.

String selection: On input (vector, sid, o1, ...,0,) Where o1, . .., 0, € {0,1}mers(k)
from S check that more than half of the strings o1, . . . , 0, match stored strings. In that
case output (vector, sid, o1, ..., 05) to all parties and halt.

Fig. 1. The ideal multi-string generator.

Functionality FL2Y,

Parameterized by polynomial ¢, and running with parties P, ..., Py and adversary S.
Commitment: On input (commit, sid, m) from party P; check that . € {0,1}**) and in
that case store (sid, P;, m) and send (commit, sid, P;) to all parties and S. Ignore

future (commit, sid, -) inputs from P;.
Opening: On input (open, sid) from P; check that (sid, P;, m) has been stored, and in
that case send (open, sid, P;, m) to all parties and S.

Fig. 2. The ideal commitment functionality.

We will assume the parties can broadcast messages, i.e., have access to an ideal
broadcast functionality Fpc.



UC COMMITMENT IN THE MULTI-STRING MODEL. We will describe our UC commit-
ment protocol later but first let us offer some intuition. To prove that our UC commit-
ment is secure, we will describe an ideal process adversary S that interacts with F£ 8},
and makes a black-box simulation of A running with Fy\icrs and P4, ..., Py. There
are two general types of issues that can come up in the ideal process simulation. First,
when fé‘gM tells S that a party has committed to some message, S does not know
which message it is, however, S has to simulate to A that this party makes a UC com-
mitment. Therefore, we want to be able to make trapdoor commitments and later open
them to any value. Second, when a corrupt party controlled by .4 sends a UC commit-
ment, then S needs to input some message to F& 2}, . In this case, we therefore need to
extract the message from the UC commitment.

As a tool to get both the trapdoor/simulation property and at the same time the
extractability property, we will use a tag-based simulation-extractable commitment. In-
formally, a tag-based simulation-extractable commitment scheme, is a non-interactive
commitment scheme that takes as input an arbitrary tag, a message and a randomizer
(tag, m,r) and outputs a commitment ¢. The commitment can be opened for tag simply
by revealing m, r. The commitment must be a trapdoor commitment: given a simulation
trapdoor we can construct commitments for an arbitrary tag that can be opened to any
value we desire. At the same time it must be extractable: given an extraction key we can
extract the message from any commitment that uses a tag tag that has not been used in
a trapdoor commitment. In addition, we will need that the public key for the tag-based
simulation-extractable commitment scheme is pseudorandom such that we can set it up
in the common random strings model. Tag-based simulation-extractable commitments
are formally defined in the full paper [GO07] where we also give a construction.

Our idea in constructing a UC commitment is to use each of the n common ran-
dom strings output by Fyicrs as a public key for a tag-based simulation-extractable
commitment scheme. This gives us a set of n commitment schemes, of which at least
t= ["7*1] are secure. Without loss of generality, we will from now on assume we have
exactly ¢ secure commitment schemes. In the ideal process, the ideal process adversary
simulates Fyicrs and can therefore pick the strings as simulation-extractable public
keys where it knows both the simulation trapdoors and the extraction keys.

To commit to a message m, a party makes a (¢, n)-threshold secret sharing of it and
commits to the n secret share using the n public keys specified by the random strings.
When making a trapdoor commitment, S makes honest commitments to n — ¢ ran-
dom shares for the adversarial keys, and trapdoor commitments with the ¢ simulation-
extractable keys. Since the adversary knows at most n — ¢ < ¢ shares, we can later open
the commitment to any message we want by making suitable trapdoor openings of the
latter ¢ shares. To extract a message m from a UC commitment made by the adversary,
we extract ¢ shares from the simulation-extractable commitments. We can now combine
the shares to get the adversarial message.

One remaining issue is when the adversary recycles a commitment or parts of it.
This way, we may risk that it uses a trapdoor commitment made by an honest party,
in which case we are unable to extract a message. To guard against this problem, we
will let the tag for the simulation-extractable commitment scheme contain the identity



of the sender P;, forcing the adversary to use a different tag, which in turn enables us
to extract.

Another problem arises when the adversary corrupts a party, which enables it to send
messages on behalf of this party. At this point, however, we learn the message so we just
need to force it to reuse the same message if it reuses parts of the trapdoor commitment.
We therefore introduce a second commitment scheme, which will be a standard trapdoor
commitment scheme, and use this trapdoor commitment scheme to commit to the shares
of the message. The tag for the simulation-extractable commitment will include this
trapdoor commitment. Therefore, if reusing a tag, the adversary must also reuse the
same trapdoor commitment given by this tag, which in turn computationally binds him
to use the same share as the one the party committed to before being corrupted.

These ideas give us a UC commitment scheme in the multi-string model. As an
additional bonus, the protocol is non-interactive except for a little coordination to ensure
that everybody received the same commitment.

Commitment: On input (vector, sid, (cky,01),. .., (ckn,0,)) from Fyrcrs and
(commit, sid, m) from Z, the party P; does the following. He makes a (t,n)-
threshold secret sharing si,...,s, of m. He picks randomizers r; and makes
commitments ¢; := Comey,(s;;7;). He also picks randomizers R; and makes
tag-based commitments C; := Com,, ((P;, ¢;); 55; R;). The commitment is ¢ :=
(c1,C4, ..., cn, Cy). He broadcasts (broadcast, sid, ¢).

Receiving commitment: A party on input (vector, sid, (ck1,01),. .., (ck,,0,)) from
Fucrs and (broadcast, sid, P;, ¢) from Fpc broadcasts (broadcast, sid, P;, ¢).
Once it receives similar broadcasts from all parties, all containing the same P;, c, it
outputs (commit, sid, P;) to the environment.

Opening commitment: Party P; wishing to open the commitment broadcasts (open,
sid, 81,71, R1, -+, Sn, "y Rn)-

Receiving opening: A party receiving (open, sid, P;, s1,,7r1, R1,. .., Sn, ', Ry from
Fpc to a commitment it earlier received, checks that all commitments are correctly
formed ¢; = Comey, (s;7;) and Cj = Comy, ((F;, ¢;); s5;7;). It also checks that
S1,..., 8y all are valid shares of a (¢, n)-threshold secret sharing of some message
m. In that case it outputs (open, sid, P;, m).

Theorem 5. The protocol securely realizes F&5\, in the (Fpc, Facrs )-hybrid model,
assuming tag-based simulation-extractable commitment schemes with pseudorandom
keys exist in the common random string model.

See the proof in the full paper [GOO07].

6 Multi-party Computation
COIN-FLIPPING. A nice application of UC commitment is coin-flipping. In a coin-
flipping protocol the parties generate a series of uniformly random bits. In other words,
all the protocols we have in the CRS-model can be securely realized if we can do coin-
flipping.

We will now show how to generate a common random string on the fly. The parties
will use the following natural coin-flipping protocol.



Commitment: P; chooses at random r; « {0, 1}*®)_ It submits (commit, sid, r;)
to FEdhy- FLA on this input sends (commit, sid, P;) to all parties.

Opening: Once P; sees (commit, sid, P;) forall j, it sends (open, sid, 7;) to F&O) .
FL A on this input sends (open, sid, P;, ;) to all parties.

Output: Once P; sees (commit, sid, P;, ;) for all j, it outputs (crs, sid, @évzlrj)
and halts.

Theorem 6. The protocol securely realizes (perfectly) the ideal common reference string
generator Fcrs in the FEQ\-hybrid model.

MULTI-PARTY COMPUTATION. Armed with a coin-flipping protocol, we can gener-
ate random strings. Canetti, Lindell, Ostrovsky and Sahai [CLOS02] demonstrated that
with access to a common random string, it is possible to do any kind of multi-party com-
putation, even if only a minority of the parties is honest. We therefore get the following
corollary to Theorems 5 and 6, which we prove in the full paper [GOO07].

Theorem 7. For any well-formed functionality F there is a non-trivial protocol that
securely realizes it in the (Fsc, Fucrs)-hybrid model, provided enhanced trapdoor
permutations with dense public keys and augmented non-committing encryption exists.
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