
Rationality and Adversarial Behavior
in Multi-Party Computation

(Extended Abstract)

Anna Lysyanskaya and Nikos Triandopoulos

Department of Computer Science, Brown University
{anna, nikos}@cs.brown.edu

Abstract. We study multi-party computation in the model where none
of n participating parties are honest: they are either rational, acting
in their selfish interest to maximize their utility, or adversarial, acting
arbitrarily. In this new model, which we call the mixed-behavior model,
we define a class of functions that can be computed in the presence of an
adversary using a trusted mediator. We then give a protocol that allows
the rational parties to emulate the mediator and jointly compute the
function such that (1) assuming that each rational party prefers that it
learns the output while others do not, no rational party has an incentive
to deviate from the protocol; and (2) the rational parties are protected
from a malicious adversary controlling dn

2
e − 2 of the participants: the

adversary can only either cause all rational participants to abort (so no
one learns the function they are trying to compute), or can only learn
whatever information is implied by the output of the function.

1 Introduction

Multi-party computation (MPC) has emerged as the central problem in cryptog-
raphy, of which many scenarios that arise in practice are simply a special case.
In multi-party computation, we have n parties, each party Pi with its input
xi, wishing to jointly compute a function f(x1, . . . , xn). In the traditional secure
MPC scenario (SMPC) (e.g., [5, 6]), there are two kinds of parties: honest parties
that will follow a prescribed protocol, and adversarial parties that will collude
and deviate from the protocol in an arbitrary way. An SMPC protocol should
guarantee that no adversary controlling up to t parties will be able to learn any-
thing about the honest parties’ inputs not implied by the value f(x1, . . . , xn).

In this paper, we introduce the mixed-behavior model for multi-party compu-
tation (MMPC). Here, some of the parties will be rational, and will only follow
a protocol if they have a clear incentive to do so. Others will be adversarial,
and will collude and exhibit arbitrary, possibly irrational, behavior. The goal
is to design protocols that compute the function, guarantee the same security
properties as in usual SMPC and that rational parties will choose to follow.

Rational MPC vs. Mixed-Behavior Model. Halpern and Teague [8] con-
sidered rational MPC (RMPC), i.e., the setting where n rational parties wish

2 A. Lysyanskaya and N. Triandopoulos

to securely compute a joint function of their inputs, and there is no adversary.
They showed a surprising impossibility result: suppose that each party Pi holds
an additive secret share xi of a secret x =

∑
xi. Suppose that each party prefers

to learn x to not learning it, and prefers that as few as possible other parties
learn x. In this case it was shown that there is no deterministic protocol for
reconstructing x that rational parties will have an incentive to follow (or, put
another way, for any deterministic strategy, there will be another one that each
rational party will prefer). On the other hand, they gave a randomized protocol
that did the job. The idea was to first give a protocol for n = 3. Then for n > 3,
the proposed solution was to first partition the parties into three groups, have
each group select a leader and have each group member send his secret share
to his leader. It is easy to see that the approach above immediately fails if an
adversary controls three of the parties: the adversary controlling the leaders will
learn the secret, and no one else ever will. Thus, Halpern and Teague leave the
problem of MPC in the mixed-behavior model totally open.

Independently of our work, Abraham et al. [1] study general function eval-
uation in the RMPC model, in an extended setting where rational parties can
collude with each other or are allowed to have non-standard utilities, and they
design protocols that are robust against this type of scenarios (e.g., resilient
equilibria). Gordon and Katz [7] study rational secret sharing and MPC and
provide a protocol that improves on the original protocol in [8] (e.g., it is sim-
pler and symmetric and captures the case n = 2). The protocols of both works
are conceptually similar to our protocol; both are for RMPC, though.

Assumptions on Communication Model vs. Assumptions on Utilities.
Recently, Izmalkov et al. [9] introduced rational secure MPC (RSMPC). Their
goal is to realize games without a trusted mediator, no matter what the under-
lying utility functions of the players are. Here, there is no adversary, but any
subset of parties may be maliciously trying to collude in an attempt to max-
imize their utility. The main challenges of RSMPC are ensuring that players,
first of all, contribute legal information into the game (e.g., if they are playing
a card game, a player cannot use a card that was not dealt to him), and ad-
ditionally that the players cannot collude while computing the outcome of the
game, communicating to each other the information that they would not be able
to communicate if the game were played using a trusted mediator. In order to
address these challenges, Izmalkov et al., as well as the related works in [10, 11],
place severe restrictions on the communication model (no channels of communi-
cation except those explicitly available), and utilize physical primitives such as a
ballot box and a physical envelope. In contrast, we use standard communication
channels, allow existence of covert channels and steganography, and make as-
sumptions instead about the utility functions of the parties: we assume that the
parties already have an incentive to participate in the protocol and to contribute
their true inputs. These assumptions enable us to come up with protocols where
rational parties will not be motivated to deviate in any way.

Intuition for the Construction. In a nutshell, the impossibility result of
Halpern and Teague goes as follows. Suppose that this is the last round of the

Rationality and Adversarial Behavior in Multi-Party Computation 3

reconstruction protocol of a secret sharing scheme; then sending out information
cannot increase utility, but may decrease it by allowing another party to learn
x. How can it be, then, that a randomized protocol exists? In any given round,
the players do not know whether this is supposed to be the last round (and so
they would do better by keeping their information to themselves) or whether
this is a test round in which no meaningful information can be revealed, but
instead the parties are just being tested, and deviating from the protocol will
have the consequence that others will abort the protocol. This is the key idea of
in Halpern and Teague’s protocol that we will use also.

Our protocol assumes that we have a synchronous broadcast channel. That
means that, in computing message for round i, no one can take into account other
parties’ message for this round: waiting for those messages to arrive will mean
missing your chance to speak in round i. Further, we assume that all parties,
both rational and adversarial, are computationally bounded. As a subroutine, we
will invoke a traditional SMPC protocol over the broadcast channel, specifically
the GMW protocol [6] as analyzed in the UC model by Canetti et al. [3]. At
each step, each party will provide a ZK proof that the data it published on the
channel was computed according to the protocol as a function of the data it
previously received, as well as of its input and random tape. We call a protocol
where at each step each party provides such a proof, a verifiable MPC protocol.

Our main protocol for MMPC works roughly as follows. In a setup step, we
set up the parameters of the computation, such as the common random string
needed for secure multi-party computation and non-interactive zero-knowledge
proofs. Next, as is usual in MPC, we run a preprocessing step as a result of
which each party Pi is committed to its input xi. Next is the key step: using
a verifiable MPC protocol, the parties come up with an m-out-n secret sharing
(e.g., polynomial secret sharing [12]) either of y = 0 (with probability 1/2) or
of the value y = f(x1, . . . , xn) (we assume that f never returns a 0). Here, n is
the number of participants, and we will specify m later. If at any point of this
protocol, any party Pj deviates (note that since we are using verifiable MPC, a
deviation is detectable with high probability), the protocol tells Pi to abort.

So far, no party has an incentive to deviate from the protocol: deviation
will be detected, causing everyone following the protocol to abort the com-
putation. On the other hand, at least computationally, no information about
f(x1, . . . , xn) has been communicated so far by the security properties of the
regular SMPC. In the next step, each party Pi broadcasts its share of y and
a non-interactive ZK proof of correctness. If m correct shares are broadcasted,
then the parties combine them to obtain y, and if it is the case that y 6= 0, then
they obtain f(x1, . . . , xn). If combining the correct shares present does not yield
f(x1, . . . , xn), and fewer than n correct shares are present, then the protocol
aborts. Otherwise, go back to the key step above.

Consider what damage an adversary controlling m−1 participants can inflict.
It can approach n−2m+2 rational parties, give each of them m−1 secret shares
of the outcome, thus guaranteeing that each party will be able to locally (as
opposed to in collaboration with other rational parties) compute the outcome

4 A. Lysyanskaya and N. Triandopoulos

and therefore will not participate in the protocol any longer. Then, the remaining
m − 1 parties, no matter what strategy they adopt between themselves, will be
unable to compute anything meaningful (they do not have enough shares). This
is undesirable, since we want a protocol in which, no matter what the adversary
does, either everyone computes their output, or no one does. Thus, the best we
can hope to do is to allow the adversary to control up to t = m− 2 participants,
which, we will show, our protocol will achieve. A key step in the proof is to show
that rational parties will have a disincentive to collude with others.

Consider what happens if only m parties are rational. Suppose that m− 1 of
them are following the protocol, and the party Pi is considering deviating. Note
that, depending on Pi’s utility function, it may be a good idea for him to not
broadcast his share of y. He risks causing everyone to abort (with probability
1/2), but on the other hand, his utility might skyrocket in case he is lucky and
y 6= 0. On the other hand, if m + 1 participants are rational, and we know that
all of them except Pi are following the protocol, then Pi can only lose in utility if
he does not broadcast his share of yi, since in case y = 0, he will force everyone
to abort without ever computing the function, while if y 6= 0, everyone will learn
the outcome whether or not Pi broadcasts. Therefore, we see that the protocol is
a Nash equilibrium if m+1 or more of the participants are rational. Accordingly,
we set the value of m to be m = dn

2 e, thus we derive a protocol that tolerates
adversarial behavior for any adversary controlling up to dn

2 e − 2 of the parties.

Note that the above observation solves an open problem posed by Halpern
and Teague who asked whether it was possible to have a protocol that works
independently on how much utility is attached to being the only party privy
to the output of the function. Also, note that the only communication channel
that our protocol needs is a synchronous broadcast channel, while Halpern and
Teague assume private channels in addition to synchronous broadcast. Unlike
Izmalkov et al., our protocol tolerates the existence of additional communication
channels between the participants.

Assumptions on Utilities and on Rationality. Halpern and Teague ob-
serve that rational parties are not going to participate in a protocol unless they
have an incentive to compute the function and, moreover, they must have an
incentive to submit their true individual inputs. Therefore, the function must be
non-cooperatively computable (NCC) [13]. We need to extend this assumption
to work in the mixed-behavior model. For example, if the function in question is
computable based on inputs of a small number of parties, and covert channels be-
tween participants are present, then the parties have no incentive to participate
in the protocol to begin with, since they may learn the output of the function
from the adversary. Therefore, in order to tolerate t adversarial participants, we
must require that it is impossible to compute the function in question based on
t + 1 of the inputs. We define such functions, called t-NCC, in Definition 5.

Also following Halpern and Teague, we make assumptions that the more a
party learns about the output, the happier he is. On the other hand, the less
others learn about it, the happier he is as well. Since the adversary is not rational

Rationality and Adversarial Behavior in Multi-Party Computation 5

and is not trying to learn anything, the utility functions should ignore whether
or not the adversary learns anything. We explore this in Definitions 3 and 4.

Suppose that two different strategies of a party yield indistinguishable views.
Then the difference in how much this party learned is negligible, assuming
polynomial-time algorithms. Our final assumption on utilities is that negligi-
ble difference in how much Pi or others have learned yield negligible differences
in utilities. We call this assumption the computational satisfaction assumption,
and state it more precisely in Definition 9.

Following Halpern and Teague, rationality is captured by postulating that
a party will choose to follow a given protocol if (1) it is a Nash equilibrium,
i.e., provided that other non-adversarial players follow the protocol, this party’s
utility is maximized by following it as well; (2) it survives the process of iterated
deletion of weakly dominated strategies—i.e., those strategies for which another
strategy is always at least as good and sometimes even better. However, what do
these mean in the mixed-behavior model? We adapt these game-theoretic defini-
tions to the scenario where a malicious adversary exhibiting arbitrary behavior
is present. In a nutshell, a set of strategies is a Nash equilibrium in the mixed-
behavior model (Definition 6) if it is a Nash equilibrium for all adversaries. A
strategy σ weakly dominates another strategy τ if for all adversaries and no
matter what strategy other rational parties are following, σ gives as much or
better utility than τ , and for some adversary and some set of strategies for the
remaining rational parties, σ gives strictly more utility (Definition 7).

Our protocol is not a preferred equilibrium in the strict sense because it relies
on the computational intractability of certain problems that can still be solved
with negligble, but positive, probability. What we show is that no deviation can
increase the utility by more than a negligible amount (Definitions 6 and 7).

Paper Outline. In Section 2 we present the mixed-behavior model for multi-
party computation, introduce related new concepts and formally define the no-
tion of unconditionally or computationally secure preferred protocols. In Sec-
tion 3, we describe a protocol that implements any function in the mixed-
behavior model, using a special channel, and prove that it is an unconditionally
secure preferred protocol. In Section 4 we describe our main protocol over a
synchronous broadcast channel, and prove that it is a computationally secure
preferred protocol that is ε-Nash and survives iterated deletion of ε-weakly dom-
inated strategies, where ε is negligible. We refer the reader to the full version of
the paper for all the details this extended abstract omits.

2 Mixed-Behavior Model for Multi-Party Computation

We introduce a new model for multi-party computation, the mixed-behavior
model (MMPC). In the standard multi-party computation setting, consider any
protocol that implements a function f when executed by n parties P; f is either
unary (f(x) is the common output) or n-ary, denoted as f (f(x) = (y1, . . . , yn)
are the private outputs). In the mixed-behavior model, parties P are partitioned
into rational parties R and adversarial parties A. Rational parties consider the

6 A. Lysyanskaya and N. Triandopoulos

joint computation to be a game, during which they act selfishly, deviating from
a prescribed protocol and exhibiting strategies aiming to increase their gained
utility after the termination of the computation. At the same time, an adver-
sary A controls up to t of the parties, which jointly exhibit arbitrary strategies,
sharing information and acting adversarially during the computation.

We next define concepts related to computations performed in the mixed-
behavior model and also new properties that protocols must satisfy, both un-
conditionally and computationally. We use some standard notation: [n] denotes
set {1, . . . , n}; bold letters denote vectors, where v = (v1, . . . , vn) can be written
as (vi,v−i) for any i ∈ [n]; (v′

i,v−i) denotes v′ = (v1, . . . , vi−1, v
′
i, vi+1, . . . , vn);

vI denotes vector projection to set I ⊆ [n]. We write P = R∪A to denote that
a set of parties P is partitioned into rational parties R and adversarial parties
A, where A also denotes the actual programs run by the adversary. If A is a
randomized algorithm, a ← A denotes that a was obtained by running A.

Definition 1 (Communication channels and structures). Let P be a set of
interactive TMs. A channel C = {PI , FC , state,PO} available to P is a (possibly,
stateful and randomized) TM with PI ,PO ⊆ P which operates as follows. C
shares a dedicated tape tIi with each Pi ∈ PI and a dedicated tape tOi with each
Pi ∈ PO. C gets activated when a party Pi ∈ PI writes a string Ii on tIi . If C
is a synchronous channel, then it waits for all other parties in PI to submit an
input, or times out with a default value ⊥. If activated, C computes the values
(O, state′) ← FC(I, state), writing value Oi on tape tOi , ∀i ∈ [n], and updating
its state information. A channel structure C(P) is a set of channels available to
P, always containing channel {{Pi}, I,⊥, {Pi}}, ∀i ∈ [n] (I: identity function).

It is immediate how the above formulation of a communication channel as
an interactive Turing machine captures the conventional notion of any channel
(e.g., point-to-point or broadcast channels). Moreover, it constitutes a general-
ization of a communication channel: by allowing a channel to keep state and by
appropriately setting its operation function FC , we can essentially define any
ideal functionality over inputs submitted by the parties in P, thus expressing
useful additional properties in computations (e.g., perfect privacy).

We consider joint computations among individual parties P performed over
some underlying communication channel C available to P. A computation con-
sists of a (possibly infinite) series of rounds, each round corresponding to an
activation of C. Each participating party Pi ∈ P interacts with C through its
corresponding tapes: Pi runs a (possibly randomized) program that processes
strings appearing on tOi (incoming messages) and computes a string to be writ-
ten on tIi (outgoing messages), also updating an internal state. Also, additional
channels may be used among parties in P in the course of a computation.

Definition 2 (Runs, views, outputs). Let P = R ∪ A be a set of parties
jointly computing over channel structure C(P). A run R of the system (P, CP)
is tuple (p, r,A), where pi is the (randomized) program that party Pi ∈ R runs,
A also denotes the program that parties in A jointly run, and r is the vector of
random tapes needed by parties in P. The view of party Pi ∈ R in run R, denoted

Rationality and Adversarial Behavior in Multi-Party Computation 7

VIEW i(R), is tuple (ri,Mi), where Mi is the set of all messages received by Pi;
the view of the adversary A, denoted VIEW A(R), is tuple (rA,MA), where MA

is the set of all messages received by the parties in A. Each message in Mi or
MA specifies both the channel over which it was received, and its contents (and
possibly its sender). The output of a party Pi ∈ R in run R, denoted OUT i(R),
is the last message received (and possibly sent) by Pi in R, if R terminates.

Definition 3 (Protocol utility and satisfaction functions). Let P = R∪A
be a set of parties. We say that u is a protocol utility function with satisfaction
µ if for any run R: (1) for Pi ∈ P, µi : {0, 1}∗ 7→ [0, 1]∪⊥ is any function, such
that µi(·) ∈ [0, 1] if Pi ∈ R and µi(·) = ⊥ if Pi ∈ A and (2) there exists a set of
functions u′ for parties R, where u′

i : [0, 1]n 7→ [0,∞] and ui(R) = u′
i(µ(R)).

The above definition captures our formulation of a joint computation as
a game. Rational parties are each associated with a utility function, mapping
(consequences of) outcomes of the computation—which is fully described by
protocol runs—to positive reals as follows. A personal satisfaction function µi

maps the view that Pi ∈ R gets out of a computation to a value in [0, 1] according
to certain criteria for Pi about what constitutes a desired outcome; intuitively, on
input VIEW i(R), µi measures how well Pi succeeded in computing whatever it
wished to compute. Then Pi evaluates the outcome of a computation by getting
(through u′

i) a utility that depends on the evaluations of all parties’ satisfaction
functions on the protocol run. In essence, ui is what characterizes Pi rationality,
meaning that any deviation from a proposed protocol by Pi corresponds to a
strategy that can be preferable or not for Pi depending solely on utility function
ui. In contrast, the adversary A has no specific desired outcomes; if Pi ∈ A then
µi = ⊥ and there is no associated utility. This is in accordance with our intuition:
A acts in an arbitrary, possibly irrational way. Note that it is not necessarily the
case that Pi ∈ R can infer his utility ui from his view, (since, e.g., he does not
know who the adversary is); however, Pi can still act so as to maximize ui.

We next present some minimal assumptions on the above definition, providing
a concrete notion of rationality, i.e., incentives for protocol deviation, in the
MMPC model. We do this by defining target functions. Intuitively, given a vector
of utility functions u, a vector of functions f is its corresponding target function
if the utilities capture the fact that each rational Pi wishes to compute fi, and
prefers that as few as possible other rational Pj ’s compute fj .

We assume that inputs x for computations among parties in P are chosen by
first drawing inputs x′ from distribution X, then setting xR = x′

R
and, finally

letting xA ← A(x′
A

). That is, x is formed by generating a set of values according
to X, and then replacing the entries corresponding to adversarial parties with
those chosen by the adversary. We denote the above process as x ←A X.

How does µi captures what Pi wants to learn? The measure of how well Pi

learns some function fi(x) is the likelihood pi that he outputs the correct fi(x),
where the probability is taken over X as well as the randomness of the particular
run of the protocol. This is relatively standard in the cryptographic definitional
literature, starting with semantic security. The only adjustment we want to make

8 A. Lysyanskaya and N. Triandopoulos

is to scale µi so that it is 0 if pi is the same as the a-priori probability that Pi

outputs fi(x), and 1 if pi = 1. More formally:

Definition 4 ((Computational) target function). For P = R∪A, let u be
a protocol utility function with satisfaction measure µ and let x ←A X. Then
f : ({0, 1}∗)n 7→ ({0, 1}∗)n is an n-ary (computational) target function for input
distribution X and adversary A if the following conditions are met:

Pi ∈ R wants to learn fi: µi is a (computational) measure of how much Pi

has learnt about fi(x) based on the run R. Let some algorithm Fi be the best
(polynomial-time) estimator of fi(x) both based on xi alone (i.e., µi(xi))
and based on the view VIEW i(R) obtained by Pi in run R (i.e., µi(R) ,

µi(VIEW i(R))). Assume that Pr[Fi(xi) = fi(x)] 6= 1 (i.e., it is impossible
to always correctly output fi(x) based on xi alone). Then

µi(R) = (Pr[Fi(R) = fi(x)] − Pr[Fi(xi) = fi(x)])/(1 − Pr[Fi(xi) = fi(x)]).

The scaling and normalizing in the formula above is done so that if for
a run R, Pr[Fi(R) = fi(x)] = 1, then µi(R) = 1; and if for a run R,
Pr[Fi(R) = fi(x)] = Pr[Fi(xi) = fi(x)] (i.e., run R did not increase Pi’s
chances of correctly computing fi(x)), then µi(R) = 0. By convention, if in
run R, µi(R) = 1, we write that OUT i(R) = fi(x). Moreover, if for some
Pi ∈ R, and runs R and R′ it is the case that µi(R) > µi(R

′) and for all
j 6= i, µj(R) = µj(R

′), then ui(R) > ui(R
′).

Pi does not want others to learn: If for some Pj ∈ R and runs R and R′ it
is the case that µj(R) > µj(R

′), and for all Pi ∈ R, i 6= j, µi(R) = µi(R
′),

then for all Pi ∈ R, ui(R) < ui(R
′).

Worst outcome: Let R be a run such that for some Pj ∈ R, OUT j(R) =
fj(x). Then for all Pi ∈ R, if OUT i(R) 6= fi(x), then ui(R) = 0.

Thus, we consider functions which for rational parties and with respect to
their utility functions satisfy properties that express selfishness and antagonism
in multi-party computation: ui(R) strictly increases when Pi gets closer to the
target value fi(x) or computes fi(x), or when some other party Pj gets further
away from its target value fj(x). This formulation is a generalization of the ra-
tionality in RMPC [8]. In contrast, adversarial parties behave totally arbitrarily
and unpredictably: the adversary A acts independently of parties’ rationality
and its behavior may affect rational parties’ utilities; e.g., A may consistently
try to minimize or even maximize the utility of a specific rational party.

In the mixed-behavior model, we are interested in computing (target) func-
tions for which rational parties have incentive to submit their true values as
input to the joint computation. This class of functions, introduced by Shoham
and Tennenholtz as non-cooperatively computable functions, were studied for the
binary case in [13]. We next extend this concept to general n-ary functions de-
fined on strings (rather than single bits) for computations in MMPC. In the
mixed-behavior setting, we also need to capture the case where a malicious ad-
versary changes some of the inputs: we wish to ensure that we still express

Rationality and Adversarial Behavior in Multi-Party Computation 9

honesty in submitting inputs, but capture the possible scenario where a rational
party does worse by substituting his true input.

Definition 5 (t-NCC functions). Let f : X 7→ Y be an n-ary function, let
P = R ∪ A, |P| = n, u a protocol utility function with satisfaction µ. Let the
channel structure of P consist just of synchronous channel C = (P, f , state,P)
as well as a channel to and from the adversary A; C is stateful and can only
be used once. Let Eqv f (i, xi) be the maximal set of strings such that ∀x−i and
∀x ∈ Eqv f (i, xi), f(xi,x−i) = f(x,x−i). Let Σ′

i(xi) be the set of strategies for Pi

that submit some x ∈ Eqv f (i, xi) to C, and output the value yi received from C.
Let σ∗

i (xi) be the strategy that submits xi to C and outputs yi. Suppose that input
x is chosen with the process: (1) x′ ← X; (2) xR = x′

R
; (3) xA ← A(x′

A
). We

say that f is t-non-cooperatively computable (t-NCC) under distribution X if for
all Pi ∈ R, for all adversaries A, |A| ≤ t: (1) µi(xi,xA) = 0, i.e., nothing can
be learned about fi(x) based on xi and xA alone; (2) for all A, i, fi(x

′) = fi(x),
i.e., A cannot change the value of the function by changing his inputs; (3) for
all A, Pi gets at least as much utility from submitting his true input xi to C as
from substituting any other different input value: for all 1 ≤ i ≤ n, all σi /∈ Σ′

i,

EX[ui((σi(xi), (σ
∗
R)−i((xR)−i)),⊥,A(xA))] < EX[ui(σ

∗
R(xR),⊥,A(xA))].

For t > 0 the above definition is restrictive: it requires that distribution
X outputs codewords of an error-correcting code. For instance, requiring that
µi(xi, xA) = 0 is needed to exclude the following scenario: A gives its inputs
xA to party Pi; then if µi(xi, xA) > 0, Pi and A abort the computation and
Pi gains positive utility, whereas other rational parties gain zero utility. This
demonstrates an inherent difficulty for realizing “fair” joint computations. How-
ever, the resulting class of functions is still of interest if we consider computations
over values for which a secret sharing has first been computed.

We next define properties that protocols in MMPC should satisfy, either
unconditionally or computationally. For brevity we do not explicitly denote that
the strategies are a function of input x ←A X; instead we say that parties in P
receive inputs from X and write run (σR(xR), r,A(xA)) as (σR, r,A). Also, we
simplify the cumbersome (σi, (σR)−i) to (σi,σ−i). Finally, for the computational
counterparts of the following definitions, any strategy or the adversary receives
1k as an additional input—where k is a (security) parameter for probabilistic,
polynomial-time (PPT) algorithms.

Definition 6 ((ε-)Nash equilibrium in the mixed-behavior model). A
set of (PPT) strategies σ∗ is a (ε-)Nash equilibrium for P = R ∪ A receiving
inputs from X, with a given channel structure C(P) and protocol utility function
u if for all Pi ∈ R, for all (PPT) strategies σi, and all (PPT) adversaries A,

EX,r[ui((σi,σ
∗
−i), r,A)] ≤ EX,r[ui((σi,σ

∗
−i), r,A)] (+ ε(k)).

The above definition extends the (canonical in game theory) concept of
Nash equilibrium in the mixed-behavior and bounded computational models.

10 A. Lysyanskaya and N. Triandopoulos

In MMPC, a strategy is a Nash equilibrium, if no deviation is strictly preferable
for a rational party when all others do not deviate, and independently of what
the adversary does; for an ε-Nash equilibrium in a computational setting it holds
that, in the same environment, no deviation is preferable by more than ε(k).

We next consider a refinement of the Nash equilibrium, using the notion of
weakly dominated strategies and the process of iterated deletion of such strate-
gies which define a better, preferred, notion of equilibrium. We use analogues
of these game-theoretic concepts in the mixed-behavior and bounded computa-
tional models to define the corresponding refined Nash equilibria. Intuitively, a
strategy survives the process of iterated deletion of weakly dominated strategies
if no other strategy is (always) preferable to it. This last notion of preferable
strategies is expressed as a partial order over individual strategies. Strategy σ′

i

of Pi is preferable to σi if there exists a specific environment (strategies of others
and of A) under which σi gives strictly less utility than σ′

i, whereas at the same
time, in no other environment does σi give strictly larger utility.

Definition 7 (Iterated deletion of (ε-)weakly dominated strategies).
Given P = R ∪ A receiving inputs from X, with communication structure C
and protocol utility functions u, let Σ′ be a set of (PPT) strategies for R. Strat-
egy σi is (computationally ε-)weakly dominated by (PPT) strategy σ′

i restricted
to Σ′ (denoted [σi < σ′

i |(ε) Σ′]) if (1) for all (PPT) strategies σ−i ∈ Σ′

−i, for
all (PPT) adversaries A,

EX,r[ui((σi,σ−i), r,A)] ≤ EX,r[ui((σ
′
i,σ−i), r,A)]

and (2) for some (PPT) σ′
−i ∈ Σ′

−i, for some (PPT) adversary A,

EX,r[ui((σi,σ
′
−i), r,A)] (+ε(k)) < EX,r[ui((σ

′
i,σ

′
−i), r,A)].

Let Σ0 be the set of strategies for R. For ` ≥ 1, let ∆`, Σ` be defined as follows:

∆`
i = {σi : ∃σ′

i ∈ Σ`−1
i such that [σi < σ′

i|(ε)Σ
`−1]} and Σ`

i = Σ`−1
i − ∆`

i .

We say that a strategy σ for party Pi survives iterated deletion of (computation-
ally ε-)weakly dominated strategies if for all `, σ /∈ ∆`

i .

We finally define conditions that we wish a protocol to satisfy.

Definition 8 ((Computationally) t-secure preferred protocol for func-
tion f). Given P receiving inputs from X, with channel structure C(P) and
protocol utility functions u, a vector of (PPT) strategies σ∗ constitutes a (com-
putationally) t-secure preferred protocol for (polynomial-time computable) f un-
der input distribution X if it has the following properties:

Correctness and security: As is standard for multi-party computation [5],
(static) correctness and security is defined by requiring that for every (PPT)
adversary A, A ⊂ P, |A| ≤ t, there exists a (PPT) simulator S of com-
parable computational ability such that for all x ∈ X, the joint distribu-
tion of (OUTR(σ∗

R
(xR), r,A),VIEW A(σ∗

R
(xR), r,A)) is indistinguishable

Rationality and Adversarial Behavior in Multi-Party Computation 11

from the distribution sampled from as follows. S is interactive and obtains
the following inputs in the following order: First, x ← A, and S is given xA.
Then S may output y, in which case the sample of the distribution is (⊥R, y),
or may produce query x′

A
. In the latter case, in response to the query, S is

given fA(x′), where x′
R

= xR. Finally, S outputs y. Then the sample of the
distribution is (fR(x′), y). Moreover, we require that there exist an adversary
A (namely, one that follows σ∗

A
other than for possible substitution of x′

A

for the inputs xA), such that OUTR(σ∗
R

(xR), r,A) 6= ⊥R.

Nash equilibrium: (For all constants c,) σ∗(x) is a (computational k−c-)Nash
equilibrium for any partitioning P = R∪A.

Survival condition: (For all constants c,) for any partitioning P = R∪A, for
any Pi ∈ R, the strategy σ∗

i (xi) survives iterated deletion of (computational
k−c-)weakly dominated strategies.

Discussion of Definitional Framework. The definitions above are a first step
in reconciling the definitional framework of SMPC with that of game theory. Our
starting point in this work was our main protocol of Section 4 and the definitions
presented above are meant to capture the properties of our protocol. Further
definitional study of MMPC may lead to interesting insights.

3 The Ideal-World Protocol: Using a Special Channel

In this section, we assume that all participants have access to a special (ideal)
communication channel C that essentially does all the computational work: the
function FC that describes the operation of C is a randomized process that
computes the target functions of the parties. Using this channel, the only way
that the participants influence a protocol is by contributing an input to C at the
beginning, and then at every round, notifying the channel whether they wish to
participate at this round or not. Additionally, the channel C notifies the parties
about the other parties’ participation, and enables each Pi to broadcast any
string vi.

The Channel Cm,f ,c = (PI , FC , state,PO)

Setting: The channel Cm,f ,c is a synchronous channel used by n participants
P = {P1, . . . , Pn} (where up to t of them may be malicious). For channel
Cm,f ,c, PI = PO = P, state is initially ⊥, m and c are integer parameters and
f = (f1, . . . , fn) is a set of functions where each fi takes as input n binary
strings and outputs a binary string; operation function FC is described below.

Initial round: In the initial round r = 0, the channel is activated and each
participant Pi submits to Cm,f ,c an input xi; if some Pi does not, then by
convention, xi = ⊥. Define P0 = {Pi : xi 6= ⊥}, i.e., the set of participants
that contributed inputs. Cm,f ,c announces the set P0 to all participants.
Cm,f ,c stores state = {x, r}. This signals the end of the initial round.

Round r > 0: Each round includes the following.

12 A. Lysyanskaya and N. Triandopoulos

– The channel is activated and each participant Pi gives Cm,f ,c a value
zr
i ∈ {Compute, Defect}; if some Pi does not, then by convention, zr

i =
Defect. Let Pr = {Pi : zr

i = Compute}. Each participant may also
contribute an additional value vi; if Pi does not contribute, then vi = ⊥.

– If c = 0 or r mod c ≡ 0, then Cm,f ,c flips a coin to obtain a random bit b.
Otherwise, b = 0.

– If |Pr| ≥ m, i.e., at least m participants wish to have the functions
computed at this round, and b = 1, then Cm,f ,c sets yi = fi(x1, . . . , xn)
for 1 ≤ i ≤ n. Otherwise, yi = ⊥ for all i.

– Cm,f ,c sends to each participant Pi the value yi, vector v and set Pr,
and stores r. This signifies the end of round r. Proceed to round r + 1.

Let P = R∪A, |A| = t. We describe a protocol, a suggested strategy σC , for
computing any NCC target function f over channel Cm,f ,c and next show that
σC is an unconditionally t-secure preferred strategy according to Definition 8.

The Strategy σC
i (x∗

i) for party Pi ∈ R

Setting: For all i ∈ [n], party Pi has input x∗
i and has access to channel Cm,f ,c.

Parties are also connected with each other via arbitrary communication links.
Initial round: Send xi = x∗

i to C. Receive the set P0 from C.
Round r > 0: In each round, Pi acts as follows.

– If any message has ever arrived over any communication channel other
than Cm,f ,c, never send any messages again (in any round), unless you
know that the message is from the adversary A, in which case ignore it.

– If |Pr−1| = n, send zr
i = Compute to Cm,f ,c, unless it was previously

decided not to send any messages again. Otherwise, never send any mes-
sages again (in any round).

– Receive value yi, vector v and set Pr from Cm,f ,c.
– If yi 6= ⊥, output yi and halt. Otherwise, proceed to round r + 1.

Lemma 1. Let P = R∪A and suppose that A is an entity that can be contacted.
The following puppet strategy σp

i (xi) survives iterated deletion for all i: on input
xi, send xi to A; then follow instructions from A regarding messages to send to
other parties and when a message from party Pj is received over any channel,
forward it to A; halt when receive fi(x) from A or when can compute it based
on available information.

Proof. (Idea) Consider the case when all P`, ` 6= i, each follows σp
` (x`), and A

acts such that either rewards or punishes Pi depending on whether or not Pi

conforms with σp
i (xi), which can be detected by A. It is within A’s power to

reward or punish Pi, because assuming that all Pj ∈ R follow σp
j (xj), A knows

everyone’s inputs. This scenario creates the situation where no other strategy
can be strictly preferable to σp

i (xi) for Pi. ut

We present sufficient conditions for a general class of strategies that use
channel Cm,f ,c to survive iterated deletion even in the presence of side-channels.
Let P = R ∪ A be parties receiving inputs from X with protocol utility func-
tions u and channel structure C(P) that includes Cm,f ,c and f be t-NCC target

Rationality and Adversarial Behavior in Multi-Party Computation 13

functions. We say that σ are indefinite all-or-nothing strategies with visible de-
viations if the following conditions are met: (1) σ(x) are strategies which, when
executed jointly by P, have the invariant that at every step of the computa-
tion, either each Pi ∈ R has already learned fi(x) and halted, or none of them
have learned fi(x), and, moreover, all the messages they received so far are dis-
tributed independently of the value fi(x); (2) let Es be the event that, under
σ(x), after s steps of the protocol, no Pi ∈ R knows its fi(x); then there exists
some c(s) > 0 such that for all views that Pi received by running σi(xi), it holds
0 < Pr[Es+c(s) | Es,VIEW i] < 1, where the probability is over the random
choices of the channels used; and (3) let the signature of a strategy given the
inputs x and strategies of other parties and A, consist of all the messages other
parties received from Pi; then there exists a detection procedure that given a
signature of σi(xi) can determine whether all of the actions of Pi were computed
the same as if Pi was following σi(x) for some x.

Lemma 2. If σ(x) are indefinite all-or-nothing strategies with visible deviation,
then any σi(xi), i ∈ [n], survives iterated deletion of weakly dominated strategies.

Proof. (Sketch) Consider a strategy σ′(xi). Suppose that there exist strategies
τ−i and an adversary A such that, if Pi follows σ′(xi), and P−i follow τ−i, then
Pi’s utility is higher when following σ′

i than σi. Then there also exist strategies
τ ′
−i that survive iterated deletion and an adversary A where Pi gets strictly

more utility when following σi than when following σ′
i. Let strategies τ ′

−i be just
σ

p
−i(x−i), which by Lemma 1 survive iterated deletion. Suppose that A directs

each Pj ∈ R−i to send messages according to τ j . Let d be the first deviation
(from σi(xi)) point in the protocol: at step d, if Pi is following σ′

i rather than σi,
then with positive probability this will be detected. If at step d, Pi acts in a way
that agrees with σi, then he is rewarded by A with x−i and thus can compute
the desired value fi(x). If at step d, Pi deviates, then A punishes Pi by directing
all parties Pj not to send any more messages. Thus, in this setting and given
that σi is an indefinite all-or-nothing strategy, following some σi(x) gives better
utility than σ′

i(xi) and no strategy σ′ can weakly dominate all σi(x) after any
number of rounds of iterated deletion. Finally, following σi(xi) cannot be weakly
dominated by following any σi(x

′) where x′ 6= xi, because f is t-NCC. ut

Theorem 1. Given P = R∪A receiving inputs from X, with channel structure
C(P) ⊇ Cm,f ,c and protocol utility functions u, strategies σC(x) constitute an
unconditionally t-secure preferred protocol for any t-NCC target function f .

Proof. (Sketch) Correctness and security hold for strategy σC(x) in a straight-
forward way, since our working channel Cm,f ,c is an ideal one. The Nash equilib-
rium condition is satisfied: given that all other parties follow σC(x), Pi has no
incentive to deviate (f is t-NCC). Finally, strategy σC(x) survives iterated dele-
tion, by Lemma 2 and because it is a vector of indefinite all-or-nothing strategies
with visible deviations: at any round, either each Pi ∈ R already knows fi(x)
and has halted or no party knows fi(x); also, no party has any information re-
lated to the termination of the current run; finally, all possible deviations from

14 A. Lysyanskaya and N. Triandopoulos

σC
i (x) are visible given some strategy τ of the other parties that appropriately

uses Cm,f ,c or some other channel. ut

Remark. Strategy σC aborts in case of side-channel communication, so that any
subset of rational parties has a disincentive to collude and thus exclude other
parties. The price is that even one malicious party can cause the entire protocol
to abort. In the full paper, we discuss a modified protocol and the issue of
adversarial abort as it is related to covert channels and the survival condition.

4 The Real-World Protocol: Using Secure MPC

In this section we present and analyze our main protocol for computing any func-
tion in MMPC. Our protocol σ requires only a synchronous broadcast channel.
The main idea is to implement the special channel Cm,f ,c using secure multi-
party computation, where in each round the parties compute secret shares of
either a useless value or the outputs f(x), and then they compute the target
function by performing a global broadcast of such shares. At the same time, the
parties conform to the protocol σ(x) , σC(x): if something goes not as expected
(essentially, a Defect was ordered), this is always detected and parties abort the
computation. We then use the results on Cm,f ,c and σC(x), for t+1 < m = dn

2 e.

The Protocol σ – Strategy σi(xi) for party Pi ∈ R

Inputs to the protocol, and general rules: x ← X, each Pi receives xi,
and security parameter 1k. If Pi receives any message on any channel other
than the broadcast channel at any point in the computation, it aborts unless
it knows that the message is from the adversary, in which case it ignores it.

Setup phase: In the setup phase, all the parties jointly agree on a random
string CRS of length `(k) (to be defined later), and a public-key infrastruc-
ture with PK i for each Pi. This is done as follows:
1. Each Pi chooses a random string CRS i of length `(k) and broadcasts a

commitment Comi ← Commit(1k,CRS i) (where we use a computation-
ally hiding, unconditionally binding cryptographic commitment) and a
public key PK i. If Pi detects that Pj failed to broadcast, then Pi aborts.

2. In turn, each Pi proves to each Pj over the broadcast channel that he
knows the opening of the commitment Comi, and a secret key corre-
sponding to his public key PK i, using a zero-knowledge proof of knowl-
edge protocol with security parameter k. Pj broadcasts whether he ac-
cepts or rejects the proof. If Pl sees that some Pj does not accept the
proof of some Pi (or fails to broadcast his decision), then Pl aborts.

3. Each Pi broadcasts the value CRS i. If Pi sees that some Pj failed to
broadcast, then Pi aborts.

4. In turn, each Pi proves to each Pj , using a zero-knowledge proof protocol
over the broadcast channel, that the value he broadcasted corresponds
to his commitment Comi. After this, each Pj broadcasts whether he
accepts or rejects the proof. If Pl sees that some Pj does not accept the
proof of some Pi (or fails to broadcast his decision), then Pl aborts.

Rationality and Adversarial Behavior in Multi-Party Computation 15

5. Obtain CRS = ⊕n
i=1CRS i, and PKI = (PK 1, . . . ,PKn).

The input phase: Parse CRS = CRSCOM ◦CRSMPC ◦CRSNIZK . Let SECom
be a simulatable and extractable commitment scheme [2] (which requires
CRSCOM as input). Each Pi broadcasts zi = SECom(CRSCOM , xi, r

SEC
i),

where rSEC
i is the randomness needed to form the commitment. If Pj sees

that some Pi failed to broadcast a valid commitment, Pj aborts.
The MPC phase: As a result of this phase, we want Pi to obtain m-out-n

secret shares of either the strings yi = 0pi for 1 ≤ i ≤ n or the strings
yi = out i = fi(x), where pi = |out i| is known ahead of time. We want each
type of output to be equally likely. This is done as follows: Pi chooses a
random rMPC

i (of appropriate length, to be specified later) and contributes
input (xi, r

SEC
i , rMPC

i) to a secure multi-party protocol for computing an
n-input function gPKI ,z over the broadcast channel [3], using CRSMPC as a
common random string.
Function gPKI ,z operates as follows on input {(xi, r

SEC
i , rMPC

i) : 1 ≤ i ≤ n}:

– Check that for all 1 ≤ i ≤ n, zi = SECom(CRSCOM , xi, r
SEC
i). If for

some i, the check fails, output the n-bit string y where yi = 0 iff the
check failed for zi.

– Compute r = ⊕n
i=1r

MPC
i . Parse r = R1 ◦ R2 ◦ R3, where |R1| = 1, and

the lengths of R2 and R3 will be clear from the sequel.
– If R1 = 0, then for each 1 ≤ i ≤ n, come up with an m-out-n secret

sharing of 0, and let yi,j be the j’th share. Otherwise, for each 1 ≤ i ≤ n,
come up with an m-out-n secret sharing of 1 ◦ fi(x), and let yi,j be the
j’th share. Secret sharing requires randomness: use R2 as the random
tape for this step.

– Use R3 as the random tape for forming n2 ciphertexts as follows: ci,j =
Enc(PK j , yi,j); output these ciphertexts.

Suppose it takes c − 1 rounds of computation over the broadcast channel
to jointly compute g. If at any round, Pj notices that Pi did not follow the
protocol correctly1 then Pj aborts. If the output of the computation indicates
that some party contributed incorrect inputs, then Pj also aborts.

The possible reconstruction phase: Each Pi broadcasts a message of
the form ({dj,i : 1 ≤ j ≤ n}, π), where π is a non-interactive simulation-
sound zero-knowledge proof [4] that each dj,i = Enc(PK j , yj,i, rj,i) where
yj,i is the correct decryption of cj,i under the public key PK i, and rj,i are
the cointosses for probabilistic encryption Enc. If Pi receives m messages
with valid proofs, then he decrypts all ciphertexts {di,j} addressed to him to
obtain m shares either of 0 or of 1 ◦ fi(x). In the former case, if Pi received
fewer than n messages with valid proofs, abort; otherwise go back to the
MPC phase. In the latter case, output fi(x).

We analyze protocol σ in the mixed-behavior model and present our main
result in the case where parties P = R ∪ A are computationally bounded. We

1 Recall that, following Goldreich, Micali and Wigderson [6], Canetti et al.’s protocol
allows every party to detect that another party deviated from the protocol.

16 A. Lysyanskaya and N. Triandopoulos

impose the following assumptions on protocol utilities in the computational set-
ting: (1) if different runs produce indistinguishable views for Pi, this makes only
a negligible difference to satisfaction measure µi; (2) negligible differences in
satisfaction measures of all Pj ∈ R yield negligible differences in Pi’s utility ui.

Definition 9 (Computational satisfaction assumption). Protocol utility
function u with associated satisfaction µ satisfies the computational satisfac-
tion assumption, if for all non-negligible functions ε, there exists some negligible
function ν such that Prs[µi(V1)−µi(V2) > ε(k)] = ν(k), where V1 ← D1(1

k) and
V2 ← D2(1

k) are views that are indistinguishable by probabilistic algorithms with
running time polynomial in k. Moreover, function ui(R) = u′

i(µ1(R), ..., µn(R))
has the property that, for any negligible function ν1(k), there exists a negligible
ν2(k) such that if R and R′ are such that µi(R) ≤ µi(R

′) ≤ µi(R) + ν1(k), and
for all j 6= i, µj(R) = µj(R

′), then ui(R) ≤ ui(R
′) ≤ ui(R) + ν2(k).

Theorem 2 (Main result). Given P = R ∪ A receiving inputs from X, with
channel structure C(P) that includes a synchronous broadcast channel and proto-
col utility function u satisfying the computational satisfaction assumption, strate-
gies σ(x) constitute a computational t-secure preferred protocol for any t-NCC
target function f .

To prove our main result, we: (1) define a notion of computational reducibility
among strategies designed for different channel structures, (2) show that com-
putational reducibility between strategies results in computational equivalence
in gained utilities, (3) show that σC executed over C(R) ⊇ Cm,f ,c is reduced to
σ executed over any channel structure that includes the synchronous broadcast
channel, thus proving that σ is an ε-Nash equilibrium, and (4) show that σ

survives deletion.

Definition 10 (Computational reducibility). Suppose P = R∪A, Pi ∈ R.
Let C = C1 ∪ {C}, C′ = C1 ∪ {C ′} be channel structures available to P, for
some set of channels C1 and some additional channels C and C ′. Let (σR)−i

and (σ′
R

)−i be sets of strategies corresponding to C and C′, respectively. Let
A be an adversary for channel structure C. We say that the probabilistic poly-
time simulator S = (S0, S1, S2, S3) computationally reduces setting (C′, (σ′

R
)−i)

to setting (C, (σR)−i) if for all x, PPT strategies τi, j ∈ [n] and PPT ad-
versaries A, S3(j,VIEW j((S1(τi, xi, s), (σ

′
R

)−i((xR)−i)), r, S2(A, i,xA, s)), s),
where s ← S0(1

k), is a distribution that is computationally indistinguishable from
VIEW j((τi(1

k, xi), (σR)−i((xR)−i)), r,A). In this setting, we say that S compu-
tationally translates strategy τi(xi) and adversary A(xA) into strategy S1(τi, xi, s)
and adversary S2(A,xA, s).

That is, S1 transforms strategy τi designed for communication structure C
into a strategy designed for communication structure C′, while S2 does the same
with A. It is possible, however, that the resulting strategy and adversary talk
to each other. Then S3 translates the resulting view into a view that is compu-
tationally close to the view that Pi could have gotten if it were to run τi in C

Rationality and Adversarial Behavior in Multi-Party Computation 17

with adversary A, or into a view that any other rational Pj would have gotten
if it were to run σi in C with adversary A and τi, instead of running σ′

i in C′.

Lemma 3. Under the computational satisfaction assumption, if: (1) f is t-NCC,
and is the computational target function for the given set of utility functions u;
(2) for all i ∈ [n], for strategies σ and σ′, simulator S = (S0, S1, S2, S3) compu-
tationally reduces setting (C′, (σ′

R
)−i) to the setting (C, (σR)−i); (3) for all i ∈

[n], xi and s, S1(σi, xi, s) = σ′
i(xi); (4) for all A, i, probabilistic poly-time τi, j 6=

i, Pj ∈ R, µj(S3(j,VIEW j((S1(τi, xi, s), (σ
′
R

)−i((xR)−i)), r, S2(A, i,xA, s)), s))
is equal to µj(VIEW j((S1(τi, xi, s), (σ

′
R

)−i((xR)−i)), r, S2(A, i,xA, s))), that is,
no matter what A and Pi do, when transforming the view from running σ′

j to
one for running σj, the simulator S3 did not throw out any information relevant
to µj. Then, if σ′ is a Nash equilibrium, then σ is ε-Nash equilibrium.

Proof. (Sketch) For brevity, let us denote (σR)−i((xR)−i) simply as σ−i. Con-
sider strategy τi, adversary A, inputs x. Then we know that:

µi(VIEW i((τi(xi),σ−i), r,A(xA)))

≤ µi(S3(i,VIEW i((S1(τi, xi, s),σ
′

−i), r
′, S2(A, i,xA, s)), s)) + ν1(k)

≤ µi(VIEW i((S1(τi, xi, s),σ
′

−i)), r
′, S2(A, i,xA, s))) + ν1(k).

The first inequality follows by the definition of computational reducibility and
the computational satisfaction assumption; the second inequality holds because
S3 may destroy some relevant information. Next, in channel structure C, we
measure µj for a party Pj following strategy σj while Pi is following τi. From
the definition of computational reducibility, µj(VIEW j((τi(xi),σ−i), r,A(xA)))
≈ µj(S3(j,VIEW j((S1(τi, xi, s),σ

′

−i), r
′, S2(A, i,xA, s)), s)). This is approxi-

mately equal to µj(VIEW j((S1(τi, xi, s),σ
′

−i), r
′, S2(A, i,xA, s))), by the con-

ditions of the lemma. Thus, for every strategy τi and adversary A in channel
structure C, there exist a strategy τ ′

i (i.e., S1(τi, xi, s)) and adversary A′ (i.e.,
S2(A, i,xA, s)), in channel structure C′ such that:

ui((τi(xi),σ−i), r,A(xA)) ≤ ui((τ
′
i(xi),σ

′

−i), r
′,A′(xA)) + ν2(k)

≤ ui(σ
′
R(xR), r′,A′(xA)) + ν2(k) = ui(σR(xR), r′,A(xA)) + ν2(k),

where the first inequality holds by the computational satisfaction assumption.
The second inequality follows because σ′ is a Nash equilibrium, while the last
equality follows by condition (3) of the lemma and Definition 9. ut

Lemma 4. If f is t-NCC, then there exists a simulator S = (S0, S1, S2, S3)
satisfying the conditions of Lemma 3, reducing the (ideal) strategy σ′ in channel
structure C′ that includes (ideal) channel Cm,f ,c to the (real) strategy σ in the
channel structure C that includes a synchronous broadcast channel.

Proof. (Sketch) The main idea is that, for rational Pi following strategy τi in-
stead of σi, we will have simulator S1 broadcast his input xi and his strategy
τi over the ideal channel Cm,f ,c, while S2 broadcasts the adversary’s inputs and

18 A. Lysyanskaya and N. Triandopoulos

descriptions. This will ensure that the view from the resulting strategy for the
ideal channel will enable S3 to simulate what Pi and A would do, and create a
correctly distributed view for each Pj ∈ R, j 6= i. S1 and S2 will then collabora-
tively simulate the views for Pi and A using the corresponding simulators and
extractors for ZK proofs of knowledge, commitments, and multi-party computa-
tion. S3 will simply output the simulated views created by S1 and S2. ut

Lemma 5. Under the computational satisfaction assumption, if f is a t-NCC
computational target function, then protocol σ survives iterated deletion of com-
putational k−c-weakly dominated strategies.

Proof. (Sketch) We appropriately adapt the proof of Lemma 2 for strategy σ,
considering all different ways in which Pi may depart from σi. ut

Acknowledgements. We thank the anonymous reviewers and Jonathan Katz
for their constructive comments, and also Silvio Micali and Moni Naor for helpful
discussions. Anna Lysyanskaya is supported by NSF Career Grant CNS–0374661
and Nikos Triandopoulos by NSF Grants CCF–0311510 and IIS–0324846.

References

[1] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets
game theory: Robust mechanisms for rational secret sharing and multiparty com-
putation. In Proc. 25th ACM PODC, 2006. (To appear.)

[2] R. Canetti and M. Fischlin. Universally composable commitments. In Proc.
CRYPTO 2001, pages 19–40, 2001.

[3] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In Proc. 34th ACM Symposium on
Theory of Computing (STOC), pages 494–503, 2002.

[4] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
non-interactive zero knowledge. In Proc. CRYPTO 2001, pages 566–598, 2001.

[5] O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2004.
[6] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or

a completeness theorem for protocols with honest majority. In Proc. 19th ACM
Symposium on Theory of Computing (STOC), pages 218–229, 1987.

[7] S. D. Gordon and J. Katz. Rational secret sharing, revisited, 2006. Manuscript
available at http://eprint.iacr.org/2006/142. (To appear at SCN 2006.)

[8] J. Halpern and V. Teague. Rational secret sharing and multiparty computa-
tion: extended abstract. In Proc. 36th ACM Symposium on Theory of Computing
(STOC), pages 623–632, 2004.

[9] S. Izmalkov, M. Lepinski, and S. Micali. Rational secure computation and ideal
mechanism design. In Proc. 46th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 585–594, 2005.

[10] M. Lepinksi, S. Micali, and abhi shelat. Collusion-free protocols. In Proc. 37th
ACM Symposium on Theory of Computing, pages 543–552, 2005.

[11] M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair SFE and
coalition-safe cheap talk. In Proc. 23rd ACM PODC, pages 1–10, 2004.

[12] A. Shamir. How to share a secret. Comm. of the ACM, 22(11):612–613, 1979.
[13] Y. Shoham and M. Tennenholtz. Non-cooperative computation: Boolean functions

with correctness and exclusivity. Theoretical Comp. Science, 343(2):97–113, 2005.

