
Hash Functions and the
(Amplified) Boomerang Attack

Antoine Joux1,3 and Thomas Peyrin2,3

1 DGA
2 France Télécom R&D

thomas.peyrin@orange-ftgroup.com
3 Université de Versailles Saint-Quentin-en-Yvelines

antoine.joux@prism.uvsq.fr

Abstract. Since Crypto 2004, hash functions have been the target of many at-
tacks which showed that several well-known functions such as SHA-0 or MD5 can no
longer be considered secure collision free hash functions. These attacks use classical
cryptographic techniques from block cipher analysis such as differential cryptanal-
ysis together with some specific methods. Among those, we can cite the neutral bits
of Biham and Chen or the message modification techniques of Wang et al. In this
paper, we show that another tool of block cipher analysis, the boomerang attack,
can also be used in this context. In particular, we show that using this boomerang
attack as a neutral bits tool, it becomes possible to lower the complexity of the
attacks on SHA-1.

Key words: hash functions, boomerang attack, SHA-1.

1 Introduction

The most famous design principle for dedicated hash functions is indisputably the MD-SHA
family, firstly introduced by R. Rivest with MD4 [16] in 1990 and its improved version
MD5 [15] in 1991. Two years after, the NIST publishes [12] a very similar hash function,
SHA-0, that will be patched [13] in 1995 to give birth to SHA-1. This family is still very
active, as NIST recently proposed [14] a 256-bit new version SHA-256 in order to anticipate
the potential cryptanalysis results and also to increase its security with regard to the fast
growth of the computation power. Basically, MD-SHA family hash functions use the Merkle-
Damg̊ard extension domain and their compression function is build upon a block cipher
in Davies-Meyer mode: the output of the compression function is the output of the block
cipher with a feed-forward of the chaining variable.

The first cryptanalysis of a member of this family dates from Dobbertin [7] with a col-
lision attack against MD4. Then, Chabaud-Joux [5] provided the first theoretical collision
attack against SHA-0 and Biham-Chen [1] introduced the idea of neutral bits, which led
to the computation of a real collision with four blocks of message [2]. Later on, a novel
framework of collision attack, using modular difference and message modification tech-
niques, surprised the cryptography community [19, 23, 24, 22]. Those devastating attacks
broke a lot of hash functions, such as MD4, MD5, SHA-0, SHA-1, RIPEMD or HAVAL-128.

Even if SHA-1 is theoretically broken (with 269 message modifications), the computa-
tional power needed in practice is too important and the question arise that when will

someone be able to come up with a real collision. Recently [20, 21], it has been claimed
that the complexity of this attack can be improved up to 263 message modifications.

In this article we study the application of boomerang attacks, originally introduced
by D. Wagner [18] for block ciphers, to the case of hash functions. In particular, we
show that this very generic method may improve the already known collision attacks
against various hash functions when used with classic improvements such as neutral bits
or message modification. Although this method is generic, some aspects are closely related
to the particular hash function one is planning to attack. Thus, we give a practical proof of
concept by applying this improvement to SHA-1. We provide here the detailed constraints
and advantages of this particular case. Finally, we are able to present a novel attack
against SHA-1, dividing the work factor by 32 from the previous attacks.

An independent work by Klima, describing tunnels in MD5 was posted on ePrint [10],
shortly before our first public presentation of the boomerang attack [8] applied to hash
function. Each tunnel in Klima’s work can be decomposed into a collection of auxiliary
differential in our attack. Note that due to the simple message expansion in MD5, the
tunnel can be directly observed in a preexisting attack. In our SHA-1 application, a specific
differential attack must be constructed to accommodate the auxiliary differentials.

The paper is structured as follows. In Section 2, we recall the concept of boomerang
attack for block ciphers and in Section 3 we show how this concept can be applied to hash
functions. In particular, we give two different possible approaches for using this method.
Then, in Section 4, we treat a practical example with the case of SHA-1. We explain all
the specific aspects of the application of boomerang attacks for SHA-1 and show that this
method leads to improvements for a collision attack. Finally, we draw conclusions and
give future works in Section 5.

Notations. In the following, + will stand for the addition on 32-bit words (modulo 232)
and ⊕ will represent the bitwise exclusive-OR. The left (resp. right) bit rotation will be
denoted� (resp.�), and ∧ (resp. ∨) is the bitwise AND (resp. OR). The j-th bit (modulo
32) of a 32-bit word X is denoted Xj and the bitwise complementary of X will be denoted
X.

2 The Boomerang attack

The boomerang attack was proposed by D. Wagner as a tool for the cryptanalysis of block
ciphers in [18]. It allows to weave two partial and independent differential characteristics
together into a global attack on the block cipher. The basic idea is quite simple. Assume
that we are given a first differential characteristic D1 on the first half of the block cipher
which predicts that an input difference ∆ leads to an output difference ∆∗ with proba-
bility p1. Then, assume a second differential on the second half which predicts that an
input difference ∇∗ leads to an output difference ∇ with probability p2. Using these two
differentials, we can draw a diagram (see Figure 1) that involves four plaintext/ciphertext
pairs.

This diagram can be turned into an attack as follows. First, the attacker choses a
random plaintext and asks for the encryption of both this plaintext P1 and of the plaintext
P2 obtained by xoring P1 with ∆. The resulting ciphertexts are denoted by C1 and C2.
After that, the attacker computes C ′

1 by xoring C1 with ∇ and C ′
2 by xoring C2 with ∇.

Then, he asks for the decrypted plaintext P ′
1 and P ′

2. The key idea of the attack is to

P1

C1

P ′
1

C′
1

P2

C2

P ′
2

C′
2

Fig. 1. Schematic view of the boomerang attack on block ciphers

remark that when the pair (P1, P2) follows the ∆ differential path and both decryptions
follow the ∇ differential path, then the intermediate values corresponding to P ′

1 and P ′
2

have the correct difference ∆∗. If in addition (P ′
1, P

′
2) is also a correct pair for ∆ then the

attacker finds that P ′
1 ⊕ P ′

2 is ∆.
Assuming independence between the four instances of differential paths, we obtain a

probability of success p2
1p

2
2. Basically, this yields a distinguisher that allows us to make

the difference between the block cipher and a random permutation.

3 Adapting the Boomerang attack to hash functions

At first, since many hash functions are based on block ciphers, it seems tempting to di-
rectly apply the boomerang attack to these hash functions, however several obstructions
are quickly encountered and prevent this straightforward approach from working. In par-
ticular, the need for decryption, which is an essential part of the boomerang attack, can
not be available in the context of hash functions.

Yet, we now show that the boomerang attack, and more specifically its chosen plaintext
variant (so-called amplified boomerang attack [9]), can be adapted to the hash function
setting and yields improvements compared to previously known differential attacks. The
basic idea to adapt the boomerang attack is to use, in addition to the good global differ-
ential path used in the now classical differential attacks, several partial differential paths
which are very good on a limited number of steps but fail to cover the complete com-
pression function. In order to combine these differential paths together, we use the same
basic diagram as with the boomerang attack against block ciphers. However, some specific
obstructions appear and need to be removed. The first problem, that we already described
when considering the direct application, is the fact that in order to obtain collisions, we
cannot use the compression function in the backward direction. The second problem is
that we no longer have a nice symmetry with two characteristics playing almost the same
role. Instead, there is a main differential path which is our target and some auxiliary paths
which help in applying the main one.

Our adapted boomerang attack on iterated hash functions is based on a simple basic
block, which we now describe. We start from a basic differential path on an iterated

M1

h1 ?

M ′
1

h′1

=⇒ Preserve =⇒

=⇒ Randomize =⇒

M2

h2 ?

M ′
2

h′2

Fig. 2. Schematic view of the boomerang attack on hash functions

hash function. For the sake of simplicity, we assume that this differential path is of the
simple type which yields a collision after a single iteration. Generalizing this description
to near-collisions or multiple iterations is a straightforward matter. The basic differential
path consists in a message difference ∆, possibly completed by a list of restrictions on
acceptable messages, such that the two single block messages M and M ⊕∆ collide, with
probability p∆. As usual, this probability do not take into account the so-called early steps
where parts of the message M can be chosen independently of each others. From now on,
we split the rest of the steps into two main parts, the middle steps and the late steps4.
To each part, we associate a corresponding probability pM for the middle steps and pF

for the late steps. Under a classical step independence assumption, we have p∆ = pM ·pF .
The goal of the boomerang based attack is to improve pM and thus the total complexity
of the process. For this, we use an auxiliary differential path that covers both the early
and the middle steps as a tool. Assume such an auxiliary differential path, that predicts
that, with probability pδ two messages M and M ⊕ δ yield, after the middle steps, two
intermediate internal states with some prescribed (not necessarily null) difference. Take
a message pair M and M ′ = M ⊕∆ that conforms to the main differential path on the
early and middle steps. Assume that both (M,M ⊕ δ) and (M ′,M ′ ⊕ δ) conform to the
auxiliary differential path. Then, we see that the internal states differences cancel out, and
that the pair (M ⊕ δ,M ′ ⊕ δ) also conforms to the main differential up to the beginning
of the late steps (see Figure 2). Assuming independence, this pair yields a collision with
probability p2

δ · PF .
The basic block we just described is quite promising. Indeed, when p2

δ < pM we can
expect an improved attack. However, matters are not that simple. Indeed, unless we are
given a first pair (M,M ′), we cannot construct the second pair. Thus, the basic block,
by itself, at best doubles the number of candidate pairs. Luckily, when a large number of
auxiliary differential paths can be found, which is a reasonable hypothesis since we are
dealing with a small number of steps, we can apply the basic block many times. Assuming
that pδ = 1, for each of t auxiliary differentials, we amplify a single candidate pair into 2t

4 In some multi-block attacks, some of the final steps can be treated specifically, ignoring partial
misbehaviors which can be corrected in the subsequent blocks.

pairs. Of course, we need to arrange the auxiliary differentials to make sure that they do
not overlap or present other similar incompatibilities. When pδ is smaller than 1 (but not
too small), we still amplify a single pair into many.

After this overview of our adapted boomerang attack, the reader may rise two impor-
tant objections. The first one is the fact that the independence hypothesis is extremely
unnatural, because all these messages pairs are extremely correlated. Experimentally, this
hypothesis is false, however, we remarked that for well-chosen differential characteristic,
the bias induced by the dependencies is playing for the attacker and not against him. The
main gain is that, since M and M ⊕ ∆ gives similar computations, the overall success
probability of the two copies of each auxiliary differential is usually nearer to pδ than p2

δ .
The second objection is that, at first, the early steps do not seem to come for free for
the auxiliary differentials. This would be a major problem, since we want pδ to be much
better than pM . In fact, we propose two different ways of putting together the message
construction and the auxiliary differentials choice in order to effectively overcome this
objection. Depending on the hash function under consideration and the properties of the
differential characteristics in use, each has its own advantages.

3.1 Neutral bits approach

The first way to use the adapted boomerang attack is to note its similarity with the neutral
bit technique proposed by Biham and Chen [1] at Crypto’04. There, the authors remarked
in the case of SHA-0 that given a differential path, corresponding to our main path, it is
possible to find so-called neutral bits. For a message pair that conforms to the differential
characteristic up to some reference step, a neutral bit5 is a bit of the message which when
its value is flipped yields a new message pair that still conforms to the main path up
to the reference step. In [1], the neutral bits are found using a guided exhaustive search
technique. We argue that using auxiliary differential paths in place of or in addition to
these neutral bits, leads to a better attack. Otherwise, this way of implementing our attack
closely follows the method of Biham and Chen. The first step is to identify among a large
list of candidate auxiliary differential paths those which works for the current message
pair. Once this is done, we check, one pair at a time, whether the acceptable differentials
are mutually compatible. Even without writing down the explicit algebraic conditions
which need be satisfied for each differential, it is clear that this pairwise compatibility
check only works for pairs of differential which do not strongly interact6. Then, build a
large clique of mutually compatible differentials in the graph of pairwise compatible ones.

Once this clique is build, assume that it contains t auxiliary differentials and, using the
basic technique presented above, construct the 2t pairs of messages obtained by adding
any subset of these differentials to the original message. We expect that a good proportion
of the derived pairs conforms to the main characteristic up to the start of the final steps.

The main drawback of this technique is that the auxiliary differentials do not take
advantage of the free early steps. Indeed, the original message pair is chosen independently
of them, thus some probability must be paid for the early steps. This prevents us from using
auxiliary differentials which are very good in the middle range but have a low probability
of success in the early steps. It can be improved by trying to use the free steps both on the
5 Here the term bit is taken in its information theoretic sense and may be a group of several

elementary message bits which are all flipped simultaneously.
6 Some long range interaction, such as carry propagation over several bits may be overlooked.

However, they rarely occur anyway and can be ignored in a first approximation.

main characteristic path and on the auxiliary paths. However, if too many auxiliary paths
are considered during a single step, the probability of making a correct choice becomes
too low and no initial message pair can be constructed. The second approach given below
gives a way out of this dilemma.

3.2 Explicit conditions approach

In order to get a good set of auxiliary characteristics, it is preferable to construct the first
message pair carefully, forcing it to conform both to the main differential path and to the
chosen auxiliary paths in the early steps. In order to do this, we should write down explicit
conditions on bit values that are sufficient for each auxiliary characteristic to hold (or at
least such that pδ is increased). Once this is done, we can check whether the condition of
the various characteristics are mutually compatible and, if so, we can choose the message
values for each of the early steps, except the last one or two, in order to satisfy these
explicit conditions. In the sequel, we call the partial message resulting from these choices
a message seed. Note that, while simple as a principle, this approach requires a lot of
specific work for each hash function in order to find a good way of writing and satisfying
these explicit conditions.

After building a message seed, we can complete it in many ways on the one or two
missing blocks to get an initial message pair. If the pair conforms to the main differential
path far enough, we can use the neutral bit technique described above on the message
pair, using as neutral bits the set of auxiliary paths that we have forced into the mes-
sage. Compared to the straight neutral bit approach, the resulting auxiliary paths on the
message pair are much more effective. Moreover, with this approach, we may be able to
build auxiliary differential paths remaining conformant for more steps than in the case of
neutral bits. In other words, the final steps will contain less steps than in the classical at-
tacks such as neutral bits or message modification, and the total complexity will therefore
decrease. To resume, while more complicated to set up in practice, this approach yields
much better attacks.

For this method to succeed, we have to be able to build a main differential path
containing all the sufficient conditions needed for every auxiliary differential paths we are
planing to use. In order to make the approach efficient in practice, it would be very useful to
have an automated tool that generates a main differential path satisfying those conditions.
The availability and efficiency of such a tool greatly depend on the hash function we are
considering. In the sequel, we show that the path generator proposed by De Cannière and
Rechberger in [3] for SHA-1 can be used together with our boomerang approach.

4 Application to SHA-1

In this section, we show how our new attack applies for the case of SHA-1. After a short
description of the algorithm and the state-of-the-art attacks, we explain how to build
auxiliary differential paths, place them in a main differential path and use them during
the collision search.

4.1 A short description of SHA-1

SHA-1 is a 160-bit dedicated hash function based on the design principle of MD4. Like most
hash functions, SHA-1 uses the Merkle-Damg̊ard paradigm [6, 11] and thus only specifies

a compression function. After a padding process, the message is divided into k blocks of
512 bits. At each iteration of the compression function h, a 160-bit chaining variable cvi

is updated using one message block mi+1, i.e. cvi+1 = h(cvi,mi+1). The initial value cv0

(also called IV) is predefined and cvk is the output of the hash function.
The SHA-1 compression function is build upon the Davies-Meyer construction. It

uses a function E as a block cipher with cvi for the message input and mi+1 for the
key input, a feed-forward is then needed in order to break the invertibility of the pro-
cess: cvi+1 = E(cvi,mi+1) ⊕ cvi. This function is composed of 80 steps (4 rounds of 20
steps), each processing a 32-bit message word Wi to update 5 32-bit internal registers
(Ai, Bi, Ci, Di, Ei). Since more message bits than available are utilized, a message expan-
sion is therefore defined.

Message expansion. First, mi is split into 16 32-bit words M0, . . . ,M15. These 16 words
are then expanded linearly into 80 32-bit words Wi, as follows:

Wi =
{

Mi, for 0 ≤ i ≤ 15
(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) � 1, for 16 ≤ i ≤ 79

State update. First, the chaining variable cvi is divided into 5 32-bit words to fill the 5
registers (Ai, Bi, Ci, Di, Ei). Then we apply 80 times the following transformation:

STEPi+1 :=


Ai+1 = (Ai � 5) + fi(Bi, Ci, Di) + Ei + Ki + Wi,
Bi+1 = Ai,
Ci+1 = Bi � 2,
Di+1 = Ci,
Ei+1 = Di.

where Ki are predetermined constants and fi are boolean functions defined in Table 1:

round step i fi(B, C, D) Ki

1 1 ≤ i ≤ 20 fIF = (B ∧ C)⊕ (B ∧D) 0x5a827999

2 21 ≤ i ≤ 40 fXOR = B ⊕ C ⊕D 0x6ed6eba1

3 41 ≤ i ≤ 60 fMAJ = (B ∧ C)⊕ (B ∧D)⊕ (C ∧D) 0x8fabbcdc

4 61 ≤ i ≤ 80 fXOR = B ⊕ C ⊕D 0xca62c1d6

Table 1. Boolean function and constants in SHA-1

We refer to [13] for a more exhaustive description. Note that all updated registers but
Ai+1 are just rotated copies, so we only need to consider the register A at each iteration.
Thus, we have:

Ai+1 = (Ai � 5) + fi(Ai−1, Ai−2 � 2, Ai−3 � 2) + (Ai−4 � 2) + Ki + Wi.

4.2 Previous attacks on SHA-1

Lots of research on SHA-1 has been conducted recently, but the major breakthrough
has been published by Wang et al. [22]. They provided the first collision attack against
the full SHA-1 algorithm, requiring only 269 message modifications, which is lower than
the 280 hash computations expected for an ideal 160-bit hash function. This attack is
possible thanks to a non-linear main differential path for SHA-1, given in the original
paper. They also use a tool called message modification technique that allows to build
a message pair of messages conforming to the main differential on the early and middle
steps (approximatively step 22), thanks to clever modifications of message bits. Later, an
unpublished result [20, 21] claimed that using another non-linear main differential with
more complex message modification techniques, one can keep the conformance up to step
25 approximatively and thus lower the complexity down to 263 message modifications.
The main problem with this approach is that message modifications can be costly during
the collision attack and only the ones for the differential path in [22] are known. Note
however that some recent work [17] tried to theorize this method.

Very recently, an interesting approach has been published by De Cannière and Rech-
berger [3] in order to find non-linear main differential paths in an automatic way. By
introducing a sharp method to compute the probability of conformance and the number
of messages (called nodes) one has to deal with at each step, they can use a heuristic al-
gorithm to converge to a valid non-linear main differential path (prebuild from the Wang
et al.’s disturbance vector). This algorithm allowed to compute a 2-block collision on a
64-step reduced version of SHA-1 (and more recently on a 70-step reduced version [4]).
Note that this automatic tool did not improve the complexity of the previously explained
collision attack against full SHA-1, since a non-linear main differential path was already
known for that case.

We will show that using the boomerang attack for hash functions, we can improve the
collision attacks for SHA-1 of a factor 32. We managed to place five auxiliary differentials
maintaining conformance up to step 28 or even further (compared to step 25 approxima-
tively for neutral bits or message modification). Another advantage of our new method
is that once an auxiliary differential path is settled, the cost for using it is null, unlike
the message modification case which can be quite demanding in terms of complexity [17].
The complex part of the boomerang attack in the explicit conditions approach only takes
place during the main differential construction.

4.3 Building auxiliary differential paths

In this section, our goal is to give an insight on how to build auxiliary differential paths
for SHA-1. We want those paths to conform to the main differential one as far as possible.
Since in the explicit conditions approach the main path is not yet known at this stage,
a natural method would be to find auxiliary differentials leading to a collision on a late
step. We also want the auxiliary differential paths to be as light as possible. If not so, the
number of necessary conditions to have pδ ' 1 would quickly grow and this would be a
problem while using the main path automated generator, which needs a lot of degrees of
freedom in the message and in the registers.

Building a good auxiliary differential path is very close to building a main differential
one. As observed in the latter case, the sparser the better. So in order to find good paths,
we will use a well known tool for SHA-1 or SHA-0, introduced in [5]: the local collisions.

This technique seems to make the attacker’s job much more easier and minimize the
number of differences one has to deal with. The idea is to avoid the inserted differences
(called perturbations or disturbance vector) to spread among the registers by applying the
necessary corrections on the expanded message (the perturbations and the corrections will
therefore define the difference in the message). The problem arise that since the message
is expanded, we do not have full control over the disturbance vector and thus this vector
must respect the expansion as well. This is important when one has to build a main
differential path, but here the problem is much more relaxed as we only deal with a few
number of steps.

Local collisions. By inserting a difference on W j
i at step i + 1, another difference will

appear on Aj
i+1. Note that a propagation of the difference to other bits of Ai+1 may occur

due to carry effect. To avoid this, we can set W j
i = Aj

i+1. Then, at step i+2, the difference

in Aj
i+1 needs to be corrected and this can be done by setting W j+5

i+1 = Aj
i+1. For steps

i + 3 to i + 5, the behaviour highly depends on the boolean function fi we are using (and
thus the round we are into). Finally, at step i + 6, we set W j−2

i+5 = Aj
i+1 to correct the

difference in Aj
i+1. At this point, we achieve the local collision: no more difference will

appear in the next steps. We give in Table 2 all the constraints corresponding to the first
round case (fi = fIF). If one respects all those constraints, the local collision occurs with
probability 1.

step type constraints

i + 1 no carry W j
i = a, Aj

i+1 = a

i + 2 correction W j+5
i+1 = a

i + 3 no correction Aj+2
i−1 = Aj+2

i

correction Aj+2
i−1 6= Aj+2

i , W j
i+2 = a

i + 4 no correction Aj−2
i+2 = 0

correction Aj−2
i+2 = 1, W j−2

i+3 = a

i + 5 no correction Aj−2
i+3 = 1

correction Aj−2
i+3 = 0, W j−2

i+4 = a

i + 6 correction W j−2
i+5 = a

Table 2. Constraints for a local collision with a perturbation on W j
i for the first round of SHA-1.

Now that we know how to build local collisions, how do we use them ? We want the
number of perturbations inserted in the early steps to be as low as possible (at most
5 in practice), in order to minimize the number of constraints on the message and the
registers. Moreover, we want the auxiliary path to collide at some middle step k (with
k ≥ 25 in practice). It seems pretty clear that one will achieve this minimization by

setting all the corrected perturbations in the 16 first message blocks on the same bit
position, as remarked for the main differential path. Our goal is thus to have the first
uncorrected perturbation as late as possible. By brute-forcing all the possibilities of this
16-bit mask and all the possibilities of propagation and corrections into the local collisions
(corresponding to the fIF case for round 1), we managed to find a lot of candidates (i.e.
no difference in registers Ak−4 to Ak). However, we added a filter: no perturbation should
occur from W15 to Wk−1 (note that a perturbation on Wk necessarily exists since we have
the first difference on Ak+1). Indeed, a corrected perturbation introduced after step 14
would force some constraints on the message and the register outside the early steps where
we have degrees of freedom. This would harden the final search of colliding messages. We
even sharpen the filter by setting no perturbation from W11 to Wk−1 to avoid problems
with wrong bit position corrections due to the rotation in the expansion for the case SHA-1
(if the perturbation would occur on a bit j, some corrections would apply on bit j +1 and
thus introduce unwanted differences). Finally, our auxiliary differential path will have no
difference from register A12 to Ak. Note that a general rotation on the bit position does
not change the validity of an auxiliary path.

We give in Table 3 the disturbance vector and the differences on the message for
an auxiliary differential path with only three perturbations. In this example, the first
uncorrected perturbation (underlined) comes on W j

24 and thus we get a collision at step
24. Here the three perturbations apply on step 1, 3, 11 and the corresponding constraints
to force pδ = 1 are depicted in Table 4. Each bit a, b, c, d, e, f can take any value, as long
as the a, b, c, d, e, f constraints are fulfilled.

W0 to W15 W16 to W31

perturbation mask 1010000000100000

differences on W j 1010000000100000 0000000010110110

differences on W j+5 0101000000010000 0000000001011011

differences on W j−2 0001111100000011 0000000000001110

Table 3. Example of an auxiliary differential path, with the perturbation mask and its corre-
sponding message differences for the 32 first steps. The rotation in the expansion is not taken in
account.

We previously claimed that we were looking for an auxiliary differential path with k ≥
25, so why do we presented a k = 24 one ? In fact, even if a perturbation appears at step 25,
there is a great probability, depending on the main differential path, that our pair remains
conformant for some more steps7. We experimentally observed that this greatly depends
on the bit position j where we plan to apply our auxiliary path, and the perturbation
vector of the main path. For some very few values of j, the auxiliary differential has
a small probability to succeed. However, in general, we have a good probability that a
first perturbation at step n does not change the main differential conformance of a pair
of messages up to step n + 4. We just have to choose the j values by avoiding critical
positions.

7 said in other words, our auxiliary differential path will have a non-zero output difference.

i Ai Wi

-1: ---------------------------d----
00: ---------------------------d---- -----------------------------a--
01: ---------------------------e-a-- ------------------------a-------
02: ---------------------------e---1 -----------------------------b--
03: -----------------------------b-0 ------------------------b------a
04: -------------------------------0 -------------------------------a
05: -------------------------------0 -------------------------------a
06: -------------------------------- -------------------------------b
07: -------------------------------- -------------------------------b
08: -------------------------------- --------------------------------
09: ---------------------------f---- --------------------------------
10: ---------------------------f---- -----------------------------c--
11: -----------------------------c-- ------------------------c-------
12: -------------------------------0 --------------------------------
13: -------------------------------0 --------------------------------
14: -------------------------------- -------------------------------c
15: -------------------------------- -------------------------------c

Table 4. Example of an auxiliary differential path in the case j = 2: the constraints on the
registers and on the message blocks. The MSB’s are on the right and “-” stands for no constraint.

4.4 Placing auxiliary differential paths

We set ourselves in the case of a 2-block collision attack for SHA-1. For more details, we
refer to [3]. The first part is thus to find a valid main path for the first block (with no differ-
ence on the IV). At this stage, our goal is to get the biggest clique of auxiliary differential
paths by placing them in a main one. Since the main differential path automated tool from
De Cannière and Rechberger is a heuristic algorithm, placing auxiliary paths in a main
one is not a formal science. We tried different techniques but the best one seemed to be to
force as much space between the constraints as we could. Note that when placing several
auxiliary differential paths, some of them may have constraints in common. Even if not
dramatic, we preferred to avoid this situation and strengthen the independence between
the auxiliary paths (and thus use them as a clique as for neutral bits). Moreover, some
positions are forbidden as the constraints on the message must apply on no-difference bits
of the message only (otherwise, one of the message pair would not follow the auxiliary
path). Lots of parameters are available when implementing or using the main differential
automated tool and they highly influence the number of auxiliary constraints one can
force. However, due to space restrictions, we omitted those details here.

We quickly recall in Table 5 the notations used in [3], but we encourage the reader
to glance through the original paper. The final main path presented in Tables 8 and 9
contains the constraints of five independent auxiliary paths given in Table 3 and Table 4
at positions j = {9, 12, 15, 18, 21}.

Note that the auxiliary differential path used here has constraints on the IV (Aj+2
−1 =

Aj+2
0 in Table 4). It expresses the equality between two bits and thus happens with

probability 1/2 for each auxiliary differential. The prepended message computed to get
the IV used in Table 8 is given in Table 6.

4.5 Using auxiliary differential paths

Once a differential path is settled, one can easily generate a message instance conformant
up to the end of the early steps since at this point the message blocks can be fixed
independently. De Cannière and Rechberger use this fast generating technique coupled
with a refinement of the differential path. Advanced approaches such as neutral bits or
message modifications can decrease the complexity of the final attack, even if their power is
reduced for SHA-1 compared to the SHA-0 case8. The boomerang attack for hash functions
can be viewed as a generalization of those techniques and thus can be used as a neutral
bits or message modification tool:

Neutral bit based. The easiest approach is to use a generalization of Biham and Chen
neutral bit implementation guidelines together with two levels of message diversification.
First, one constructs a base message with a large clique of simultaneously neutral bits
which are in addition compatible with the auxiliary differential path. Then, one launches
an enumeration that starts from this initial message and applies the neutral bits (using a
Gray code encoding for efficiency). This yields many message pairs that follow the main
differential path quite far. When the enumeration finds a message conformant up to round
25, a second level of enumeration diversifies this message using the auxiliary paths. The
advantage of this technique is that it is quite easy to implement and that the neutral
bits and the auxiliary paths can be addressed using very similar treatments. The main
drawback is the gap between the range of ordinary neutral bits and the range of the
auxiliary paths, which is a bit too wide and thus wastes degree of freedom in the message,
compared to the theoretic complexity gain.

Message modification based. From a theoretical point of view, a message modification
approach seems better. Indeed, the current best attack is message modification based and
using it avoids the initial loss seen with the neutral bit approach. However, in addition to
the implementation difficulties, using message modification involves a much higher cost
per message pair than the neutral bit approach. As a consequence, the apparent theoretical
gain is less clear in practice.

Right now, our implementation of these ideas is not fast enough to allow full scale
attacks. However, once an initial pair is found, the multiplicative effect works very well.
For example, in Table 7 is the first message of a pair conformant until step 29, following
the differential path from Table 8. Using the auxiliary differential paths provide 25 new
conformant messages, the conformance limit is always between step 27 and 29. Note that
this group of message words was generated using the neutral bit technique. This has the
side effect of slightly changing the main characteristic during the message generation.
More precisely, some bits (a, b or c in Table 4) of the auxiliary characteristics are flipped.
Bit a is changed for the characteristic in positions 9,12,15; bit b for 12,15,18 and bit c for
15,18. The flipped bits are underlined in the given message. Of course, the slightly modi-
fied characteristic is still correct and compatible with the auxiliary ones (the 5 auxiliary
differential paths remain valid).
8 some conditions on the message words coming from the late steps have to be fulfilled and in
SHA-1 the rotation in the message expansion greatly increase the number of impacted message
bits. This harden the neutral bits or message modification work since one has to check that
the conditions remain valid after their use.

4.6 Complexity analysis for a full collision attack

The literature has provided two ways of computing the complexity of a 2-block collision
attack against SHA-1 : the number of conditions introduced by Wang et al. or the number
of nodes introduced by C. De Cannière and C. Rechberger. Whatever the original collision
attack we are using, our improvement decreases the complexity of a factor 32 since no
message modification technique nor neutral bit can keep the conformance later than step
25. Moreover, the probability that a message being valid at step 25 is also valid at step
28 is lower than 2−5.

We do not provide here any main path with auxiliary differentials for the second block
since one needs the first block output values. However, experiments showed the same
behaviour as for the first block case and the authors believe that the same technique can
apply for the second part of the 2-block collision attack.

The reader could argue that we gave a differential path for the first block with a
prepended message leading to an IV with chosen properties, and this will not be available
for the second block stage of the attack. First, one has to note that the IV defined by the
specifications of SHA-1 is strongly structured. Moreover, in a 2-block collision for SHA-1
the first block part costs much less than the second one (about a factor of 8), due to
the possible misbehaviour of the final steps for the first block. Thus, by executing several
times a first block research, the general complexity is not increased and we have enough
degrees of freedom to start properly the second block: assuming the positions where we are
placing the auxiliary differentials paths for the second block, the probability of satisfying
the 5 constraints is 2−5 and 32 trials are required. However, this is not the case here since
when reaching the end of the first block, the idea is to look at the available positions for
including auxiliary differential. If enough positions are available, we try to construct a
compatible main path. Thus, instead of having a single possibility with probability 2−5,
we have many. Experimentally, less than 4 tests of prepended messages are needed to
apply the boomerang attack with five auxiliary paths.

5 Conclusion

In this paper, we showed that the boomerang attack which was initially devised as a
cryptanalytic tool for block ciphers can be adapted to apply on iterated hash functions.
Since the attacker model is quite different, due to the absence of keys and the impossibility
to use a chosen ciphertext attack, the adaptation is not straightforward. Nonetheless, this
new method leads to an improved cryptanalytic technique.

In order to illustrate this technique, we applied it to SHA-1 and obtained a significant
improvement for collision attacks on this hash function. We believe that this method would
also be powerful against other hash functions. Applying boomerang attack against SHA-0
or MD5 would be an interesting research topic. It may also be worth looking for more
general auxiliary differential paths, for example by letting some local collisions slightly
behave in a non-linear manner. Another future work could be to find a way to place more
auxiliary differential paths in the main differential one, and thus lower the final complexity.

Acknowledgements

The authors would like to thank Christophe De Cannière and Christian Rechberger for
their helpful advices when implementing their non-linear differential path automatic search
tool.

References

1. E. Biham and R. Chen. Near-Collisions of SHA-0. In M.K. Franklin, editor, Advances in
Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
290–305. Springer-Verlag, 2004.

2. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby. Collisions of SHA-0
and Reduced SHA-1. In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 36–57. Springer-Verlag, 2005.

3. C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Results and
Applications. In X. Lai and K. Chen, editors, Advances in Cryptology – ASIACRYPT 2006,
volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer-Verlag, 2006.

4. C. Rechberger and C. De Cannière and F. Mendel. In Rump Session of Fast Software En-
cryption – FSE 2007, 2007.

5. F. Chabaud and A. Joux. Differential Collisions in SHA-0. In H. Krawczyk, editor, Advances
in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages
56–71. Springer-Verlag, 1998.

6. I. Damg̊ard. A Design Principle for Hash Functions. In G. Brassard, editor, Advances in
Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 416–
427. Springer-Verlag, 1989.

7. H. Dobbertin. Cryptanalysis of MD4. In D. Gollmann, editor, Fast Software Encryption –
FSE’96, volume 1039 of Lecture Notes in Computer Science, pages 53–69. Springer-Verlag,
1996.

8. A. Joux and T. Peyrin Message modification, neutral bits and boomerangs. In Proceedings
of NIST 2nd Cryptographic Hash Workshop, 2006.

9. J. Kelsey, T. Kohno and B. Schneier. Amplified Boomerang Attacks Against Reduced-Round
MARS and Serpent. In B. Schneier, editor, Fast Software Encryption – FSE’00, volume 1978
of Lecture Notes in Computer Science, pages 75–93. Springer-Verlag, 2000.

10. V. Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. ePrint archive, 2006
. Available from: http://eprint.iacr.org/2006/105.pdf.

11. R.C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor, Advances in Cryp-
tology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 428–446.
Springer-Verlag, 1989.

12. National Institute of Standards and Technology. FIPS 180: Secure Hash Standard, May 1993
. Available from: http://csrc.nist.gov.

13. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard, April
1995 . Available from: http://csrc.nist.gov.

14. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard, August
2002 . Available from: http://csrc.nist.gov.

15. Ronald L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm, April 1992 . Available
from: http://www.ietf.org/rfc/rfc1321.txt.

16. Ronald L. Rivest. RFC 1320: The MD4 Message Digest Algorithm, April 1992 . Available
from: http://www.ietf.org/rfc/rfc1320.txt.

17. M. Sugita, M. Kawazoe and H. Imai. Gröbner Basis based Cryptanalysis of SHA-1. to appear
in Fast Software Encryption – FSE’07, Lecture Notes in Computer Science, Springer-Verlag,
2007. . Available from: http://eprint.iacr.org/2006/098.pdf.

18. D. Wagner. The Boomerang Attack. In L.R. Knudsen, editor, Fast Software Encryption –
FSE’99, volume 1636 of Lecture Notes in Computer Science, pages 156–170. Springer-Verlag,
1999.

19. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu. Cryptanalysis of the Hash Functions MD4
and RIPEMD. In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 1–18. Springer-Verlag, 2005.

20. X. Wang, A.C. Yao, and F. Yao. Cryptanalysis on SHA-1. In Proceedings of NIST Crypto-
graphic Hash Workshop, 2005.

21. X. Wang, Y.L. Yin, and H. Yu. New Collision Search for SHA-1. In Rump Session of
CRYPTO 2005

22. X. Wang, Y.L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup, editor,
Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 17–36. Springer-Verlag, 2005.

23. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer, editor,
Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 19–35. Springer-Verlag, 2005.

24. X. Wang, H. Yu and Y.L. Yin. Efficient Collision Search Attacks on SHA-0. In V. Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 1–16. Springer-Verlag, 2005.

Appendix

(x, x∗) (0, 0) (1, 0) (0, 1) (1, 1)

? X X X X

- X - - X

x - X X -

0 X - - -

u - X - -

n - - X -

1 - - - X

- - - -

(x, x∗) (0, 0) (1, 0) (0, 1) (1, 1)

3 X X - -

5 X - X -

7 X X X -

A - X - X

B X X - X

C - - X X

D X - X X

E - X X X

Table 5. Notations used in [3] for a differential path: x represents a bit of the first message and
x∗ stands for the same bit of the second message.

W0 0x63e045ce

W1 0x362a3ed8

W2 0x5c333351

W3 0x76481862

W4 0x71a360ab

W5 0x25e16eb9

W6 0x0419a9c2

W7 0x5977272f

W8 0x24b67e5d

W9 0x3898e2dd

W10 0x18be4543

W11 0x60746d11

W12 0x4cd56e7c

W13 0x1589d326

W14 0x19bab19c

W15 0x5fa6c656

Table 6. Message prepended to start with the IV used in Table 8.

M0 11111101100111111111011111111011 0xfd9ff7fb

M1 01110101000001010011111101110001 0x75053f71

M2 00011100000111010111001100011111 0x1c1d731f

M3 00000111001110000000001001111001 0x07380279

M4 11110101101011101000100000101001 0xf5ae8829

M5 00110101111110101100101101010011 0x35facb53

M6 00010000011111001010101100011001 0x107cab19

M7 10100110111111100110001101101001 0xa6fe6369

M8 01001000001100111010100101011101 0x4833a95d

M9 01100000000110110110100111101100 0x601b69ec

M10 10100011010010100100111001100100 0xa34a4e64

M11 01011100100111101011111100100111 0x5c9ebf27

M12 10111011010000110101001001110111 0xbb435277

M13 10100101011101110100110011010100 0xa5774cd4

M14 11111110011110111011010000000000 0xfe7bb400

M15 10110101001110111010110101101011 0xb53bad6b

Table 7. First message (in binary and hexadecimal) of an example pair following differential
path from Table 8, conformant until step 29. Bits underlined are the bits flipped in the the main
differential path from Table 8 due to the neutral bits technique.

i Ai Wi

-4: 00101001010011011100100101000111

-3: 00000111100001000110010101100010

-2: 11011000010000101001111101011111

-1: 01011011110111101101101111010001

00: 01000010101101110111101110011011 1uu11101100111110110--0111111011

01: n1n010111001011001001-0100100110 nuu101-10001011--111111101u1n0n1

02: 1nu11--01111101111101101111111u1 --n11-----0-10-1111000110n0111uu

03: nnu00-----0-00-0110000110111110n x-nn-1--1--01010001001--1u111001

04: u010u11-0--00010010110-1010un0u1 uu-u0-------11-0--1011001n1n10nu

05: 1001u00-0--000000000001u00011010 nn-u0------11010111--1--11n100u1

06: 011unnnnnnnnnnnnnnn1---110n001uu 00n-------1-1--1--00111100011001

07: u110-01000000u010110nu111uu1010n 1nu001------1--1-100-1-10-un-0n-

08: 1111010111111---011unu110-0--nu1 -un0----------11---------u0111nu

09: -0010---1--1--01-0u-10nnnnu01010 --u0-------------1--1001-u1--100

10: --------1--1--0--01-101nu1111u10 xxu00-----0--1--1--0--1--u----n-

11: 0---------0--1--1--0n-100nn0u1n0 -xn--1--0--0--1--0---11-0010--x-

12: 0---0-------0--0--0--01-010n1-nn x------------------------------u

13: 00----------0--0--0--00100n0n-00 --10------------------0--1n1----

14: -0--0-----------------10001u0un- ---1--------1--0--0--1--000---xn

15: n-----------------------unnn1101 -x-10-------1--0--0--1--0u-n--u-

16: --1---------------------1--nu001 -n0---------------------1u0-----

17: n-0-----------------------111-0n xxn-----------------1---1u-x--n-

18: -11-------------------------101- x-u1--------------------0----0--

19: ------------------------------u- x----------------------11n------

20: -------------------------------- --x----------------------------x

21: -------------------------------x --n----------------------xx-----

22: -------------------------------- x-----------------------1------x

23: ------------------------------x- -x-----------------------x----x-

24: ------------------------------x- xu-----------------------x----xx

25: -------------------------------x -x------------------------x---x-

26: -------------------------------- ------------------------------xx

27: ------------------------------x- -x-----------------------x----x-

28: ------------------------------x- xx-----------------------x----xx

29: -------------------------------x xx------------------------x---x-

30: -------------------------------- -------------------------------x

31: -------------------------------- -x----------------------------x-

32: ------------------------------x- xx-----------------------x----xx

33: -------------------------------x -x-----------------------xx---x-

34: -------------------------------- x------------------------------x

35: ------------------------------x- -x-----------------------x----x-

36: ------------------------------x- -x-----------------------x----x-

37: -------------------------------- -x----------------------------x-

38: -------------------------------- ------------------------------x-

39: ------------------------------x- -------------------------x------

· · · · · ·

Table 8. Steps 1 to 39 of the main differential path of the first block. The constraints needed for
the first auxiliary differential path (in position j=9) are underlined.

i Ai Wi

· · · · · ·
40: -------------------------------- x-----------------------------x-

41: -------------------------------- x-------------------------------

42: -------------------------------- x-----------------------------x-

43: ------------------------------x- x------------------------x------

44: -------------------------------- --------------------------------

45: ------------------------------x- x------------------------x------

46: -------------------------------- x-------------------------------

47: ------------------------------x- -------------------------x------

48: -------------------------------- x-------------------------------

49: ------------------------------x- -------------------------x------

50: -------------------------------- x-----------------------------x-

51: -------------------------------- --------------------------------

52: -------------------------------- x-------------------------------

53: -------------------------------- x-------------------------------

54: -------------------------------- --------------------------------

55: -------------------------------- --------------------------------

56: -------------------------------- --------------------------------

57: -------------------------------- --------------------------------

58: -------------------------------- --------------------------------

59: -------------------------------- --------------------------------

60: -------------------------------- --------------------------------

61: -------------------------------- --------------------------------

62: -------------------------------- --------------------------------

63: -------------------------------- --------------------------------

64: -------------------------------- -----------------------------x--

65: -----------------------------x-- ------------------------x-------

66: -------------------------------- -----------------------------x--

67: -------------------------------- ----------------------------x--x

68: ----------------------------x--- -----------------------x-------x

69: -------------------------------- ----------------------------x--x

70: -------------------------------- ---------------------------x--x-

71: ---------------------------x---- ----------------------x-------x-

72: -------------------------------- ---------------------------xx-x-

73: ----------------------------x--- -----------------------x--x--x--

74: --------------------------x----- ---------------------x------xx--

75: -------------------------------- --------------------------x--xx-

76: -------------------------------- -------------------------x--x-x-

77: -------------------------x------ --------------------x-------x-x-

78: -------------------------------- -------------------------xx-----

79: --------------------------x-x--- ---------------------x-xx--x----

80: ------------------------x-------

Table 9. Steps 40 to 80 of the main differential path of the first block.

