
Security-Amplifying Combiners
for Collision-Resistant Hash Functions

Marc Fischlin and Anja Lehmann

Darmstadt University of Technology, Germany
www.minicrypt.de

Abstract. The classical combiner Comb
H0,H1

class (M) = H0(M)||H1(M) for hash func-
tions H0, H1 provides collision-resistance as long as at least one of the two underlying
hash functions is secure. This statement is complemented by the multi-collision at-
tack of Joux (Crypto 2004) for iterated hash functions H0, H1 with n-bit outputs.
He shows that one can break the classical combiner in n

2
· T0 + T1 steps if one can

find collisions for H0 and H1 in time T0 and T1, respectively. Here we address the
question if there are security-amplifying combiners where the security of the build-
ing blocks increases the security of the combined hash function, thus beating the
bound of Joux. We discuss that one can indeed have such combiners and, somewhat
surprisingly in light of results of Nandi and Stinson (ePrint 2004) and of Hoch and
Shamir (FSE 2006), our solution is essentially as efficient as the classical combiner.

1 Introduction

A hash function combiner [6] takes two hash functions H0 and H1 and combines them
into a single, failure-resistant hash function. That is, collision-resistance of the combined
function is granted, given that at least one of the starting hash functions H0,H1 is secure. A
classical example of a secure combiner is Comb

H0,H1

class (M) = H0(M)||H1(M), concatenating
the outputs of the two hash functions. For this combiner any collision M 6= M ′ immediately
gives collisions for both hash functions H0 and H1.

From a more quantitative viewpoint, the classical combiner provides the following se-
curity guarantee: If breaking H0 and H1 requires T0 and T1 steps, respectively, finding a
collision for the classical combiner takes at least T0 + T1 steps. This almost matches an
upper bound by Joux [8], showing that for Merkle-Damgȧrd hash functions H0,H1 with
n-bit outputs the classical combiner can be broken in n

2 · T0 + T1 steps. This means that if
the security level of each hash function is degraded only moderately through a new attack
method, e.g., from 280 to 260, then the classical combiner, too, merely warrants a reduced
security level of T0 +T1 = 2 · 260. Ideally, we would like to have a better security bound for
combiners and such moderate degradations, going beyond the T0 +T1 limit and the bound
due to Joux.

Our Results. Here we introduce the notion of security-amplifying combiners for collision-
resistant hash functions. Such combiners guarantee a security level α · (T0 + T1) for some
α > 1 and, in a sense, are therefore stronger than the sum of their components. Note that
the classical combiner (and similar proposals) are not security amplifying according to the
previous discussion, indicating that constructing such security-amplifying combiners is far
from trivial.

We next discuss how to achieve security amplification. Consider two Merkle-Damgȧrd
hash functions H0,H1 (given by compression functions f0, f1) and the classical combiner,
but limited to input messages M = m0|| . . . ||mt−1 of t < n

4 blocks exactly:

Comb
H0,H1

amp,t (M) = H0(m0|| . . . ||mt−1) ||H1(m0|| . . . ||mt−1)

This is clearly a secure combiner in the traditional sense, guaranteeing collision resistance
if at least one of both hash functions is collision-resistant. But we show that it is even a
security-amplifying combiner, assuming that the underlying compression functions behave
ideally. More precisely, we consider an attack model in which the compression functions
f0, f1 are given by random functions, but where the adversary against the combiner can
use subroutines C0, C1 to generate collisions for the corresponding compression function.
Intuitively, these collision finder oracles implement the best known strategy to find colli-
sions, and each time the adversary calls Cb to get a collision for fb, we charge Tb steps. The
adversary’s task is now to turn such collisions derived through C0, C1 into one against the
combiner.

We note that the adversary against the combiner in our model is quite powerful. For
each query to the collision finders the adversary can significantly bias the outcome, e.g.,
by presetting parts of the colliding messages. To give further support of the significance of
our model, we show that we can implement the attack of Joux on the classical combiner
Combclass in our model. We can also realize similar attacks for more advanced combiners
like CombH0,H1(M) = H0(M)||H1(H0(M)⊕M).

Our main result is to certify the security amplification of our combiner Combamp,t. The
proof is basically split into two parts: one covering general statements about our model
(such as pre-image resistance, even in presence of the collision finders), and the other part
uses the basic facts to prove our specific combiner Combamp,t to be security-amplifying. In
our security proof we show that calling each collision finder C0, C1 only polynomially many
times does not help to find a collision for Combamp,t. Therefore, successful attacks on the
combiner require more than poly(n) · (T0 + T1) steps.

Viewed from a different perspective we can think of our result as a supplementary
lower bound to the attack of Joux. His attack breaks the classical combiner in n

2 · T0 + T1

steps if the hash functions allow to process t ≥ n
2 message blocks. Our result indicates

that restricting the input to t < n
4 many blocks suffices to make the combiner security-

amplifying and to overcome the bound by Joux. The situation for t in between n
4 and n

2
remains open.

Finally, recall that our proposal at this point only allows to hash messages of t < n
4

blocks. To extend the combiner to handle arbitrarily long messages one can use hash trees
in a straightforward way (with our combiner placed at every node of the tree). Since finding
collisions in such hash trees requires to come up with collisions in one of the nodes, our
security amplification result carries over instantaneously. For messages of k blocks the
classical combiner takes about 2k applications of the compression functions, compared to
roughly t

t−1 · 2k applications for our tree-based combiner (but coming with the stronger
security amplification guarantee).

Limitations of the Model. Our hash combiner guarantees security amplification in an ide-
alized world where the underlying compression functions behave like random functions. In
this model only generic attacks on the hash function are allowed, in the sense that the
adversary cannot take advantage of weaknesses of the compression functions beyond the

ability to generate collisions (albeit the collision finders are quite flexible). It remains open
if similar results can be obtained in a non-idealized setting at all.

Currently, our collision finders return two values mapping to the same compression
function output. A recent work of Yu and Wang [14], however, shows that very weak
compression functions as in MD4 may allow K-multi-collision attacks, where one is able to
find K instead of 2 simultaneous collisions for the compression functions. We expect our
results to transfer to this case, when restriciting the number of message blocks further to
t < n

4 log
2

K . This will be addressed in the full version of the paper.

Related Work. The idea of cryptographic combiners has been considered explicitly by
Herzberg [6]. Among others, he analyzes the classical combiner Combclass concatenating
the hash function values. As for hash function combiners, Boneh and Boyen [1] and sub-
sequently Pietrzak [12] show that collision-resistant combiners cannot do better than the
classical combiner in terms of the length, i.e., the output length of a secure combiner must
essentially equal the sum of the output lengths of the hash functions (as in our construc-
tion).

Interestingly, the idea of security amplification for cryptographic combiners already
appears implicitly in Yao’s work [13]. He shows that the existence of weak one-way functions
—where inversion may succeed with probability 1− 1/poly(n)— can be turned into strong
one-way functions where inversion almost surely fails. The construction can be viewed as a
security-amplifying self-combiner for one-way functions. See also [5] for improvements and
[9] for related results.

Other relevant works are the upper bounds of Nandi and Stinson [11] and of Hoch
and Shamir [7]. They extend the attack of Joux to arbitrary combiners for iterated hash
functions, where each message block is possibly processed via the compression function
more than once but at most a constant number of times. They also transfer their results to
tree-based constructions. However, in their model the output of one compression function
must not serve as an input to the other compression function, thus disallowing mixes of in-
termediate hash values. By this, the hash-tree based extension of our combiner circumvents
their bounds.

Finally we remark that, in a concurrent work, Canetti et al. [3] also consider ampli-
fication of collision resistance. In contrast to our idealized setting they use a complexity-
theoretic approach.

Organization. We start by defining our model and security amplifying combiners (Sec-
tion 2). Next, in Section 3, we discuss that the classical combiner and similar proposals
are not security amplifying. Section 4 present some general conclusions in our model. The
main result appears in Section 5 and the proof of this result is given in Section 6. Some
proofs in this version have been moved to the Appendix.

2 Preliminaries

2.1 Hash Functions and Combiners

A hash function H = (HKGen,H) is a pair of efficient algorithms such that HKGen for input
1n returns (the description of) a hash function H, and H for input H and M ∈ {0, 1}∗

deterministically outputs a digest H(M). The hash function is called collision-resistant if
for any efficient algorithm A the probability that for H ← HKGen(1n) and (M,M ′) ←
A(H) we have M 6= M ′ but H(H,M) = H(H,M ′), is negligible (as a function of n).

Definition 1. A hash function combiner Comb for hash functions H0,H1 is an efficient
deterministic algorithm such that, for input H0 ← HKGen0(1

n), H1 ← HKGen1(1
n) and

M ∈ {0, 1}∗, it returns a digest Comb(H0,H1,M). In addition, the pair (CKGen,Comb),
where CKGen(1n) generates H0 ← HKGen0(1

n) and H1 ← HKGen1(1
n) and outputs (H0,H1),

is a collision-resistant hash function as long as H0 or H1 is collision-resistant.

The popular Merkle-Damgȧrd construction [10,4] of a hash function takes any collision-
resistant compression function f : {0, 1}l+n → {0, 1}n and an initial vector IV. To compute
a digest one divides (and possibly pads) the message M = m0m1 . . . mk−1 into blocks mi

of l bits and computes the digest H(M) = ivk as

iv0 = IV, ivi+1 = f(ivi,mi) for i = 0, 1, . . . , k − 1.

In this case the description of the hash function simply consists of the pair (f, IV). We
note that, in order to make this construction collision-resistant for messages of arbitrary
length, one still needs to apply the compression function once more to the bit length of the
message.

In the idealized Merkle-Damgȧrd construction we assume that the compression function
f behaves like a random function (drawn from the set of all functions mapping (l + n)-bit
strings to n-bit strings). In particular, if an algorithm now gets as input the description
of such an idealized MD-hash function then it is understood that this algorithms gets
IV as input string and oracle access to the random function f . This holds also for a
combiner Comb of such idealized MD hash function, i.e., Comb gets oracle access to f0, f1

and receives the strings IV0, IV1 as input. We then often write CombH0,H1(·) instead of
Combf0,f1(IV0, IV1, ·). We emphasize that the combiner may assemble a solution from the
compression functions and the initial vectors which is not necessarily an iterated hash
function.

2.2 Our Model

To analyze the security amplification of a com-

C0

C1

IV0, IV1

M, M’

f0 f1

A

Fig. 1. Attack Model

biner for two idealized MD hash functions (f0, IV0)
and (f1, IV1) we consider an adversary A with ora-
cle access to f0, f1 and input IV0, IV1. The task of
this algorithm is to find a collision for the combiner.
Since finding collisions for the random compression
function directly is restricted to the birthday attack,
we allow A oracle access to two collision finder or-
acles C0, C1 generating collisions for each compres-
sion function (both oracles themselves have access

to f0, f1). These collision finders can be viewed as the best known algorithm to generate
collision for the compression function. See Figure 1. In its most simple form algorithm
A can query the collision finder Cb by forwarding values ivb, iv

′
b and getting a collision

(mb,m
′
b) with fb(ivb,mb) = fb(iv

′
b,m

′
b) from Cb. More generally, the adversary may want

to influence the colliding messages or enforce dependencies between the initial values ivb, iv
′
b

and the messages mb,m
′
b. To model such advanced collision finding strategies we allow the

adversary to pass (the description of) a circuit Cb : {0, 1}i → {0, 1}l+n (possibly containing
f0- and f1-gates) to Cb instead of ivb, iv

′
b only. The collision finder then applies an internal

stateful source S = S(Cb) to continuously generate i-bit strings s ← S and successively
provides each s as input to the circuit Cb. See Figure 2(a).1

mb

s

ivb

fb

f0

f1

Cb

S

(a)

samplesb(Cb) contains all tested pairs (Cb(s), fb(Cb(s)))
in Cb’s collision search for input circuit Cb

cvalb contains all collisions returned by collision finder Cb

fvalb contains all pairs (x, fb(x)) appearing in direct fb-
box queries of A or in an evaluation of a circuit Cb

(b)

Fig. 2. Operation of collision finder Cb (a), Sets of function values (b)

For the circuit’s output (ivb,mb) = Cb(s) to the next input value s the finder com-
putes fb(ivb,mb) and checks if for some previously computed value (iv′

b,m
′
b) a collision

fb(ivb,mb) = fb(iv
′
b,m

′
b) occurs. If so, Cb immediately stops and outputs the collision

((ivb,mb), fb(ivb,mb), s) and ((iv′
b,m

′
b), fb(iv

′
b,m

′
b), s

′). Otherwise it stores the new triple
((ivb,mb), fb(ivb,mb), s) and continues its computations. If Cb does not find a collision
among all i-bit inputs s to the circuit it returns ⊥. We assume that the adversary im-
plicitly gets to know all consulted input values s, gathered in an ordered set sval(Cb).
Note that we leave it essentially up to the adversary and his choice for Cb to minimize the
likelihood of undefined outputs or trivial collisions (i.e., for the same pre-image).

2.3 Lucky Collisions

The collision finders should be the only possibility to derive collisions, i.e., we exclude
accidental collisions (say, A ignoring the collision finders and finding an f0-collision by
querying the f0-oracle many times). To capture such lucky collisions we assume that each
answer ((ivb,mb), fb(ivb,mb), s), ((iv′

b,m
′
b), fb(iv

′
b,m

′
b), s

′) of Cb is augmented by all pre-
image/image pairs (x, y) of f0- and f1-gate evaluations in the circuit computations during
the search. We stress that this excludes all samples (Cb(s), fb(Cb(s))) which the collision
finder probes to find the collision, unless the sample also appears in one of the circuit
evaluations (see also the discussion below).

For a query Cb to Cb we denote the set of the pre-image/image pairs returned to A by
fval

cf
b (Cb) and by fval

cf
b we denote the union of fval

cf
b (Cb) over all queries Cb made to Cb

during A’s computation. Here we assume that the set fval
cf
b is updated immediately after

each function gate evaluation during a circuit evaluation. Similarly, fval
box
b stands for the

pre-image/image pairs generated by A as queries and answers to the fb-box directly. We
now set fval as the union of fval

cf
b and fval

box
b for both b = 0, 1.

Definition 2 (Lucky Collision). A pair (x, x′) is called a lucky collision if for an exe-
cution we have x 6= x′ and (x, y), (x′, y) ∈ fval for some y.

1 The source S can be thought of the collision finder’s strategy to generate collisions for the input
circuit, and is possibly even known by A. Since we will later quantify over all collision finders
we do not specify this distribution; the reader may for now think of S sequentially outputting
the values 0, 1, 2, . . . in binary.

In the definition below A will not be considered successful if a lucky collision occurs
during an execution. It therefore lies in A’s responsibility to prevent lucky collisions when
querying f -boxes or the collision finders.

For notational convenience we collect the pre-image/image pairs of collisions generated
by the collision-finders in the set cval, which is the union of all answers cvalb(Cb) of
collision-finder Cb for query Cb, over all queries Cb and b = 0, 1. We also let samplesb(Cb)
denote all samples (Cb(s), fb(Cb(s))) which the collision finder Cb collects to find a collision
for query Cb, and samples stands for the union over all samplesb(Cb) for all queries Cb

and b ∈ {0, 1}. Clearly, cvalb(Cb) ⊆ samplesb(Cb). An informal overview about the sets
is given in Figure 2(b).

We remark that we do not include the pairs (Cb(s), fb(Cb(s))) which the collision finder
probes in fvalb (unless they appear in the circuit’s evaluations). This is in order to not
punish the adversary for the collision finder’s search and strengthens the model, as lucky
collisions become less likely. However, for an answer of the collision finder the adversary A
can re-compute all or some of those values by browsing through the ordered set sval(Cb),
containing all inspected s-values, and submitting Cb(s) to the fb-oracle. This value is then
added to the set fvalb, of course.

2.4 Security Amplification

As for the costs of each oracle call to collision finder Cb we charge the adversary A a pre-
determined number Tb of steps for each call (e.g., Tb = 2n/2 if Cb implements the birthday
attack, ignoring the fact that the collision finder may even fail with some probability in
this case). We do not charge the adversary for other steps than these calls. In the definition
below we make no restriction on the number of calls to the collision finders, yet one might
often want to limit this number in some non-trivial way, e.g., for our main result we assume
that the adversary makes at most a polynomial number of calls.

Definition 3. A hash function combiner Comb for idealized Merkle-Damgȧrd hash func-
tions H0,H1 is called α(n)-security amplifying if for any oracles C0, C1 (with running times
T0(n) and T1(n), respectively) and any algorithm A making at most α(n) · (T0(n)+ ·T1(n))
steps we have

Prob
[
Expamp,Comb

A,H0,H1,C0,C1
(n) = 1

]
≈ 0

where

Experiment Expamp,Comb

A,H0,H1,C0,C1
(n):

initialize (f0, IV0)← HKGen0(1
n), (f1, IV1)← HKGen1(1

n)
let (M,M ′)← Af0,f1,C0,C1(IV0, IV1)
output 1 iff

M 6= M ′, and

Combf0,f1(IV0, IV1,M) = Combf0,f1(IV0, IV1,M
′), and

no lucky collisions during A’s computation occured.

The combiner is called security amplifying if it is α(n)-security amplifying for some func-
tion α(n) with α(n) > 1 for all sufficiently large n’s.

Our definition allows α(n) to converge to 1 rapidly, e.g., α(n) = 1 + 2−n. We do
not exclude such cases explicitly, but merely remark that, as long as T0(n) and T1(n)
are polynomially related and the combiner is security-amplifying, one can always find a

suitable function α(n) bounded away from 1 by a polynomial fraction. For simplicity
we have defined compression functions f0, f1 of equal output length n (which is also the
security parameter). We remark that all our definitions and results remain valid for different
output lengths n0, n1 by considering n = min{n0, n1}.

3 Warming Up: Attack on the Classical Combiner

In this section, to get accustomed to our model, we first present the attack of Joux on
the classical combiner, showing that this one is not security amplifying (even though it
is a secure combiner in the traditional sense). This also proves that finding such security-
amplifying is far from trivial. Recall that the classical combiner is given by

CombH0H1

class (M) := H0(M)||H1(M)

for idealized Merkle-Damgȧrd hash functions. Obviously this combiner is collision-resistant
as long as at least one of the hash functions has this property. Yet, it does not have the
desired security-amplification property, because an adversary A can use the strategy of
Joux [8] to find a collision rapidly. The idea is to build a multi-collision set of size 2

n
2 for

H0 by calling C0 only n
2 times, and then to let C1 search for a pair among those messages

in the multi-collision set which also constitutes a collision under H1.

Adversary Af0,f1,C0,C1(IV0, IV1) :
for i = 0, 1, . . . , k := n

2 − 1:
let C0,i : {0, 1}l → {0, 1}l+n be the circuit C0,i(s) = (iv0,i, s), where iv0,0 = IV0

get ((iv0,i,mi), yi, s), ((iv0,i,m
′
i), yi, s

′)← C0(C0,i)
where mi 6= m′

i by the choice of C0,i

set iv0,i+1 = yi

end of for

construct circuit C1 : {0, 1}n/2 → {0, 1}l+n, containing all received collisions (mi,m
′
i)

from the first stage, as follows:
for i = 0, 1, . . . , k = n

2 − 1:
for the i-th input bit si let m̂i = mi if si = 0, and m̂i = m′

i otherwise
except for the last round, compute iv1,i+1 = f1(iv1,i, m̂i), where iv1,0 = IV1

end of for
let the circuit output (iv1,k, m̂k)

get ((iv1,k, m̂k), yk, s), ((iv′
1,k, m̂′

k), yk, s′)← C1(C1)

reconstruct the successful combination M,M ′ of C1 by using the values s, s′

for the pairs (mi,m
′
i) as above, and output M,M ′

First, the collision finder C0 is called n
2 times by the adversary to derive n

2 pairs of
colliding message blocks (mi,m

′
i) where f0(iv0,i,mi) = f0(iv0,i,m

′
i) for i = 0, 1, . . . , k. Since

the circuit C0,i passed to C0 does not evaluate the functions f0, f1, no lucky collision can
occur in this stage. The query to collision finder C1 then requires n

2 compression function

evaluations in the circuit C1 for each input s ∈ {0, 1}n/2, which selects one of the 2
n
2

multi-collisions derived from C0’s answers. Yet, for each common prefix of the s-values the
same function evaluations are repeated, and the set fval

cf
1 therefore contains at most 2

n
2

pre-image/image pairs (x, y) from the circuit evaluations. This implies that the probability
for a lucky collision is at most 1

2 .

On the other hand, given that no collision in fval1 occurs, all circuit outputs are
distinct and the set of probed values of the collision finder is at least 2

n
2 . But then, C0

will find a collision among the values with constant probability (which is roughly equal to
1−e−1/2 for the Euler constant e). Hence, the adversary succeeds with constant probability,
taking only n

2 ·T0(n)+T1(n) steps. This implies that the classical combiner is not security
amplifying, because no appropriate function α(n) > 1 exists.

Our model allows to implement attacks on more sophisticated hash combiners such as
CombH0,H1(M) = H0(M)||H1(H0(M)⊕M), which may seem to be more secure than the
classical combiner at first glance due to the dependency of both hash functions. However,
by using the circuit C1 to compute valid inputs for H1 we can realize a similiar attack as
the one for Combclass.

4 Basic Conclusions

In this section we provide some basic conclusions in our model, e.g., that the functions
f0, f1 are still pre-image resistant in presence of the collision finders. These results will also
be useful when proving our combiner to be security amplifying.

The first lemma basically restates the well-known birthday paradox that, if the ad-
versary A in experiment Expamp,Comb

A,H0,H1,C0,C1
(n) makes too many f0- and f1-queries (either

directly or through the collision-finders), then most likely a lucky collision will occur and
A cannot succeed anymore. This result —like all results in this section— hold for arbitrary
combiners (based on the idealized Merkle-Damgȧrd model):

Lemma 1 (Birthday Paradox). Consider experiment Expamp,Comb

A,H0,H1,C0,C1
(n) and assume

that |fvalb| > 2dn for b ∈ {0, 1} and a constant d > 1
2 . Then the probability that no lucky

collisions occur is negligible (and, in particular, the probability that the experiment returns
1 is negligible, too).

Proof. Suppose |fvalb| > 2dn for some b. Then the birthday paradox implies that with

probability at most exp(−
(
2dn+1

2

)
/2n) ≤ exp(−2(2d−1)n−1) there would be no lucky colli-

sion. Since d > 1
2 the term 2(2d−1)n−1 grows exponentially in n. But if a lucky collision

occurs, then the experiment outputs 0. ⊓⊔

We next show that the images of sample values samples \ cval appearing during the
search of the collision finder (but which are not returned to A) are essentially uniformly
distributed from A’s viewpoint (i.e., given the sets fval,cval). This holds at any point in
the execution and even if A does not win:

Lemma 2 (Image Uncertainty). Assume that A in experiment Expamp,Comb

A,H0,H1,C0,C1
(n)

makes at most 2cn calls to each collision-finder C0, C1 and that fval0, fval1 each contain
at most 2cn elements for a constant c < 1. Then for any (iv,m), y and b ∈ {0, 1} such that
((iv,m), fb(iv,m)) /∈ fvalb ∪ cvalb, we have Prob[fb(iv,m) = y | fval,cval] ≤ 2 · 2−n

(for sufficiently large n’s).

Proof. Consider the information about the image of a value (iv,m) (not appearing in
fval∪cval) available through fval,cval. Suppose that this value (iv,m) appears in the
course of a collision search —else the claim already follows because the image is completely
undetermined— and thus the image belongs to samples \ (fval ∪ cval). This only leaks
the information that the image of (iv,m) must be distinct from other images in such

a collision search, or else the collision finder would have output (iv,m) as part of the
collision. Hence, the information available through fval,cval only exclude the images in
samples ∩ (fvalb ∪ cvalb) —values for the other bit b are not relevant— which is a set
of size at most |fvalb ∪ cvalb| ≤ 3 · 2cn (since each of the 2cn calls to Cb yields at most
two entries in cvalb). Thus, for large n’s there are at least 2n − 3 · 2cn ≥ 1

2 · 2
n candidate

images left, each one being equally like. ⊓⊔

The next lemma says that the collision-finders cannot be used to break pre-image
resistance, i.e., despite the ability to find collisions via C0, C1, searching for a pre-image to
a chosen value is still infeasible. Below we formalize this by executing an adversary B in
mode challenge first, in which B explicitly determines an image y for which a pre-image
should be found under fb. To avoid trivial attacks we also presume that no (iv,m) with
fb(iv,m) = y has been found up to this point. Then, we continue B’s execution in mode
find in which B tries to find a suitable pre-image (iv,m). This assumes that B cannot try
out too many collision-finder replies (i.e., at most 2cn many for some constant c < 1

2):

Lemma 3 (Chosen Pre-Image Resistance). For any algorithm B and any constant

c < 1
2 the following experiment Exppre,Comb

B,H0,H1,C0,C1
(n) has negligible probability of returning

1:

Experiment Exppre,Comb

B,H0,H1,C0,C1
(n):

initialize (f0, IV0)← HKGen0(1
n), (f1, IV1)← HKGen1(1

n)
let (y, b, state)← Bf0,f1,C0,C1(challenge, IV0, IV1)
let val

ch

b = fvalb ∪ cvalb at this point
let (iv,m)← Bf0,f1,C0,C1(find, state)
return 1 iff

fb(iv,m) = y and ((iv,m), y) /∈ val
ch

b , and
B made at most 2cn calls to collision-finder Cb (in both phases together), and
no lucky collisions occured during B’s computation (in both phases together)

The proof is delegated to Appendix A. The proof idea is as follows. For any value
appearing in fvalb \ cvalb during the find phase the probability of matching y is at most
2 · 2−n by the image uncertainty. Furthermore, according to the Birthday Lemma 1 the set
fvalb cannot contain more than 2dn elements for some d > 1

2 (or else a lucky collision is
very likely). But then the probability of finding another pre-image among those values is
negligible.

The harder part is to show that B cannot significantly influence the collision finder Cb
to search for a collision with image y (which would then appear in cvalb and could be
output by B). Here we use the property of our model saying that the circuit’s output Cb(s)
for each sample is essentially determined by B (or, to be precise, by the previous values in
fval and cval). But then the Image Uncertainty Lemma applies again, and each sample
Cb(s) yields y with probability at most 2 · 2−n. The final step is to note that each collision
search most likely requires approximately 2

n
2 or less samples, and B initiates at most 2cn

many searches for c < 1
2 . Hence, with overwhelming probability there is no value with

image y in samples in the find phase at all, and thus no such value in cvalb. This shows
Chosen Pre-Image Resistance.

For the final conclusions about our model, we prove that, given a collision (iv,m),
(iv′,m′) produced by a collision finder Cb, generating another pre-image also mapping to
fb(iv,m) = fb(iv

′,m′), is infeasible. The proof is in two steps, first showing that one cannot

use the fb-boxes to find such an additional value, and the second lemma shows that this
remains true if one tries to use the collision finder (if one does not call the collision finder
more than a polynomial number of times). We remark that this aspect refers to collisions
for the compression functions only; given a collision generated by the finders one can of
course extend this to further collisions for the iterated hash function by appending message
blocks:

Lemma 4 (f-Replication Resistance). Assume adversary A in Expamp,Comb

A,H0,H1,C0,C1
(n)

makes at most 2cn calls to each collision-finder C0, C1 and that each set fval0, fval1 con-
tains at most 2dn elements for constants c, d with c + d < 1. Then the probability that
there exist values ((iv,m), y) ∈ cvalb and ((iv′,m′), y) ∈ fvalb \ cvalb for b ∈ {0, 1}, is
negligible.

Proof. Fix a bit b. Since A makes at most 2cn calls to Cb and each reply returns two
elements, the set cvalb is of size at most 2 · 2cn. Consider any value ((iv,m), y) ∈ cvalb

and any value ((iv′,m′), y′) ∈ fvalb\cvalb. Then, because ((iv′,m′), y′) /∈ cvalb, we must
have y′ 6= y or (iv,m) 6= (iv′,m′). In the first case we have no match, in the second case a
match can occur with probability at most 2 ·2−n by the image uncertainty (considering the
point in the execution where the the second of the two values appears for the first time).

Now sum over all 2 · 2cn · 2dn = 2 · 2(c+d)n combinations, such that the probability of
finding any match is at most 4 · 2(c+d−1)n. Since c + d < 1 this is negligible, and stays
negligible if we sum over both choices for b. ⊓⊔

Note that the fact above indicates that, after having generated collisions through the
finder, finding other matching function values through the f -boxes is infeasible. This holds
at any point in the execution, i.e., A may not even successfully produce a collision but
rather stop prematurely. Next, we use this fact (together with pre-image resistance) to
prove replication resistance with respect to the collision finders:

Lemma 5 (C-Replication Resistance). Assume adversary A in Expamp,Comb

A,H0,H1,C0,C1
(n)

makes at most poly(n) calls to each collision-finder C0, C1 and that fval0, fval1 each con-
tain at most 2dn elements for a constant d < 1. Then the probability that there exist
values ((iv,m), y), ((iv′,m′), y), ((iv∗,m∗), y) ∈ cvalb for b ∈ {0, 1} with pairwise distinct
(iv,m), (iv′,m′), (iv∗,m∗), is negligible.

The proof is in Appendix B. The basic idea is that, at some point in the execution, there
must be at most two of the three values in cvalb and then another call adds the third value
with the same image. But then this contradicts the chosen pre-image resistance, because
the right call to the collision finder among the polynomially many ones can be guessed
with probability 1/poly(n). We note that the full argument needs to take care of the case
that the third value appears in fvalb before.

5 A Security-Amplifying Combiner

Our (input-restricted) security-amplifying combiner takes messages M = m0|| . . . ||mt−1 of
exactly t blocks with t ≤ en for some constant e < 1

4 and applies each of the two hash
functions H0,H1 to the message m0|| . . . ||mt and outputs the concatenation:

Theorem 1. Let H0,H1 be idealized Merkle-Damgȧrd hash functions. Let e < 1
4 be a

constant and assume that t ≤ en. Then the combiner

CombH0H1

amp,t(M) = H0(m0|| . . . ||mt−1) || H1(m0|| . . . ||mt−1)

of H0 and H1 is α(n)-security-amplifying for α(n) = poly(n) if the adversary in experiment

Exp
amp,Combamp,t

A,H0,H1,C0,C1
(n) makes at most α(n) = poly(n) calls to each collision finder.

We also remark that our combiner is obviously a (classically) secure combiner in the
non-idealized setting. The theorem shows that we get the improved security-amplification
guarantee against attacks in the idealized world.

For the proof idea it is instructive to investigate why the straightforward application of
the attack of Joux for the case of at most t ≤ n

4 message blocks fails. In this case one would
again build a multi-collision set for either hash function of size at most 2t ≤ 2

n
4 . But this

time the probability that any of the 22t < 2
n
2 pairs in such a multi-collision set also collides

under the other hash function, should be approximately 2
n
2 · 2−n = 2−

n
2 . Most likely, even

approximately 2
n
2 multi-collsion sets should therefore not help to find a collision under

both hash functions. Our proof follows these lines of reasoning, i.e., bounding the size of
multi-collision sets and the probability that message pairs in such a multi-collision set also
collide under the other hash function. We stress, however, that a full proof in our model
still needs to deal with more general adversaries, possibly taking advantage of the collision
finders through “clever” queries.

To process messages of arbitrary length without losing the security-amplification prop-
erty we apply a hash-tree construction [10] to our combiner. Since the construction is
somewhat standard we merely give an example for t = 2 in Figure 3. For a similar and
more formal treatment see for instance [2]. In general the input restriction t of the hash
combiner gives us an t-ary tree, processing k message blocks m0 . . . mk−1.

m0 m1 m2 m3 m4 m5

length = |M |

Comb
H0,H1

amp,2 (m0, m1) Comb
H0,H1

amp,2 (m2, m3) Comb
H0,H1

amp,2 (m4, m5)

Comb
H0,H1

amp,2 (h1
0, h

1
1)

Comb
H0,H1

amp,2 (h2
0, h

2
1)

Comb
H0,H1

amp,2 (h3
0, length)

Fig. 3. Example of a hash tree construction for our combiner (t = 2, k = 6)

If two messages M 6= M ′ lead to a collision in the root of the hash tree, it can be either
the result of a non-trivial collision in the final application of the combiner for different
message lengths |M | 6= |M ′| (in which case we get a non-trivial collision for the basic
combiner), or else the tree structures must be identical. In the latter case the collision can

always be traced back to a collision for an earlier application of the combiner. Hence, in
both cases the reason for the tree collision is at least one collision for the basic combiner.

As for the efficiency, for a full t-ary tree (with k = tr, the number of message blocks,
being a power of t) we apply our basic combiner k−1

t−1 + 1 times. Each time we need 2t

applications of the compression functions, making our solution about t
t−1 times slower than

the classical combiner with 2k applications (but with the advantage of security amplification
for our combiner).

6 Proof of Security Amplification

Before giving the proof we first show a technical conclusions stating that the adversary
against our (input-restricted) combiner essentially cannot win if the function values of the
output are undetermined (the proof of this first lemma follows from the image uncertainty
and appears in Appendix C):

Lemma 6 (Output Knowledge). Assume that A in experiment Exp
amp,Combamp,t

A,H0,H1,C0,C1
(n)

makes at most 2cn calls to each collision-finder C0, C1 for some constant c < 1. Assume
that A eventually outputs M = m0|| . . . ||mt−1 6= M ′ = m′

0|| . . . ||m
′
t−1 such that

ivb,0 = iv′b,0 = IVb, ivb,i+1 = fb(ivb,i,mi),

iv′b,i+1 = fb(iv
′
b,i,m

′
i) for b ∈ {0, 1} and i ∈ {0, 1, . . . , t− 1}

Suppose further that ((ivb,i,mi), ivb,i+1) or ((iv′b,i,m
′
i), iv

′
b,i+1)) does not belong to fvalb ∪

cvalb for some b ∈ {0, 1} and some i ∈ {0, 1, . . . , t − 1}. Then the probability that the
experiment returns 1 is negligible.

The following lemma proves that, for t message blocks there can only be 2t multi-
collisions, as long as each collision finder is only called a polynomial number of times:

Lemma 7 (Multi-Collisions). Assume attacker A in experiment Exp
amp,Combamp,t

A,H0,H1,C0,C1
(n)

makes at most poly(n) calls to each collision-finder C0, C1 and that the experiment returns
1. Then, the probability that for some b ∈ {0, 1} and some ivb,t, the set

multib(ivb,t) :=

{
M = m0|| . . . ||mt−1 :

ivb,i+1 = fb(ivb,i,mi) ∈ fvalb ∪ cvalb

for i = 0, 1, . . . , t− 1, where ivb,0 = IVb

}

contains more than 2t elements, is negligible.

The lemma holds because if there was a multi-collision set with more than 2t elements,
then there must be distinct values (ivb,i,mi), (iv′

b,i,m
′
i) and (iv∗

b,i,m
∗
i) mapping to the same

image under fb. According to the previous lemma we can assume that all of them belong
to fvalb ∪ cvalb, but then they would either be a lucky collision (two or three values
in fvalb), refute f -replication resistance (one value in fvalb) or contradict C-replication
resistance (no value in fvalb).

With these two lemmas we can now prove that our combiner is security-amplifying. The
full proof appears in Appendix C. For an outline consider the multi-collision sets defined
in the previous lemma. Lemma 6 implies that, in order to win, the adversary must know
the images of the final output M 6= M ′. Hence, each of the two messages must appear in
some multi-collision set, and to constitute a collision under hash function Hb, they must

appear in the same multi-collision set multib(yb) for some yb. Moreover, since the messages
must collide under both hash functions simultaneously they must belong to an intersection
multi0(y0) ∩multi1(y1) for some y0, y1.

Lemma 7 now says that each multi-collision set has at most 2t elements. Thus, there are
at most 22t ≤ 22en such pairs in each multi-collision set. Furthermore, we can bound the
number of multi-collision sets by the number of elements in fvalb ∪ cvalb, and therefore
by 3 · 2dn for a constant d > 1

2 with d + 2e < 1 (here we use the fact that e < 1
4). We

therefore have at most 3 · 2(d+2e)n possible pairs M 6= M ′. The proof then shows that, by
the image uncertainty, any of the pairs M,M ′ in some multi-collision set multib(yb) also
collides under the other hash function Hb, with probability at most 6 · 2(d+2e−1)n which is
negligible. Put differently, with overwhelming probability the intersections of mulit-collision
sets for both hash functions are empty and the adversary cannot find appropriate messages
M,M ′.

Acknowledgments

We thank the anonymous reviewers for valuable comments. Both authors are supported by
the Emmy Noether Program Fi 940/2-1 of the German Research Foundation (DFG).

References

1. Dan Boneh and Xavier Boyen. On the Impossibility of Efficiently Combining Collision Resis-
tant Hash Functions. Advances in Cryptology — Crypto 2006, Volume 4117 of Lecture Notes
in Computer Science, pages 570–583. Springer-Verlag, 2006.

2. Mihir Bellare and Phillip Rogaway. Collision-Resistant Hashing: Towards Making UOWHFs
Practical. Advances in Cryptology — Crypto’97, Volume 1294 of Lecture Notes in Computer
Science, pages 470–484. Springer-Verlag, 1997.

3. Ran Canetti, Ron Rivest, Madhu Sudan, Luca Trevisan, Salil Vadhan, and Hoeteck Wee.
Amplifying Collision Resistance: A Complexity-Theoretic Treatment. Advances in Cryptology
— Crypto 2007, Lecture Notes in Computer Science. Springer-Verlag, 2007. These proceedings.

4. Ivan Damgȧrd. A Design Principle for Hash Functions. Advances in Cryptology — Crypto’89,
Volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer-Verlag, 1990.

5. Oded Goldreich, Russell Impagliazzo, Leonid Levin, Ramarathnam Venkatesan, and David
Zuckerman. Security Preserving Amplification of Hardness. Proceedings of the Annual Sym-
posium on Foundations of Computer Science (FOCS)’90, pages 318–326. IEEE Computer
Society Press, 1990.

6. Amir Herzberg. On Tolerant Cryptographic Constructions. Topics in Cryptology — Cryptog-
rapher’s Track, RSA Conference (CT-RSA) 2005, Volume 3376 of Lecture Notes in Computer
Science, pages 172–190. Springer-Verlag, 2005.

7. Jonathan Hoch and Adi Shamir. Breaking the ICE — Finding Multicollisions in Iterated
Concatenated and Expanded (ICE) Hash Functions. Fast Software Encryption (FSE) 2006,
Volume 4047 of Lecture Notes in Computer Science. Springer-Verlag, 2006.

8. Antoine Joux. Multicollisions in Iterated Hash Functions. Advances in Cryptology — Crypto
2004, Volume 3152 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

9. Henry Lin, Luca Trevisan, and Hoeteck Wee. On Hardness Amplification of One-Way Func-
tions. Theory of Cryptography Conference (TCC) 2005, Volume 3378 of Lecture Notes in
Computer Science, pages 34–49. Springer-Verlag, 2005.

10. Ralph Merkle. One Way Hash Functions and DES. Advances in Cryptology — Crypto’89,
Volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer-Verlag, 1990.

11. M. Nandi and D. Stinson. Multicollision Attacks on a Class of Hash Functions. Number
2004/330 in Cryptology eprint archive. eprint.iacr.org, 2004.

12. Krzysztof Pietrzak. Non-Trivial Black-Box Combiners for Collision-Resistant Hash-Functions
don’t Exist. Advances in Cryptology — Eurocrypt 2007, Lecture Notes in Computer Science.
Springer-Verlag, 2007.

13. Andrew Yao. Theory and Applications of Trapdoor Functions. Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS) 1982. IEEE Computer Society Press,
1982.

14. Hongbo Yu and Xiaoyun Wang. MultiCollision Attack on the Compression Functions of MD4
and 3-Pass HAVAL. Number 2007/085 in Cryptology eprint archive. eprint.iacr.org, 2007.

A Proof of Chosen Pre-Image Resistance (Lemma 3)

In this section we prove Lemma 3, showing that no adversary B can determine an image y
and later find another pre-image to this value.

Proof. Let d be a constant with 1
2 < d < 1. Assume that fvalb contains more than 2dn

elements at the end. Then Lemma 1 implies that such executions can only contribute with
negligible probability to B’s success. From now on we can therefore condition on this bound
2dn of number on elements in fvalb.

By the image uncertainty we conclude that the probability that any ((iv,m), fb(iv,m))
∈ fvalb \cvalb in B’s find phase yields y, is at most 2 · 2−n. Here we use the fact that any
function evaluation adding to fvalb \ cvalb is either via a direct call to the fb-box, or via
an fb-gate evaluation in the computation of a circuit C(s), carried out through one of the
collision finders. In any case, the input to the function only depends on the values in fval

and cval before the corresponding query; for fb-box queries this is clear and for circuit
computations it follows as the circuit is chosen by B and all previous function evaluations
immediately appear in fvalb. Therefore, the uncertainty bound applies. Summing over
all at most 2dn many values in fvalb shows that the probability of hitting y is bounded
from above by 2 · 2(d−1)n and is thus negligible. In the sequel we therefore presume that
no ((iv,m), y) ∈ fvalb \ cvalb appears (unless it has been in val

ch

b before, in which case
B cannot use it anymore for a successful run).

We next investigate the effect of collision finder calls on cvalb, addressing the question
if B can force the collision finder to bias collisions towards y in some way. Recall that the
collision finder makes at most 2cn many runs for c < 1

2 . Let e = 3
4 −

c
2 > 1

2 . Then we can
assume that each run probes at most 2en new elements previously not in samples. This is
so since, for a single run, the probability of finding no collisions after 2en many trials for
fresh values, is double-exponentially small (see Lemma 1 and note that this remains true
for a slightly larger probability of 2 · 2−n). The probability that any of the 2cn calls would
require more fresh samples, is therefore still negligible. From now on we thus presume that
each call adds at most 2en new entries to samples.

Consider the j-th call Cb to the collision finder Cb in the find stage. Let cval
before

b,j be

the set cvalb before this call, such that cval
before

b,1 denotes the set cvalb at the beginning

of the find phase. Note that cval
before

b,j does not change during the collision search, but only

when the finder returns the collision. Suppose further that cval
before

b,j does not contain any

element ((iv,m), y) which is not already in val
ch

b . This is obviously true for cval
before

b,1 .
A crucial aspect in our consideration is that all circuit values Cb(s) during the col-

lision search are fully determined given fvalb (containing the pairs of the entire execu-
tion but whose images are distinct from y by assumption) as well as cval

before

b,j . Hence,

the uncertainty bound applies again, and the probability that a specific sample Cb(s)
gives a new pair (Cb(s), y) /∈ cval

before

b,j ∪ val
ch

b , is at most 2 · 2−n (noting that any entry

(Cb(s), fb(Cb(s))) ∈ (fvalb ∪ cval
before

b,j) \ val
ch

b has an image different from y by assump-

tion). Since there are at most 2en new samples, only with probability at most 2 · 2(e−1)n

some new sample Cb(s) in Cb’s search yields y. It follows that, except with probability
2 · 2(e−1)n, the set cval

before

b,j+1 including the new collisions will not contain a suitable entry.
Finally, sum over all at most 2cn many calls to Cb to derive that cvalb does not

contain a new entry ((iv,m), y) ∈ cvalb \ val
ch

b , except with probability 2 · 2(c+e−1)n for
c + e = 3

4 + c
2 < 1 which is negligible. Since the same holds for fvalb \ cvalb the overall

probability of finding a suitable pre-image (iv0,m), including possibly the final output
which is not a member in fvalb ∪ cvalb, is negligible. ⊓⊔

B Proof of C-Replication Resistance (Lemma 5)

In this section we prove that no adversary can find three values in cval mapping to the
same image.

Proof. We discuss that if A could find three (or more) of those values then this would
contradict either f -replication resistance or chosen pre-image resistance. Consider adver-
sary B against the chosen pre-image resistance which basically runs a black-box simulation
of A. In the challenge-phase, B initially makes a guess for a specific call j adversary A
makes to one of the collision finders. Then B runs A up to the point where A receives
the answer ((iv,m), y), ((îv, m̂), y) of Cb for this j-th call. Then B outputs y, b (and all
internal information of A as state) and concludes this stage. In the find-phase B continues
A’s simulation and waits to see a value ((iv∗,m∗), y) in the execution, and then outputs
(iv∗,m∗) and stops.

We next analyze B’s success probability. Since each call to the collision-finders adds
at most two new values to cvalb, there must be a point in A’s execution where there is
(iv,m) ∈ cvalb (and possibly (iv′,m′) ∈ cvalb) and only the next call to Cb adds the value
(iv∗,m∗) to cvalb, i.e., so far (iv∗,m∗) /∈ cvalb. Suppose that the conditional probability
(given such a value (iv∗,m∗) with the same image really appears in the execution) that
this value belongs to fvalb after the corresponding call to Cb, was noticeable. Then this
would clearly contradict the f -replication resistance (bounding the polynomial number of
calls by 2cn for the constant c = 1

2 −
d
2 with c + d < 1). We may therefore assume that

(iv∗,m∗) /∈ val
ch

b = cvalb ∪ fvalb at this point. But then B guesses the right call j with
probability 1/poly(n), and thus predicts a function value with noticeable probability. This,
however, contradicts the chosen pre-image resistance. ⊓⊔

C Proof of Security Amplification (Theorem 1)

In this section we provide the proofs of the claims in Section 6 and of the theorem. First we
prove that an adversary must essentially know the function values of the output (Lemma 6):

Proof (of Lemma 6). Suppose A outputs such values M,M ′ and succeeds with notice-
able probability. Assume for simplicity that ((ivb,i,mi), ivb,i+1) /∈ fvalb ∪ cvalb; the case
((iv′

b,i,m
′
i), iv

′
b,i+1) is treated analogously. Let i be maximal and fix the bit b.

By Lemma 1 we can assume |fvalb| ≤ 2dn for d = max{ 3
4 , c}, except with negligible

probability. Hence, from now on we can condition on |fvalb ∪ cvalb| ≤ 3·2dn. For a success
the messages M and M ′ must collide under Hb. If i = t − 1 then fb(ivb,i,mi) = ivb,i+1 is
the output of the hash function, and since this value does not appear in fvalb∪cvalb, the
probability of matching iv′

b,i+1 is bounded from above by 2 · 2−n by the image uncertainty.
If i < t − 1 then there must exist an entry ((ivb,i+1,mi+1), ivb,i+2) ∈ fvalb ∪ cvalb

(because i is chosen to be maximal). However, the probability that the value fb(ivb,i,mi)
appears as a prefix in any of the 3·2dn values in fvalb∪cvalb, is at most 6·2(d−1)n and thus
negligible. On the other hand, if the prefix fb(ivb,i,mi) does not appear in fvalb ∪ cvalb,
then this contradicts the maximal choice of i. Doubling the probability for both choices of
b concludes the proof. ⊓⊔

We next prove Lemma 7, bounding the number of messages in a multi-collision set by
2t:

Proof (of Lemma 7). Assume that the experiment returns 1 (such that, except with neg-
ligible probability, fval0, fval1 are of size at most 2dn each, for some constant d < 1). If
some set multib(ivb,t) contains more than 2t elements then there must be an index i such
that there are (at least) three distinct values (ivb,i,mi), (iv′

b,i,m
′
i) and (iv∗

b,i,m
∗
i) mapping

to the same image under fb. If two or more of those values belong to fvalb \ cvalb then
this constitutes a lucky collision and refutes the fact that the experiment returns 1. If one
of the values lies in fvalb \cvalb, whereas the other two values belong to cvalb, then this
contradicts the f -replication resistance and this can only happen with negligible probabil-
ity. Finally, the case that all three values belong to cvalb can only happen with negligible
probability, too, under the C-replication resistance. ⊓⊔

Finally, we give the full proof that our combiner is security amplyifing:

Proof (of Theorem 1). According to our definition a combiner is called security-amplifying
if for any algorithm A making at most α(n) ·(T0(n)+T1(n)) steps the probability of finding
a collision is negligible (for some α(n) > 1). Hence we will show that, with overwhelming
probability, no collisions for Combamp,t (with t < en for constant e < 1

4) can be computed
for any α(n) = poly(n) when calling each collision finders at most α(n) = poly(n) many
times.

Let d = 3
4 − e such that the constant d is at larger than 1

2 and d + 2e < 1. Then we can
assume that fval0, fval1 in A’s attack each contain at most 2dn elements, otherwise the
probability of winning would be negligible. Also assume that the number of collision finder
calls is bounded by 2 ·poly(n) ≤ 2dn (for sufficiently large n’s). Hence, in the following, we
can assume that fvalb ∪ cvalb contains at most 3 · 2dn many elements for b ∈ {0, 1}.

For any b ∈ {0, 1} and any ivb,t we again consider all sets of multi-collisions,

multib(ivb,t) =

{
M = m0|| . . . ||mt−1 :

ivb,i+1 = fb(ivb,i,mi) ∈ fvalb ∪ cvalb

for i = 0, 1, . . . , t− 1, where ivb,0 = IVb

}

but this time we divide them into different stages (depending on the calls to the collision
finders). We denote by multi

before

b,j (y) the set of multi-collisions before the j-th call to one of
the two collision finders. The transition to the next phase therefore adds all messages with
respect to the new function values from the collision finder’s reply as well as all subsequent
function evaluations through the f -boxes. Clearly, multi

before

b,j (y) ⊆ multi
before

b,j+1(y) for all j

and multi
before

b,2·poly(n)+1(y) —which we denote by multi
end

b (y)— contains all multi-collisions
for y under Hb at the end of the execution.

By Lemma 6 adversary A must “know” all function values in the final output, i.e., they
must belong to fvalb ∪ cvalb for some b ∈ {0, 1}. Hence, both messages of the collision
M 6= M ′ for Hb output by A must also appear in the same set multi

end

b (yb) for some
yb. This basically reduces the task of showing that A fails, to the proof that no M 6= M ′

and y0, y1 with M,M ′ ∈ multi
end
0 (y0) ∩ multi

end
1 (y1) exist (except with some very small

probability or if one of the success requirements such as the absence of lucky collisions is
violated).

We will show that, given that no success requirements are violated, with overwhelming
probability the intersection of multi-collision sets for b = 0, 1 will be empty in the course
of the execution. This is done by a careful inductive argument, where we use the invariant
that for no yb the set multi

before

b,j (yb) contains M 6= M ′ such that they collide under Hb.

This is clearly true for multi
before

b,1 (yb) because up to the point where the first collision

finder is called, only f -queries have been made, and each set multi
before

b,1 (yb) can contain
only one element (or a lucky collision already occurs).

We also use that, according to the Multi-Collision Lemma 7, each set multi
before

b,j (yb)

can contain at most 2t elements (with overwhelming probability). Additionally, we always
have at most 3 · 2dn non-empty multi-collision sets, because there can only be an element
in a such set if there is at least one value from fvalb ∪ cvalb. Hence, at any point there
are at most 22t · 3 · 2dn ≤ 3 · 2(d+2e)n many collision pairs (M,M ′) appearing together in
one of the multi-collision sets, for the constant d + 2e < 1.

Now suppose we make the j-th call to one of the collision finders, Cb. After this call
(and all subsequent f -function evaluations) take any pair M 6= M ′ belonging to the same
set multi

before

b,j+1(yb) for some yb. The next step is to note that, most likely, this pair M,M ′

cannot belong to some multi
before

b,j+1
(yb). Note that if M and M ′ lie in multi-collision sets

multi
before

b,j+1
(yb) and multi

before

b,j+1
(y′

b
) for yb 6= y′

b
then they clearly do not collide under Hb as

those sets must be disjoint.
Assume, towards contradiction, that M,M ′ appear in a single multi-collision set for

b. We already know that M,M ′ cannot belong to some multi
before

b,j
(yb) of the previous

stage, because none of these pairs constitutes a collision under Hb, except with negligible
probability. Hence, at least one of the two messages (say, M) must have been added to
multi

before

b,j+1
(yb) because of an fb-function evaluation of Cb or via a direct evaluation of fb,

taking into account that cvalb does not change between the two points in time.
Suppose that M is added to some set multi

before

b,j+1
(yb) via a new fb-value (which has not

been in cvalb), and assume that either M ′ is added only now or has already been in this
set before the call. Consider the maximal i for which a new function value is added (when
one would process the blocks mi of message M through the iterated hash function). If the
final value ivb,t = fb(ivb,t−1,mt−1) is added (i = t− 1) then, if for M ′ processing the final

message block ivb,t = fb(iv
′

b,t−1
,m′

t−1) has been in fvalb before or is added to fvalb now,

we would have a lucky collision. So ivb,t = fb(iv
′

b,t−1
,m′

t−1) must have been in cvalb before.

But then this would contradict the f -replication resistance. For any other i < t−1 we note
that, if fb(ivb,j ,mi) has not been determined before by A, the probability that it matches

any prefix of the at most 3 · 2dn previous values in fvalb ∪ cvalb, is negligible (namely, at
most 6 · 2(d−1)n by the image uncertainty). But this would contradict the maximal choice
of i.

In conclusion, for any of the pairs M,M ′ there must still be an fb-value not in fvalb ∪
cvalb at this point, and the probability that the pair M,M ′ collides under Hb at all, is
thus at most 2 · 2−n. Therefore, the probability that any of the at most 3 · 2(d+2e)n pairs
M,M ′ for d + 2e < 1 constitutes a collision under Hb, is negligible. The same argument
applies now vice versa, no pair M,M ′ from a set multi

before

b,j+1
(yb) yields a collision under

Hb, except for some negligible error. This gives us the invariant.
The argument can now be set forth to the at most 2 ·poly(n)+1 many phases, showing

that the final multi-collision sets for b = 0, 1 never intersect in more than one element. This
proves the theorem. ⊓⊔

