
Cryptanalysis of 2R− schemes

Jean-Charles Faugère1 and Ludovic Perret2

1 LIP6, 8 rue du Capitaine Scott, Paris 75015, France
Jean-Charles.Faugere@inria.fr

2 UCL, Crypto Group, Microelectronic Laboratory
Place du Levant, 3

Louvain-la-Neuve, B 1348, Belgium
ludovic.perret@uclouvain.be

Abstract. In this paper, we study the security of 2R− schemes [17, 18], which are the “minus variant”
of two-round schemes. This variant consists in removing some of the n polynomials of the public key,
and permits to thwart an attack described at Crypto’99 [25] against two-round schemes. Usually, the
“minus variant” leads to a real strengthening of the considered schemes. We show here that this is
actually not true for 2R− schemes. We indeed propose an efficient algorithm for decomposing 2R−

schemes. For instance, we can remove up to
¨

n
2

˝
equations and still be able to recover a decomposition

in O(n12). We provide experimental results illustrating the efficiency of our approach. In practice, we
have been able to decompose 2R− schemes in less than a handful of hours for most of the challenges
proposed by the designers [18]. We believe that this result makes the principle of two-round schemes,
including 2R− schemes, useless.

Keywords : Cryptanalysis, Functional Decomposition Problem (FDP), Gröbner bases, F5 algorithm.

1 Introduction

Last years a new kind of cryptanalysis has made its entrance in cryptography: the so-called algebraic cryptanalysis.
A fundamental issue of this cryptanalysis consists in finding zeroes of algebraic systems. Gröbner bases, which are
a fundamental tool of commutative algebra, constitute the most elegant and efficient way for solving this problem.
They provide an algorithmic solution for solving several problems related to algebraic systems (some of them can be
found in [1]). We present here a new application of Gröbner bases. More precisely, we propose a new algorithm for
solving the Functional Decomposition Problem (FDP). The problem is as follows:
Functional Decomposition Problem (FDP)
Input : multivariate polynomials h1, . . . , hu.
Find : – if any – multivariate polynomials f1, . . . , fu, and g1, . . . , gn, such that:

(h1, . . . , hu

´
=
`
f1
`
g1, . . . , gn

´
, . . . , fu

`
g1, . . . , gn

´´
.

This problem is related to security of 2R− schemes [17, 18].

1.1 Related Works

As stated by E. Biham [6], “the design of this scheme (2R) is unique as it uses techniques from symmetric ciphers
in designing public key cryptosystems, while still claiming security based on relation to the difficulty of decomposing
compositions of multivariate ... functions”. Anyway, the security of 2R schemes has been already carefully investigated
[6, 25, 26]. E. Biham proposed in [6] a successful cryptanalysis of 2R schemes with S-Boxes. This attack exploits the
birthday paradox, but can be avoided by increasing the security parameters of 2R schemes [18]. At Crypto’99 [25],
D.F. Ye, Z.D. Dai, and K.Y. Lam have presented a quite efficient method for solving the Functional Decomposition
Problem. The security of 2R schemes is indeed related to this problem. To thwart this last attack, L. Goubin and J.
Patarin have proposed [18] to use a general technique for repairing multivariate schemes, namely keeping secret some
polynomials of the public key. The resulting schemes are called 2R− schemes. Note that V. Carlier, H. Chabanne,

and E. Dottax [9] have described a method for protecting the confidentiality of block ciphers design exploiting the
principle of 2R− schemes. Usually, the “minus modification” leads to a real strengthening of the considered schemes.
For instance, C∗ is broken [22] while C∗−− is the basis of Sflash [10], the signature scheme recommended for low-cost
smart cards by the European consortium Nessie3. Here, we show that 2R− is not more secure than 2R.

1.2 Organization of the Paper and Main Results

The paper is organized as follows. We begin in Section 2 by introducing our notations and defining essential tools
used in this paper, namely ideals, Gröbner bases, and several operations on ideals (sum, intersection, quotient, . . .).
Section 3 gives a brief review of one-round, 2R and 2R− schemes. We also present the Functional Decomposition
problem (FDP) in a more formal manner, which is at the basis of the security of 2R and 2R− schemes. An algorithm
for solving this problem efficiently would allow to decompose the public key of 2R and 2R− schemes into two
independent quadratic systems, making thereby the principle of these cryptosystems useless. In Section 4, we present
a general algorithm for solving FDP. Our method is inspired on the algorithm of D.F. Ye, Z.D. Dai, and K.Y. Lam
[25]. Note that their algorithm only works for particular instances of FDP, namely when u = n, or u = n− 1. Briefly,
our algorithm works as follows. Let (h1, . . . , hu

´
=
`
f1
`
g1, . . . , gn

´
, . . . , fu

`
g1, . . . , gn

´´
be an instance of FDP. We

first construct the ideal ∂Ih =
D

∂hi
∂xj

: 1 ≤ i ≤ u, 1 ≤ j ≤ n
E

generated by the partial derivatives of the his. We then

show that for all i, 1 ≤ i ≤ n, xd+1
n gi ∈ ∂Ih, for some d ≥ 0. In most cases, this allows to recover a basis of the vector

space L(g) = Vect(g1, . . . , gn) generated by g1, . . . , gn. This is the most difficult part of our algorithm. The fis being
indeed recovered from the knowledge of L(g) by solving a linear system. The complexity of this algorithm depends on
the ratio n/u. For example, our algorithm runs in O(n12), if n/u < 1/2. More generally, we provide a global analysis
of the theoretical complexity of our method. As a side effect, we give several insights into the theoretical behavior
of the algorithm of D.F. Ye, Z.D. Dai, and K.Y. Lam. We conclude this section by providing experimental results
illustrating the efficiency of our approach. We have been able to solve in few hours instances of FDP used in 2R−

schemes for most of the challenges proposed in [18].

2 Preliminaries

Throughout this paper, we denote by K[x1, . . . , xn] the polynomial ring in the n indeterminate x1, . . . , xn over a
finite field K with q = pr elements (p a prime, and r ≥ 1). The set of polynomials p1, . . . , ps of K[x1, . . . , xn] can be
regarded as a mapping Kn → Ks :

(v1, . . . , vn) 7→
`
p1(v1, . . . , vn), . . . , ps(v1, . . . , vn)

´
.

We will call these polynomials components. We will also denote by I = 〈p1, . . . , ps〉 = {
Ps

k=1 pkuk: u1, . . . , us ∈
K[x1, . . . , xn]} the ideal generated by p1, . . . , ps. We define now essential notions used in this paper. For a more
thorough introduction to these tools, we refer to classical books on commutative algebra, such as [1, 11]. Most of the
results presented in this part are well known in commutative algebra, and thus given without proofs. For these proofs,
we also refer to [1, 11]. The reader already familiar with Gröbner bases and quotient ideals can skip this part.

2.1 Gröbner bases

Informally, a Gröbner basis of an ideal is a generatring set of this ideal with “good” algorithmic properties. These
bases are defined with respect to monomial orders. Here, we will use the lexicographic (LEX) and degree reverse
lexicographical (DRL) orders, which are definedas follows:

Definition 1. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Nn. Then:
– xα1

1 · · ·xαn
n ≺LEX xβ1

1 · · ·xβn
n , if the left-most nonzero entry of the vector α− β is positive.

– xα1
1 · · ·xαn

n ≺DRL xβ1
1 · · ·xβn

n , if
Pn

i=1 αi >
Pn

i=1 βi, or
Pn

i=1 αi =
Pn

i=1 βi and the right-most nonzero entry of
α− β is negative.

To define Gröbner bases, we have to introduce the following definitions.

3 https://www.cosic.esat.kuleuven.be/nessie/deliverables/decision-final.pdf.

Definition 2. For any n-uple α = (α1, . . . , αn) ∈ Nn, we denote by xα the monomial xα1
1 · · ·xαn

n . We define the
total degree of this monomial by the sum

Pn
i=1 αi. The leading monomial of a polynomial f ∈ K[x1, . . . , xn] is

the largest monomial – w.r.t some monomial ordering ≺ – among the monomials of f . This leading monomial will
be denoted by LM(f,≺). The leading coefficient of f , denoted by LC(f,≺), is the coefficient of LM(f,≺) in f .
The degree of f – denoted deg(f) – is the total degree of LM(f,≺). Finally, the maximal total degree of f is the
maximal total degree of the monomials occurring in f .

We are now ready to define one of the main objects of this paper. Indeed:

Definition 3. A set of polynomials G is a Gröbner basis – w.r.t. a monomial ordering ≺ – of an ideal I in
K[x1, . . . , xn], if for all f ∈ I there exists g ∈ G such that LM(g,≺) divides LM(f,≺). This Gröbner basis is called
reduced if, for all g ∈ G, LC(g,≺) = 1, and any monomial of g ∈ G is not divisible by any element of LM(G\{g},≺).
Let G be Gröbner basis – w.r.t. a monomial ordering ≺ – of an ideal I in K[x1, . . . , xn], and d be a positive integer.
We call d-Gröbner basis (or truncated Gröbner basis) of an homogeneous ideal I the set:

{g ∈ G : deg(g) = d}.

A Gröbner basis of a given ideal is not unique in general. The reduced Gröbner basis allows to achieve uniqueness. A
reduced Gröbner basis can be obtained from a Gröbner basis in polynomial-time. Gröbner bases are a fundamental
tool to study algebraic systems in theory and practice. They provide an algorithmic solution for solving several
problems related to polynomial systems (some of them can be found in [1]). The historical method for computing
Gröbner bases is Buchberger’s algorithm [8, 7]. Recently, more efficient algorithms have been proposed. To date, F5

[13] is the most efficient for computing Gröbner bases (a brief description of this algorithm is given in Appendix A).
Here we will concentrate on Gröbner bases w.r.t. lexicographical and degree reverse lexicographical orders.

LEX and DRL Gröbner bases
Lexicographical Gröbner bases (LEX Gröbner bases) offer a way for eliminating variables.

Theorem 1 (Elimination Theorem). Let I be an ideal in K[x1, . . . , xn], and k ∈ {1, . . . , n}. If G is a LEX Gröbner
basis of I, then G ∩K[xk+1, . . . , xn] is a Gröbner basis of I ∩K[xk+1, . . . , xn].

The shape of degree reverse lexicographical Gröbner bases (DRL Gröbner bases) is much more complicated. However,
DRL Gröbner bases have several interesting properties. For instance, the polynomials of lowest degree of an ideal I
appear in a DRL Gröbner bases of this ideal. More precisely:

Theorem 2. Let I ⊂ K[x1, . . . , xn], d = min{deg(f) : f ∈ I}, and G be a DRL Gröbner basis of I. Then:

Vect
`
g ∈ G : deg(g) = d

´
= Vect

`
g ∈ I : deg(g) = d

´
.

Proof. A proof of this theorem can be found in [3].

We should mention that the variable xn has a special role for the DRL order.

Lemma 1. Let f ∈ K[x1, . . . , xn], and m be a positive integer. Then:

xm
n |f ⇐⇒ xm

n |LM(f,≺DRL).

Sum, Intersection, and Quotient of Ideals
We now go over the definitions of several operations on ideals.

Definition 4. Let I and J be ideals in K[x1, . . . , xn]. Then:
– the sum of I and J , noted I + J , is the I + J = {f + g : f ∈ I and g ∈ J }.
– the intersection of I and J , is defined as I ∩ J = {f ∈ K[x1, . . . , xn] : f ∈ I and f ∈ J }.
– I + J and I ∩ J are ideals.

Given two ideals and their generators, we would like to compute a set of generators for the intersection. This is actually
much more delicate than the analogous problem for sums, which is straightforward. Indeed, I = 〈p1, . . . , ps〉 + J =
〈g1, . . . , gr〉 = 〈p1, . . . , ps, g1, . . . , gr〉. The following result permits to solve the problem for intersections.

Theorem 3. Let I,J be ideals in K[x1, . . . , xn], and t be a new variable. Then:

I ∩ J =
`
t · I + (1− t) · J

´
∩K[x1, . . . , xn],

where t · I = {t · h : h ∈ I}, and (1− t) · J = {(1− t) · h : h ∈ J } are in K[t, x1, . . . , xn].

This result, together with the Elimination Theorem (i.e. Theorem 1), provide a method for computing intersections of
ideals. Given ideals I = 〈p1, . . . , ps〉 and J = 〈g1, . . . , gr〉 in K[x1, . . . , xn], we consider the ideal 〈t · p1, . . . , t · ps, (1−
t)·g1, . . . , (1−t)·gr〉 ⊂ K[t, x1, . . . , xn]. Those elements of a LEX Gröbner basis (with t �LEX x1 �LEX · · · �LEX xn)
that do not contain the variable t will exactly form a Gröbner basis for I ∩ J .

Definition 5. Let I and J be ideals in K[x1, . . . , xn]. The ideal quotient of I by J , denoted I : J , is the set

I : J = {f ∈ K[x1, . . . , xn] : fg ∈ I, for all g ∈ J }.

The following proposition relates the quotient operation to the sum and intersection operations.

Proposition 1. Let I, and {Ik}1≤k≤r be ideals in K[x1, . . . , xn]. Then:

i)
`Tr

k=1 Ik

´
: I =

Tr
k=1(Ik : I)

ii) I :
`Pr

k=1 Ik

´
=
Tr

k=1(I : Ik)

If f is a polynomial and I an ideal, we shall write I : f instead of I : 〈f〉. A special case of ii) is:

I : 〈f1, . . . , fr〉 =

r\
k=1

(I : fk).

We now address the question of computing generators of the ideal quotient I : J . The following observation is crucial:

Theorem 4. Let I be an ideal in K[x1, . . . , xn], and f ∈ K[x1, . . . , xn]. If 〈g1, . . . , gp〉 = I ∩ 〈f〉, then

〈g1/f, . . . , gp/f〉 = I : f.

In order to construct a basis of an ideal quotient, we proceed as follows. Given ideals I = 〈p1, . . . , ps〉 and J =
〈g1, . . . , gr〉 in K[x1, . . . , xn], we compute a basis for the intersections I ∩ 〈g1〉, . . . , I ∩ 〈gn〉 by using the above
described method. For each i, we divide by f each element of a basis of I ∩ 〈gi〉. This leads to a basis for I : gi. We
then obtain a basis for I : J by computing the intersections

Tr
k=1(I : gi).

3 2R− schemes

In [20], T. Matsumoto and H. Imai proposed one of the first examples of PKCs using compositions of multivariate
polynomials. The public key of one of them, called C∗ ([21]), represented by “t◦ψ ◦s”, where t, s are two secret linear

mappings over GF (2)n, and ψ is the multivariate representation of GF (2n)→ GF (2n), x 7→ x1+2θ

. This scheme has
been broken by J. Patarin at Crypto’95 [22].
One-round schemes [17, 18] are generalizations of C∗. The public key of these schemes is indeed of the form “t◦ψ ◦s”,
where t, s are two affine mappings over Kn, and a ψ : Kn → Kn is a bijective mapping given by n multivariate
polynomials of degree two. J. Patarin and L. Goubin [17, 18] propose several constructions for ψ:

1. S-box functions: (a1, . . . , an) 7→`
S1(a1 . . . , an1), S2(an1+1 . . . , an1+n2), . . . , Sb(an1+n2+···+nd−1+1, . . . , an)

´
,

where n =
P

i ni, and each Si : Kni → Kni is quadratic.
2. Triangular functions:

(a1, . . . , an) 7→
`
a1, a2 + q1(a1), a3 + q2(a1, a2, a3), . . . , an + qn−1(a1, . . . , an−1)

´
,

where each qi is quadratic.
3. Combinations of S-box and triangular functions.

They showed that all these constructions are insecure [17, 18]. To circumvent attacks, they introduce two-round
schemes whose public key is the composition of two one-round schemes. The secret key of two-round schemes consists
of:

Three affine bijections r, s, t : Kn → Kn.
Two applications ψ, φ : Kn → Kn, given by n quadratic polynomials.

The public key is composed of n polynomials p1, . . . , pn of total degree 4 describing:

p = t ◦ ψ ◦ s ◦ φ ◦ r,Kn → Kn.

When all the polynomials are given, this scheme is called 2R scheme. If only some of them are given, it is called 2R−

scheme. The public-key part of the computation is merely an application of the mapping p (for encrypting a message,
or checking the validity of a signature). For the secret-key computations, we need to invert the mappings ψ and φ.
The authors then propose to choose the mappings among the constructions 1, 2, 3 described above and also:

4. C∗ functions: monomials over an extension of degree n over K,

5. D∗ functions [16].

In [17, 18], it has been proved that when ψ is chosen in the classes 2. and 4., then the resulting 2R scheme is weak.
It is not clear that a similar result holds for 2R− schemes.
Anyway, does composing two weak one-round schemes leads to a secure scheme ? The answer is closely related to the
difficulty of the following problem:

Functional Decomposition Problem (FDP)
Input : h = (h1, . . . , hu) ∈ K[x1, . . . , xn]u.
Find : – if any – f = (f1, . . . , fu) 6= h ∈ K[x1, . . . , xn]u, and g = (g1, . . . , gn) ∈ K[x1, . . . , xn]n, such that:`

h1(x), . . . , hu(x)
´

=
`
f1
`
g1(x), . . . , gn(x)

´
, . . . , fu

`
g1(x), . . . , gn(x)

´´
,

noted h(x) = (f ◦ g)(x) hereafter, where x = (x1, . . . , xn).
During the last years several results have been obtained on the univariate polynomial decomposition area [15, 23, 24].
However, multivariate decomposition problem has not been studied so much. Particular instances (multi-univariate,...)
of FDP have been investigated in [23, 19]. In [12], M. Dickerson provided several insights into the theoretical complexity
of FDP. However, this kind of results solely guarantees the difficulty of the worst-case. In the cryptographic context,
D.F. Ye, Z.D. Dai, and K.Y. Lam presented in [25, 26] a quite efficient method for solving instances of FDP used in
2R. Note that their method only works when u = n, or u = n − 1 [26]. To the best of our knowledge, there exists
no previously known algorithm for solving FDP when u < n − 1. An efficient method for solving FDP in this case
would permit to decompose 2R− schemes into two independent schemes given by quadratic polynomials. To break
these schemes, we then would only have to solve two quadratic systems. As mentioned by J. Patarin and L. Goubin
[18], this would make the principle of two-round schemes, including 2R−, useless.

4 A general algorithm for solving FDP

In this part, we present a new algorithm for solving FDP. Our approach is inspired on the works of D.F. Ye, Z.D.
Dai, and K.Y. Lam [25, 26]. According to these authors, we can restrict our attention to homogeneous instances
of FDP [25]. The homogenization of a polynomial p ∈ K[x1, . . . , xn], denoted p∗, is defined by p∗(x0, x1, . . . , xn) =

x
deg(p)
0 p(x1/x0, . . . , xn/x0), where x0 is a new variable. For any mapping f : Kn → Ku, given by the polynomials

f1, . . . , fu, we define its homogenization by f∗ = (x
deg(f)
0 , f∗1 , . . . , f

∗
n). The dehomogenization of f∗ is then f =`

f∗1 (1, x1, . . . , xn), . . . , f∗n(1, x1, . . . , xn)
´
. We have:

Lemma 2 ([25]). Let f : Kn → Ku and g : Kn → Kn be two mappings, then:

(f ◦ g)∗ = f∗ ◦ g∗.

Note 1. In [25], it is stated that this lemma is correct only if deg(f)deg(g) > |K|. We no longer need this condition
over K[x1, . . . , xn].

Thus, if we can decompose h∗ = f∗ ◦ g∗, then a decomposition of h = f ◦ g is simply obtained by dehomogenization
of f∗ and g∗[25]. Now, we assume that f : Kn → Ku and g : Kn → Kn are two homogeneous functions of degree two.
Finally, let h = f ◦ g, and {hi}1≤i≤u, {fi}1≤i≤u, {gi}1≤i≤n be the components of h, f, g respectively.

4.1 Description of the algorithm

The aim of our algorithm is to find the vector space L(g) = Vect(g1, . . . , gn) generated by g1, . . . , gn. More precisely,
this vector space will be recovered from a DRL Gröbner basis of a suitable ideal. Note that the knowledge of L(g)
is sufficient for decomposing h. Indeed, any bijective linear combination A of the gis leads to a decomposition of h
since:

h = (f ◦A−1) ◦ (A ◦ g).

Let us first assume that we know the vector space L(g). For all i, 1 ≤ i ≤ u:

fi =
P

1≤k,`≤n f
(i)
k,`xkx` ∈ K[x1, . . . , xn],

gi =
P

1≤k,`≤n g
(i)
k,`xkx` ∈ K[x1, . . . , xn].

Therefore, for all i, 1 ≤ i ≤ u:

hi = fi(g1, . . . , gn) =
X

1≤k,`≤n

f
(i)
k,`gkg`. (1)

By comparing the coefficients in the right-most and left-most parts of these equalities, we obtain a linear system of
O(uC2

n+2) equations in the uC2
n+2 unknown coefficients of the fis. It seems difficult to rigorously evaluate the rank

of this linear system, a question that has been avoided in the previous works on FDP [25, 26]. However, it is very
likely that this linear system is of full rank when the fis are dense polynomials. For the instances of FDP used in
2R− schemes, we experimentally only obtain linear systems of full rank. The difficult part is actually to determine
the vector space L(g). For this, we observe that:

∂hi

∂xj
=

X
1≤k,`≤n

fk,`

„
∂gk

∂xj
g` + gk

∂g`

∂xj

«
. (2)

The polynomials g1, . . . , gn being of degree two, their partial derivatives are of degree one. Hence:

∂Ih =

fi
∂hi

∂xj
: 1 ≤ i ≤ u, 1 ≤ j ≤ n

fl
⊆ 〈xkg`〉1≤k,`≤n = V.

This ideal ∂Ih usually provides enough information for recovering the polynomials g1, . . . , gn.

Theorem 5. Let M(d) be the set of monomials of degree d ≥ 0 in x1, . . . , xn, and

Vd = Vect (mgk : m ∈M(d+ 1), and 1 ≤ k ≤ n) ,

Ṽd = Vect

„
m
∂hi

∂xj
: m ∈M(d), 1 ≤ i ≤ u, and 1 ≤ j ≤ n

ff«
.

Then, for all i, 1 ≤ i ≤ n:

xd+1
n gi ∈ ∂Ih, if dim(Ṽd) ≥ n|M(d+ 1)|,

where dim(Ṽd) is the dimension of Ṽd as a vector space over Vd.

Proof. We first study the case d = 0. Let Ṽ = Ṽ0 be the linear space generated by the partial derivatives of the his,
i.e.:

Ṽ0 = Ṽ = Vect

 
∂hi

∂xj

ff1≤i≤u

1≤j≤n

!
⊂ ∂Ih.

According to (2), each element of Ṽ can be written as a sum of {xkg`}1≤k,`≤n. Now let AṼ ∈Mn2×n2(K) be a matrix
associated to the linear transformation Vect

`
{xkg`}1≤k,`≤n

´
7→ Ṽ . For some basis:

AṼ =

0BBBBBBBBBBBBBBBBBBB@

x1g1 · · · xng1 · · · xkg` · · · x1gn · · · xngn

∂h1
∂x1

· · ·
... · · ·

∂h1
∂xn

· · ·
... · · ·

∂hi
∂xj

· · ·
... · · ·

∂hn
∂x1

· · ·
... · · ·

∂hn
∂xn

· · ·

1CCCCCCCCCCCCCCCCCCCA
One can see at once that the xngis lie in Ṽ if the number of linearly independent rows of this matrix is at least equal
to its number of columns. That is, xngi ∈ ∂Ih, for all i, 1 ≤ i ≤ n, if:

dim(Ṽ) ≥ n|M(1)| = n2.

Observe that dim(Ṽ) is upper-bounded by un. Thus, dim(Ṽ) ≥ n|M(1)| = n2 only holds if u = n. This explains why
the method proposed in [25, 26] is limited to 2R schemes. To circumvent this problem, we have to consider a vector
space of higher dimension. This is the motivation for considering:

Ṽd = Vect
`

m
∂hi

∂xj
: m ∈M(d), 1 ≤ i ≤ u, and 1 ≤ j ≤ n

ff´
.

From (2), we deduce that each polynomial of Ṽd can be written as a sum of elements of:

Vd = Vect (mgk : m ∈M(d+ 1), and 1 ≤ k ≤ n) .

Let then AṼd
be a matrix associated to Vd 7→ Ṽd. For some basis:

AṼd
=

0BBBBBBBBB@

· · · · · · mgk · · · · · ·
... · · ·
... · · ·

m ∂hi
∂xj

· · ·
... · · ·
... · · ·

1CCCCCCCCCA
Thus, xd+1

n gi ∈ Ṽ ⊂ ∂Ih, for all i, 1 ≤ i ≤ n, if dim(Ṽd) is at least equal to the number of columns of AṼd
. That is,

if dim(Ṽd) ≥ n|M(d+ 1)|.

Remark 1. At the end of this part, we will provide an explicit value of d in function of the ratio n/u.

According to Theorem 5, the polynomials gis are contained, up to some power of xn, in ∂Ih. Therefore, the quotient
of this ideal by a suitable power of xn contains the polynomials g1, . . . , gn.

Corollary 1. Using the same notations as in Theorem 5. If dim(Ṽd) ≥ n|M(d+ 1)|, then:

L(g) ⊂ 〈g1, . . . , gn〉 ⊆ ∂Ih : (xd+1
n).

Proof. The proof of this corollary is obviously deduced from Theorem 5, and very definition of the quotient.

Thus each element of L(g) is included in ∂Ih : (xd+1
n). Let then G be a (reduced) DRL Gröbner basis of this ideal.

It is then natural to consider the set Bg = Vect
`
g ∈ G : deg(g) = 2

´
, since according to Theorem 2:

L(g) = Bg, if #Bg = n, and min
`
deg(g) : g ∈ G

´
= 2.

If these conditions are not fulfilled, then one can not recover efficiently L(g) from Bg. Observe that the condition
#Bg = n implies that there exists a unique decomposition (up to bijective linear combinations). To get away with
this problem, we can apply several heuristics such as computing ∂Ih : (xd+1

1), . . . , ∂Ih : (xd+1
n−1). In practice, it has

been always sufficient to compute ∂Ih : (xd
n), for a suitable d (i.e. dim(Ṽd) ≥ n|M(d+ 1)|).

4.2 The algorithm AlgoFDP

We describe now our algorithm for general instances of FDP, i.e. we no longer suppose here that h is given by
homogeneous polynomials.

AlgoFDP

Input: h = f ◦ g : Kn → Ku, given by u polynomials h1, . . . , hu ∈ K[x1, . . . , xn] of degree 4
Output : f ′1, . . . , f

′
u, g

′
1, . . . , g

′
n, such that

`
h1, . . . , hu

´
=
`
f ′1
`
g′1, . . . , g

′
n

´
, . . . , f ′u

`
g′1, . . . , g

′
n

´´
h∗0(x0, x1, . . . , xn)← x4

0

h∗i (x0, x1, . . . , xn)← x4
0hi(x1/x0, . . . , xn/x0), for all i, 1 ≤ i ≤ u

∂I∗h ←
D

∂h∗i
∂xj

: 0 ≤ i ≤ u, 0 ≤ j ≤ n
E

Let d be the smallest integer such that dim(Ṽ ∗
d) ≥ n|M(d+ 1)|, with:

Ṽ ∗
d = Vect

“n
m

∂h∗i
∂xj

: m ∈M(d), 0 ≤ i ≤ u, and 0 ≤ j ≤ n
o”

.

Compute a reduced 2-DRL Gröbner basis G of ∂I∗h : (xd+1
n)

Bg∗ ←
˘
g∗ ∈ G, deg(g∗) = 2

¯
If #Bg∗ 6= n+ 1 or min

`
deg(g) : g ∈ G

´
6= 2 then Return Fail

Recover a basis Bf∗ of Vect(f∗) by solving the system of linear equations given by (1)
Return

˘
g∗(1, x1, . . . , xn) ∈ Bg∗

¯
and

˘
f∗(1, x1, . . . , xn) ∈ Bf∗

¯
Remark 2. In practice, our algorithm never returned Fail for instances of FDP used in 2R−.

Theorem 6. Let g∗0(x0, x1, . . . , xn) = x2
0, and g∗i (x0, x1, . . . , xn) = x2

0gi(x1/x0, . . . , xn/x0), for all i, 1 ≤ i ≤ n.
Moreover, let M(d) be the set of monomials of degree d ≥ 0 in x0, x1, . . . , xn, and

V ∗
d = Vect (mg∗k : m ∈M(d+ 1), and 0 ≤ k ≤ n) ,

Ṽ ∗
d = Vect

„
m
∂h∗i
∂xj

: m ∈M(d), 0 ≤ i ≤ u, and 0 ≤ j ≤ n
ff«

.

AlgoFDP returns a solution of FDP (and not Fail) in:

O(n3(d+3)),

where d is the smallest integer such that dim(Ṽ ∗
d) ≥ (n+ 1)|M(d+ 1)|.

Proof. Let us suppose that our algorithm returns a solution (and not Fail). According to Corollary 1, we know that
for all i, 0 ≤ i ≤ n, g∗i ∈ ∂I∗h : (xd+1

n). The complexity of AlgoFDP is then dominated by the cost of computing
a reduced DRL Gröbner basis G of ∂I∗h : (xd+1

n). This step can be done as explained in Section 2. However, an
alternative method can be used in this particular situation. This is due to the particular role of xn in a DRL order.
From Lemma 1, we know that if xd+1

n divides the leading monomial of a polynomial, then it also divides the entire
polynomial. Thus, we can restrict our attention to polynomials of a DRL Gröbner Bases G′ of ∂I∗h whose leading
monomials contain xd+1

n . One can see directly that:`
g ∈ G : deg(g) = 2

´
=

„
g′

xd+1
n

: g′ ∈ G′, and xd+1
n |LM(g′,≺DRL)

«
.

More precisely, it is sufficient to compute a reduced (d + 3)-DRL Gröbner basis of ∂I∗h. According to Appendix A,
this can be done with the F5 algorithm in O(n3(d+3)). From a practical point of view, the two methods proposed for
computing G are similar. But the last one is more suitable for evaluating the complexity.

Remark 3. It should be noticed that our algorithm can easily be adapted for polynomials f of degree greater that 2.

Comparison with previous approach
In short, our method can be viewed as a generalization of the approach of D.F. Ye, Z.D. Dai, and K.Y. Lam [25, 26].
When u = n, it is sufficient to consider the ideal ∂I∗h : (x1

n) for recovering L(g). This is a simplified description of the
method described in [25, 26]. When u < n, ∂I∗h : (x1

n) no longer provides enough information for recovering L(g). To
overcome this difficulty, we proposed here to consider ideals of the form ∂I∗h : (xd+1

n). We then proved that L(g) is
contained in this ideal as soon as d is sufficiently large.

It is important to know the exact value of the parameter d. This value can be lower-bounded in fonction of the
ratio n/u. For this, we observe that (n + 1)|M(d + 1)| = (n + 1)Cd+1

n+1+d and dim(Ṽ ∗
d) is very likely to be equal

(u+ 1)(n+ 1)Cd
n+d. We then obtain that d should verify:

d ≥ n

u
− 1.

For instance, if the number of equations removed (i.e. n− u) is smaller than bn
2
c, this yields a complexity of O(n12),

and O(n9) if u = n. We will show now that this approximation is perfectly coherent with our experimental results.

4.3 Experimental results

Generation of the instances
We have only considered instances h = f ◦ g of FDP admitting a solution. We constructed these instances in the
following way:
– f = t ◦ ψ ◦ s and g = φ ◦ r, with r, s, t ◦ ψ ◦ s : Kn → Kn are random affine bijections, and ψ, φ : Kn → Kn are
S-box functions contructed as explained in Section 3. We then remove r ≥ 0 polynomials of h.

Programming language – Workstation
The experimental results have been obtained with a Xeon bi-processor 3.2 Ghz, with 6 Gb of Ram. The instances
of FDP have been generated using the Maple software. We used our own implementation (in language C) of F5 for
computing truncated Gröbner bases.

Table Notations
The following notations are used in the table below:
– n, the number of variables,
– b, the number of blocks (as defined in Section 3),
– ni, the number of variables in each block (see Section 3),
– q, the size of the field,
– r, the number of polynomials removed,
– dtheo = dn

u
− 1e, the predicted (see 4.2) value of d for which AlgoFDP returns a solution

– dreal, the real value of d for which AlgoFDP returns a solution
– T , the total time taken by our algorithm,
–
√
qn, the current security bound [18, 6] for 2R− schemes.

Practical Results
Let us now present results obtained with our algorithm.

n b ni r q dtheo dreal T
√
qn

8 4 2 0 65521 0 0 0.0 s.

8 4 2 4 65521 1 1 0.0 s. ≈ 264

8 4 2 5 65521 2 2 0.3 s. ≈ 264

8 4 2 6 65521 3 3 1.9 s. ≈ 264

10 5 2 5 65521 1 1 0.2 s. ≈ 280

10 5 2 6 65521 2 2 3.2 s. ≈ 280

10 5 2 7 65521 3 3 21.4 s. ≈ 280

10 5 2 8 65521 4 4 180.8 s. ≈ 280

12 3 4 0 65521 1 1 0.1 s.

12 3 4 5 65521 1 1 0.9 s. ≈ 296

12 3 4 6 65521 1 1 0.9 s. ≈ 296

12 3 4 7 65521 2 2 20.5 s. ≈ 296

12 3 4 8 65521 2 2 25.2 s. ≈ 296

12 3 4 9 65521 3 3 414 s. ≈ 296

20 5 4 0 65521 0 0 1.6 s.

20 5 4 5 65521 1 1 55.2 s. ≈ 2160

20 5 4 10 65521 1 1 78.9 s. ≈ 2160

20 10 2 10 65521 1 1 78.8 s. ≈ 2160

20 2 10 10 65521 1 1 78.7 s. ≈ 2160

24 6 4 0 65521 0 0 4.9 s.

24 6 4 12 65521 1 1 376.1 s. ≈ 2192

30 15 2 15 65521 1 1 2910.5 s. ≈ 2160

32 8 4 0 65521 0 0 31.3 s.

32 8 4 10 65521 1 1 3287.9 s. ≈ 2256

32 8 4 16 65521 1 1 4667.9 s. ≈ 2256

36 18 2 15 65521 1 1 13427.4 s. ≈ 2256

Interpretation of the results
Let us mention that n = 16 and n = 32 were two challenges proposed by the designers of 2R− schemes. First it should
be observed that the parameters b and ni of the S-box functions seem irrelevant for the complexity of our algorithm.
We also tested our algorithm for instances of FDP constructed with various forms of ψ, φ (C∗+S-Box functions,
Triangular+S-Box functions,. . .) and several values of q. These results are very similar to the ones obtained for S-Box
functions, and thus not quoted here. The major observation is that our algorithm behaves exactly as predicted. That
is, dtheo = dn

u
− 1e is exactly equal to the dreal observed in practice.

Acknowledgements

We thank Lilian Bohy, Jintai Ding and anonymous referees for numerous comments which improved the presentation
of the results.

References

1. A.W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. Graduate Studies in Mathematics, Vol.
3, AMS, 1994.

2. G. Ars, J.-C. Faugère, H. Imai, M. Kawazoe, and M. Sugita. Comparison Between XL and Gröbner Basis
Algorithms. Advances in Cryptology – ASIACRYPT 2004, Lecture Notes in Computer Science, vol. 3329,
pp. 338-353, 2004.

3. G. Ars, and J.-C. Faugère. Algebraic Immunities of functions over finite fields. Proceedings of BFCA’05,
Rouen, 2005. Also available at http://eprint.iacr.org/2004/188.ps.

4. M. Bardet, J-C. Faugère, B. Salvy and B-Y. Yang. Asymptotic Behaviour of the Degree of Regularity of
Semi-Regular Polynomial Systems. In MEGA 2005, Eighth International Symposium on Effective Methods
in Algebraic Geometry, 15 pages, 2005.

5. M. Bardet, J-C. Faugère, and B. Salvy. On the Complexity of Gröbner Basis Computation of Semi-Regular
Overdetermined Algebraic Equations. In Proc. of International Conference on Polynomial System Solving
(ICPSS), pp. 71–75, 2004.

6. E. Biham. Cryptanalysis of Patarin’s 2-Round Public Key System with S Boxes (2R). Advances in Cryptology
– CRYPTO 2000, Lecture Notes in Computer Science, vol. 1807, Springer–Verlag, pp. 408-416, 2000.

7. B. Buchberger. Gröbner Bases : an Algorithmic Method in Polynomial Ideal Theory. Recent trends in
multidimensional systems theory. Reider ed. Bose, 1985.

8. B. Buchberger, G.-E. Collins, and R. Loos. Computer Algebra Symbolic and Algebraic Computation. Springer-
Verlag, second edition, 1982.

9. V. Carlier, H. Chabanne, and E. Dottax Grey Box Implementation of Block Ciphers Preserv-
ing the Confidentiality of their Design. Proceedings of BFCA’05, Rouen, 2005. Also available at
http://eprint.iacr.org/2004/188.ps.

10. N. Courtois, L. Goubin, and J. Patarin. SFLASH, a Fast Asymmetric Signature Scheme
for low-cost Smartcards – Primitive Specification and Supporting Documentation. Available at
http://www.minrank.org/sflash-b-v2.pdf.

11. D. A. Cox, J.B. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: an Introduction to Computational
Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer-Verlag. New
York, 1992.

12. M. Dickerson. The functional Decomposition of Polynomials. Ph.D Thesis, TR 89-1023, Departement of
Computer Science, Cornell University, Ithaca, NY, July 1989.

13. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Casis without Reduction to Zero: F5.
Proceedings of ISSAC, pp. 75–83. ACM press, July 2002.

14. J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient Computation of Zero-Dimensional Gröbner Bases
by Change of Ordering. Journal of Symbolic Computation, 16(4), pp. 329–344, 1993.

15. D. Kozen, and S. Landau. Polynomial decomposition algorithms. J. Symb. Comput. (7), pp 445–456, 1989.
16. L. Goubin, and J. Patarin. Trapdoor One-way Permutations and Multivariate Polynomials. Information and

Communication Security, First International Conference (ICICS’97), Lecture Notes in Computer Science vol.
1334, Springer–Verlag, pp. 356–368, 1997.

17. L. Goubin, and J. Patarin. Asymmetric Cryptography with S-Boxes. Information and Communication Security,
First International Conference (ICICS’97), Lecture Notes in Computer Science vol. 1334, Springer–Verlag,
pp. 369–380, 1997.

18. L. Goubin, and J. Patarin. Asymmetric Cryptography with S-Boxes – Extended Version. Available at
http://citeseer.ist.psu.edu/patarin97asymmetric.html.

19. J. Gutierrez, R. Rubio, J. von zur Gathen. Multivariate Polynomial Decomposition. Algebra in Engineering,
Communication and Computing, 14 (1), pp. 11–31.

20. T. Matsumoto, and H. Imai. Algebraic Methods for Constructing Asymmetric Cryptosystems. Algebraic and
Error-Correcting Codes. Prod. Third Intern. Conf., Grenoble, France, Springer-Verlag, pp. 108–119, 1985.

21. T. Matsumoto, and H. Imai. Public Quadratic Polynomial-tuples for efficient signature-verification and
message-encryption. Advances in Cryptology – EUROCRYPT 1988, Lecture Notes in Computer Science, vol.
330, Springer–Verlag, pp. 419–453, 1988.

22. J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt’88. Advances in
Cryptology – CRYPTO 1995, Lecture Notes in Computer Science, Springer-Verlag, vol. 963, pp. 248-261,
1995.

23. J. von zur Gathen. Functional decomposition of polynomials: the tame case. J. Symb. Comput. (9), pp. 281–
299, 1990.

24. J. von zur Gathen. Functional decomposition of polynomials: the wild case. J. Symb. Comput. (10), pp. 437–
452, 1990.

25. D.F. Ye, K.Y. Lam, Z.D. Dai. Cryptanalysis of ”2R” Schemes, Advances in Cryptology – CRYPTO 1999,
Lecture Notes in Computer Science, vol. 1666, Springer–Verlag, pp. 315–325, 1999.

26. D.F. Ye, Z.D. Dai and K.Y. Lam. Decomposing Attacks on Asymmetric Cryptography Based on Mapping
Compositions, Journal of Cryptology (14), pp. 137–150, 2001.

Appendix A

The F5 algorithm

The historical method for computing Gröbner bases is Buchberger’s algorithm [8, 7]. Recently, more efficient algo-
rithms have been proposed. To date, F5 [13] is the most efficient for computing Gröbner bases. In a nutshell, this
algorithm constructs incrementally the following matrices in degree d:

Ad =

m1 � m2 � m3 . . .
t1f1
t2f2
t3f3
. . .

2664
.
.
.
.

3775
where the indices of the columns are monomials sorted for the admissible ordering ≺ and the rows are product of
some polynomials fi by some monomials tj such that deg(tjfi) ≤ d. For a regular system [13] the matrices Ad are of
full rank. In a second step, row echelon forms of theses matrices are computed, i.e.

A′
d =

m1 m2 m3 . . .
t1f1
t2f2
t3f3
. . .

2664
1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
0 0 0 . . .

3775
Note that for each d, A′

d contains a d-Gröbner basis of the ideal considered. Important parameters to evaluate the
complexity of F5 is the maximal degree d occurring in the computation and the size of the matrix Ad. The overall
cost is thus dominated by (#Ad)3. Very roughly, (#Ad) can be approximated by O(nd). A more precise complexity
analysis can be found in [4, 5].

