Round-Optimal Composable Blind Signatures
in the Common Reference String Model

Marc Fischlin*

Darmstadt University of Technology, Germany
marc.fischlin @gmail.com www.fischlin.de

Abstract We build concurrently executable blind signatures schemes
in the common reference string model, based on general complexity as-
sumptions, and with optimal round complexity. Namely, each interactive
signature generation requires the requesting user and the issuing bank
to transmit only one message each. We also put forward the definition
of universally composable blind signature schemes, and show how to ex-
tend our concurrently executable blind signature protocol to derive such
universally composable schemes in the common reference string model
under general assumptions. While this protocol then guarantees very
strong security properties when executed within larger protocols, it still
supports signature generation in two moves.

1 Introduction

Blind signatures, introduced by Chaum [8], allow a bank to interactively issue sig-
natures to users such that the signed message is hidden from the bank (blindness)
while at the same time users cannot output more signatures than interactions
with the bank took place (unforgeability). Numerous blind signature schemes
have been proposed, mostly under specific number-theoretic assumptions, some
relying also on the random oracle model [26,1,3,4] and some forgoing random
oracles [9,18,24]. Only the work by Juels et al. [17] addresses the construction
of blind signatures under general assumptions explicitly, and deploys general
two-party protocols and oblivious transfer based on trapdoor permutations.

Interestingly, almost all of the aforementioned blind signature schemes re-
quire three or more moves (most of them even in the random oracle model) and
concurrent executions of the signature generation protocol are often a concern
(cf. [25,26,24]). For instance, making the solution by Juels et al. [17] concur-
rently secure would require a high round complexity. This follows from results
by Lindell [19,20] showing, among others, that in the plain model the number
of rounds in blind signature schemes with black-box security proofs is bounded
from below by the number of concurrent executions.

A notable exception to the problems with interleaving executions are schemes
with an optimal two-move signature generation protocol, solving the concurrency

* This work was supported by the Emmy Noether Program Fi 940/2-1 of the German
Research Foundation (DFG).

problem immediately. This includes Chaum’s original RSA-based blind signature
protocol and the pairing-based discrete-log version thereof [4]. Unfortunately, the
security proofs [3,4] for these schemes need the random oracle model —by which
they can bypass Lindell’s lower bound for the plain model— and rely on the
so-called one-more RSA or one-more discrete-log assumptions, which are less
investigated than the corresponding standard problems.

Here we show that one can build secure blind signature schemes with a two-
move signature generation protocol under general assumptions (namely, trapdoor
permutations). Our scheme does not rely on random oracles, yet to bridge the
lower bound on the number of rounds we work in the common reference string
model. We note that instead of falling back on general multi-party paradigms
as in [17] and inheriting the round complexity of the underlying oblivious trans-
fer protocols for general assumptions we give a dedicated solution to the blind
signature problem.

Construction Idea. The basic (and simplified) construction idea of our blind
signature scheme is as follows. The user commits to the message m and sends this
commitment U to the bank. The bank signs U with a signature scheme and sends
the signature B back to user. The user finally derives the blind signature for m
by computing a commitment! C of U||B and proving with a non-interactive zero-
knowledge proof 7 (based on the common reference string) that this commitment
C contains a valid signature B for U and that U itself is a commitment of the
message m. The blind signature to m is given by the commitment C' and the
proof .

Using standard non-interactive zero-knowledge (NIZK) proofs our protocol
above provides a weaker unforgeability notion than postulated in [26,17]. That
is, a malicious user can potentially generate several signatures from a single
interaction with the bank by generating multiple proofs 71, s, ... for the same
commitment C'. All these pairs C||m; would be valid blind signatures for the same
message m, while the standard unforgeability definition asks that a malicious
user cannot create more signatures than interactions happened. In the full version
[14] we show how to thwart such attacks by switching to so-called unique non-
interactive zero-knowledge proofs, recently introduced by Lepinski et al. [21].
In this version here we only treat the weaker notion where the malicious user
cannot create a signature for a new message.

Universal Composition. As explained, our two-move signature generation pro-
tocol overcomes the concurrency problem effortlessly. More general a slight vari-
ation of our scheme yields a secure blind signature scheme in the universal com-
position (UC) framework [5]. Secure schemes in this UC framework enable in-
terdependent executions with other protocols while preserving the main security
characteristics. Our modified scheme now requires the same assumptions as be-
fore as well as a simulation-sound NIZK proof of knowledge, which can also be
derived from trapdoor permutations [28,11].

! For the security proof we require that the commitment C' is actually done through
an encryption scheme.

Towards proving the universal composability result we first formalize an ideal
functionality Frisig, prescinding the basic requirements of blind signatures such
as completeness, unforgeability and blindness. Since such UC blind signatures
can be used to build UC commitments it follows from an impossibility result in
[7] that UC blind signatures cannot be realized through two-party protocols in
the plain model. But, as our solution shows, augmenting the model by common
reference strings one can build UC blind signatures (against non-adaptive cor-
ruptions) under general assumptions. Compared to general feasibility results in
the UC framework [10], showing that essentially any functionality can be securely
realized in the common random string, our solution still needs only two-moves
to generate signatures.

2 Blind Signatures in the Common Reference String
Model

In this section we recall the security definition of blind signatures and present
our two-move solution and prove its security.

2.1 Blind Signatures and Their Security

For the interactive signature generation protocol of a blind signature scheme
we introduce the following notation. For two interactive algorithms X',) we
denote by (a,b) «— (X(x),Y(y)) the joint execution of X for input x and Y
for input y, where X’s private output at the end of the execution equals a and
Y’s private output is b. For an algorithm) we write YX @))% if Y can invoke
an unbounded number of executions of the interactive protocol with X in arbi-
trarily interleaved order. Accordingly, X (V@)Y can invoke arbitrarily
interleaved executions with Y(yo) and Y(y;1) but interact with each algorithm
only once.

Definition 1 (Blind Signature Scheme). A blind signature scheme (in the
common reference string model) consists of a tuple of efficient algorithms BS =
(Cps, KGps, (B,U) ,Vfps) where

CRS generation. Cgg on input 1™ outputs a common reference (or random)
string crsps.

Key Generation. KGpg(crsps) generates a key pair (skps, pkpg).

Signature Issuing. The joint execution of algorithm B(crsps, skps) and al-
gorithm U(crsps, pkgg,m) generates an output S of the user, (L,S) «—
(B(crsps, skps),U(crsps, pkgg,m)).

Verification. Vfpg(crsps, pkgg, m, S) outputs a bit.

It is assumed that the scheme is complete, i.e., for any crsps «— Cpg(1™),
any (skps, pkpg) — KGpgs(crsps), any message m € {0,1}" and any S out-
put by U in the joint execution of B(crsps, skps) and U(crsps, pkgg, m) we have
Vfps(ersps, pkgg, m,S) = 1.

Security of blind signatures consists of two requirements [26,17]. Unforgeabil-
ity says that it should be infeasible for a malicious user U* to generate k+1 valid
signatures given that k interactions with the honest bank took place (where the
adversary adaptively decides on the number k of interactions). Blindness says
that it should be infeasible for a malicious bank B* to determine the order
in which two messages mg,m1 have been signed in executions with an honest
user. This should hold, of course, as long as the interactive signature genera-
tion produces two valid signatures and the bank B* for example does not abort
deliberately in one of the two executions.

Definition 2 (Secure Blind Signature Scheme). A blind signature scheme
BS = (Cps, KGgs, (B,U) ,Vfps) in the common reference string model is called
secure if the following holds:

Unforgeability. For any efficient algorithm U* the probability that experiment
Forge5§ (n) evaluates to 1 is negligible (as a function of n) where

Experiment ForgeZ? (n)
CTSBS <— CBs(ln)
(SkBs,pkBS) — KGgs(CTSBs)
(M1, 81), - s (Mg, Spr)) = U BT ko) D= (erspg, plip)
Return 1 iff
m; #my for1 <i<j<k+1, and
Vfps(crsps, pkgg,mi, Si) =1 foralli=1,2,...,k+1, and
at most k interactions with (B(crsps, skps),)" were initiated.

Blindness. For any efficient algorithm B* (working in modes find, issue and
guess) the probability that the following experiment Blind>3 (n) evaluates to
1 is negligibly close to 1/2, where

Experiment Blind3: (n)

crsps < Cps(1™)

(pkgg, Mo, m1, Bfind) <— B*(find, crsps)

b—{0,1}

ﬂissue — B)*(.,Z/{(crsBs,pk,gs,mb))1,(»,L{(crsBs,pk,gs,ﬂ%l,b))1(issue7 ﬂﬁnd)
and let Sy, S1—p denote the (possibly undefined) local outputs
of U(crsps, pkgg, my) resp. U(crsps, pkgg, M1—p)-

b* — B* (gue557 SO; 517 5issue>

Return a random bit if S = L or Sy = L, else return 1 iff b = b*.

As pointed out in the introduction, in a stronger unforgeability notion the
malicious user is already deemed to be successful if it outputs k& + 1 distinct
message-signature pairs (m;, S;) after k interactions with the bank. In this case
the user may also try to find another valid signature to a previously signed
message m. Our scheme here satisfies the unforgeability notion in Definition 2
but can be turned into one achieving the higher level (see the full version [14]).

In a partially blind signature scheme [2] the bank and the user first agree on
some information info which is attached to the blind signature. There, unforge-
ability demands that a malicious user cannot find k + 1 distinct but valid tuples

(info;, m;, S;). The definition of blindness then allows a malicious bank to de-
termine info together with the messages mg, m; such that the bank still cannot
decide the order in which the users execute the issuing protocol for info, my and
info, my, respectively. Jumping ahead we note that we can easily turn our blind
signature scheme into a partially blind one.

2.2 Construction

The high-level idea of our blind signature protocol is as follows. To obtain a
blind signature from the bank the user commits to the message m and sends
this commitment U to the bank. The bank signs the commitment with a regular
signature scheme and returns the signature B to the user. The user derives the
blind signature for m by computing another commitment C' of the signature
B together with U, and a non-interactive zero-knowledge proof m showing the
validity of C.

To prevent trivial “size-measuring” attacks of a malicious bank we assume
that the signature scheme is length-invariant, i.e., that public keys pks;, as well
as signatures for security parameter n are all of the same length s(n). We note
that this can always be achieved by standard padding techniques, and length-
invariant signature schemes exist if one-way functions exist [23,27].

We furthermore assume that the commitment scheme (Ccom,Com) in the
common random string model, given by algorithms Ccom generating the string
crscom and algorithm Com(erscom, - +) @ {0,1}™ x {0,1}™ — {0,1}°(™) mapping
strings from {0, 1}™ with n-bit randomness to commitments, is length-invariant,
too. That is, the reference strings as well as commitments are all of length
¢(n) for parameter n. We also need that the commitment scheme is statistically
binding. Such commitment schemes can also be derived for example from one-
way functions [16,22].

In order to turn the above idea into a provably secure scheme the proof
7 needs to allow extraction of U and B encapsulated in C. We accomplish
this by using an IND-CPA secure encryption scheme (KGgyc, Enc, Dec) to “com-
mit” to U||B in C, where the public key pkg,. of the encryption algorithm
becomes part of the common reference string.? We presume that the encryp-
tion scheme is also length-invariant and that public keys pkg,. and ciphertexts
C « Enc(pkgne, U||B;w) for U||B € {0,1}¢(™+5(") and randomness v € {0,1}"
are all of length e(n). This is again without loss of generality.

Finally, the non-interactive zero-knowledge (NIZK) proof (Czk,P,V) with
the common reference string generator Czk, the prover P and the verifier V
first of all obeys the two basic properties completeness (the verifier V accepts
all honestly generated proofs of the prover P) and soundness (no malicious
prover can make the verifier accepts proofs for invalid statements). Further-
more, the system should be multiple zero-knowledge in the sense of [15], i.e., one

2 We can also assume that we have dense public-key schemes [13] and that the common
random string contains such a public key.

can prove several statements in zero-knowledge for the same common reference
string crszk < Czk (1™). Such proofs exist if trapdoor permutations exist [15].

The underlying relation of the NIZK proof is described by (a sequence of)
circuits C25 indexed by a parameter n. Circuit CES takes as input a statement
x = C||pkgnc||crscom||Pksig|Im of bit length x(n) = ¢(n) + 2e(n) + s(n) +n and
a witness w = ul[v||B of length w(n) = 2n + s(n), and returns an output bit
which is determined as follows. The circuit is built from the descriptions of algo-
rithms Com, Enc, Vfsi; and checks for the signature’s verification algorithm that
Vfsig(pksig, Com(erscom, m;u), B) = 1 and that the value C' equals the cipher-
text Enc(pkgne, Com(crscom, m; w)||B;v). If and only if both tests evaluate to true
then the circuit outputs 1. The corresponding relation (parameterized by n) is
given by RES = {(z,w) € {0,1}X(") x {0,1}*™ | cBS(z,w) =1}.

Construction 1 (Blind Signature Scheme). Let (KGsig, Sig, Vfsig) be a sig-
nature scheme, (KGgnc, Enc,Dec) be an encryption scheme, (Ccom,Com) be a
commitment scheme, and let (Czi, P,V) be a non-interactive zero-knowledge
proof system for RBS. Define the following four procedures:

CRS Generation. Algorithm Cps(1™) generates crszx — Czi(1™), crscom —
Ceom(1™) as well as (pkgpe, Skenc) < KGenc(1™). It outputs the string crsps «—
(erszic, ¢rscom, Phignc)-

Key Generation. The bank’s key generation algorithm KGps(crspg) generates
a signature key pair (pksig, sksig) < KGsig(1™). It returns (pkgg, skps)
(kaiga SkSig)'

Signature Issue Protocol. The interactive signature issue protocol is described
in Figure 1.

Signature Verification. The verification algorithm Vfpg(crsps,m,S) parses
the signature S as S = C||m and returns the output V(crszx, x,m) for the
value © = C||pkgnc||crscom| | phsig|Im.

Theorem 2. Let (KGsjg, Sig, Vfsig) be a length-invariant signature scheme which
is unforgeable against adaptive chosen-message attacks, (KGgnc, Enc, Dec) be a
length-invariant IND-CPA secure encryption scheme, and let (Ccom,Com) be
a length-invariant non-interactive commitment scheme in the common random
string model which is statistically binding. Let (Czk,P,V) be a non-interactive
zero-knowledge proof system for RPS. Then the scheme defined in Construction 1
s a secure blind signature scheme.

Proof. We first show unforgeability and then blindness.

Unforgeability. Assume that there exists an adversary U* such that with no-
ticeable probability the following holds. On input crsps, pkgg the adversary U*
manages to output k + 1 valid signatures S; = C;||m; for messages m; after at
most k interactions with the honest bank B (and where the messages m;, m; are
pairwise distinct). Given such an adversary we construct a successful adversary
A against the security of the signature scheme (KGsig, Sig, Vfsig).

Bank 5 crsBs, pkgg User U
signing key sksig message m € {0,1}"

choose u,v «— {0,1}"
let U «— Com(crscom,m;u)

let B « Sig(sksig, U)
————— abort if Vfsig(pke, U, B) # 1
compute C' «— Enc(pkg,., U||B;v)
set @ — C|[phee| rscom [phsgllm
set w «— ul|v||B
let m «— P(erszx, x, w, SK)
Output S « C||7

Figure 1. Blind Signature Scheme: Issue Protocol

Adversary A is given as input a public key Phsig of the signature scheme and
is granted oracle access to a signature oracle Sig(sksig,-). This adversary first
generates crsyg «— Czk(1™) for the zero-knowledge proof, crscom «— Ccom(1™)
for the commitments, and (pkg,., Skenc) — KGgnc(1™) and defines crsgs «
(erszi, €rscom, Phenc)- It next invokes a black-box simulation of U* for input
(crsps, pksig)- Each time the user ¢/* initiates the issue protocol with the bank,
algorithm A uses the signature oracle to answer the request U by a signature
B «— Sig(sksig, U). When the adversary finally outputs the message/signature
pairs (m;, S;) algorithm A parses each S; as S; = C;||m; and decrypts each C; to
U;||B;. Algorithm A outputs the first one of these pairs (U;, B;) for which U; has
not been submitted to its signing oracle (or returns L if no such value exists).

For the analysis assume that U* succeeds with noticeable probability. Since
k + 1 pairs (m,,S;) are valid, all the proofs m; in S; = C;||m; are valid as well.
Hence, with overwhelming probability over the choice of crszk each C; is a valid
ciphertext of some U;|| B; under pkg,., and each U; commits to the corresponding
message m; and each B; is a valid signature under pks;, for U;. Furthermore,
by the statistically-binding property of the commitment scheme all U;’s must
be distinct for different m;’s, with overwhelming probability over the choice of
crscom- It follows that A successfully outputs a valid signature B; for a previously
not signed value U; with noticeable probability, too, contradicting our initial
assumption about the success probability of U*.

Blindness. To prove blindness we consider an adversarial controlled bank 5*
in experiment Blindgé (n). We gradually transform the way the signatures Sy =
Col|mo and S; = C4||m; are computed such that, at then end, they are completely
independent of bit b.

In the first step we replace all the steps involving the prover by the output
of the zero-knowledge simulator Z (generating a string crs together with some

trapdoor information ¢ in mode crs and faking proofs 7 for statements = with
the help of ¢ in mode prove). More precisely, consider the following modified
procedures of the blind signature scheme (key generation and verification remain
unchanged):

CRS Generation. Algorithm Cpg(1™) generates (crszk,o) «— Z(crs, 1™), and
crscom — Ccom(1™) and (pkgnes Skenc) «— KGenc(1™). It outputs the string
crsps — (crszK, crscoms Phgnc)-

Signature Issue Protocol. For the signature issuing the user now also picks
u,v < {0,1}", and again sends the commitment U < Com(crscom,m;u) to
the bank B* which replies with some B. The user aborts if verification fails,
Vfsig(phsig, U, B) # 1, and else computes C' «+ Enc(pkg,c, U||B;v) as well as
m — Z(prove, g, x). Output S — C||r.

Denote the modified scheme by BS'. It follows easily from the zero-knowledge
property that experiments BlindS3 (n) and Blind3S (n) return 1 with the same
probability (except for a negligible probability).

In the next step we further modify the signature scheme by replacing the
commitments U by commitments to all-zero strings. More precisely, we change
the signature issue protocol of the blind signature scheme BS' as follows (recall
that this modified scheme already uses the zero-knowledge simulator to prepare
the signatures):

Signature Issue Protocol. The user picks u,v < {0,1}", but now sends U «—
Com(erscom,0™;u) to the bank to get a signature B (which is also checked).
It then computes again C' « Enc(pkg,.,U||B;v), m «— Z(prove,o,x) and
outputs S «— C||m.

We call this modified scheme BS”. It is easy to see that, by the secrecy of the
commitment scheme, the difference in the output distributions of experiments
Blindgg (n) and Blindgs*’”(n) is negligible.

Finally, we replace the encryption of U and B by an encryption of the all-zero
string, i.e., we modify the signature issuing protocol from BS” further to obtain:

Signature Issue Protocol. The user selects u,v < {0, 1}™ as before and again
computes U «— Com(crscom, 0”;u). For the bank’s reply B to U it checks
validity and this time sets C' « Enc(pkg,c, 0V (")) 7« Z(prove, o, x)
and outputs S « C||r.

We call this modified scheme by BS"”. By the IND-CPA security of the encryption
scheme we conclude that the difference in the output distributions of experiments
Blind5S" (n) and Blind%S (n) is also negligible.

In experiment Blindzgw(n) the signatures S = C||r are independent of the
data U, B in the signature generation protocol. Hence, the adversary B* cannot
predict b better than with probability 1/2. Conclusively, the probability of the
original experiment Blind5s (n) to return 1 must be negligibly close to 1/2, prov-
ing blindness. ad

To get a partially blind signature scheme, where the signer and the user share
some public information info to be included in the blind signature, we let the bank
simply sign the user’s commitment U together with info, i.e., B « Sig(sk, info||U)
and also let the user base the correctness proof @ on info. The security proof
carries over straightforwardly.

3 Universally Composable Blind Signatures

As mentioned, the blind signature scheme in the previous section allows con-
current executions of the signature generation protocol, i.e., when the protocol
is interleaved with itself. More generally, one would like to have a guarantee
that such a scheme still supports the basic security properties, even when run
as a building block within larger protocols, independently how the execution
is intertwined with other steps. Such a guarantee is provided by the universal
composition (UC) framework [5].

In the UC framework one defines an idealized version of the primitive in ques-
tion, capturing the desired security properties in an abstract way and ensuring
that the functionality is secure in interdependent settings. Given an appropriate
formalization of some functionality F in the UC framework, one next shows that
this functionality can be securely realized by an interactive protocol between the
parties (without the trusted interface). Here, securely realizing means that, in
any environment (modeled through an algorithm Z) in which the protocol may
be run, for this environment executions of the interactive protocol in presence of
an adversary A are indistinguishable from executions in the ideal model with the
trustworthy functionality F and an ideal-model adversary S. A formal introduc-
tion to the UC framework is beyond the scope of our paper; we refer to [5] to a
comprehensive definition. We remark that we consider non-adaptive adversaries
here which corrupt parties at the beginning of executions only.

3.1 Definition

Our definition of an ideal blind signature functionality Fgisiz follows the one
Fsig of regular signature schemes given by Canetti [6]. The definition of Fgis
essentially lets the adversary choose the public verification key and determine the
signature value S upon a signing request (Sign, sid, m). Verification requests for
previously generated signatures are always accepted and otherwise the adversary
is again allowed to specify whether a tested signature .S to a message m is valid
or not. See [6] for a discussion of this definition.

The formal description of the blind signature functionality is given in Fig-
ure 2. It is partly a verbatim copy of the functionality Fgi, in [6]. An important
difference for blind signatures is that the adversary should not learn the message
of honest users and the signatures must not be linkable to the signing request. To
ensure this we let the adversary (instead of the bank, analogously to the choice
of the public verification key in Fgis) in Fgisig provide (the description of) a
stateless, possibly probabilistic algorithm BISig to the ideal functionality Fgigig.

This is already done in the key generation step where the adversary chooses the
public verification key, such that BISig is used in all subsequent signature gen-
eration runs. Whenever an honest user later requests a signature for a message
m this algorithm BISig(m) generates a signature S but without disclosing the
message m to the adversary, enforcing unlinkability of signatures.

If a corrupt user —that is, the adversary on behalf of the corrupt user—
requests a signature, however, the ideal functionality does not run BISig. Instead
it asks the adversary about the potential signature S this user could produce
from an interaction with the bank. Note that a corrupt user may not output
any signature right after an interaction with the bank (or ever), the interaction
merely guarantees that this user can generate this signature in principle. Hence,
the functionality does not return the adversary’s potential signature S to the
user.

Finally, for any signature request we inform the bank B about the request,
but without disclosing the actual message m nor the signature. This captures
the fact that signature generations require active participation of the bank.

It follows quite easily that one can realize universally composable commit-
ment schemes in the presence of functionality Fgigig. As a consequence of the
hardness of constructing such commitments [7,12] we conclude (for the proof see
the full version [14]):

Proposition 1. Bilateral and terminating (i.e., only two parties are active and
honest parties faithfully give output) blind signature schemes securely realizing
Frisig in the plain model do not exist. Furthermore, blind signature schemes
securely realizing Fpisig in the common reference string model imply key agree-
ment, and imply oblivious transfer in the common random string model. This all
holds for non-adaptive corruptions.

By the general feasibility results of Canetti et al. [5,10] functionality Fgigig
can be realized in the multi-party setting for honest majorities (in the plain
model) and dishonest majorities (in the common random string model). Instead
of relying on the general construction in [10] we construct a simpler two-move
scheme in the common reference string model directly, based on the scheme in
the previous section.

3.2 Construction

The construction in the standard model gives a good starting point for a solution
in the UC framework. We augment the scheme by the following steps. First,
we let the user in the first round when sending U also encrypt all the data
from which the proof is later derived. This ciphertext FE should contain the
randomness u, v and message m. The encryption scheme itself needs to be IND-
CPA secure and we simply use the same scheme as for the computation for
C « Enc(pkgnc, U||B;v) but with an independent key pair (pkinc, Skgnc)-

In addition to the ciphertext E the user should prove with another NIZK
proof that the data is valid and matches the data committed to by U. For this
we require simulation-sound NIZK proofs [28,11] where a malicious prover is not

Functionality Fgisig

Key Generation: Upon receiving a value (KeyGen, sid) from a party B, verify
that sid = (B, sid’) for some sid . If not, then ignore. Else, hand (KeyGen, sid)
to the adversary. Upon receiving (VerificationKey, sid, pkgg, BISig) from
the adversary, output (VerificationKey, sid, pkgg) to B and record the pair
(B, pkgg, BISig).

Signature Generation: Upon receiving a value (Sign,sid, m,pkgg) for
m € {0,1}" from some party U, verify that sid = (B, sid) for some sid'. If
not, then ignore. Else, do the following:

— If the user U is honest then inform B and the adversary through
(Signature, sid) that a signature request takes place and then generate
S « BISig(m) and output (Signature, sid, m,S) to U.

— If the user U is corrupt then send (Sign, sid, m) to the adversary to obtain
(Signature, sid,m, S); abort if (m, S, pkgg,0) has been recorded before.
Send (Signature, sid) to B.

In either case record (m, S, pkgg,1).

Signature Verification: Upon receiving a value (Verify, sid,m,S, pkizg) from
some party P hand (Verify, sid, m, S, pkizg) to the adversary. Upon receiving
(Verified, sid,m, S, ¢) from the adversary do:

1. If pkpg = pkizg and the entry (m,S, pkgg, 1) is recorded, then set f = 1
(completeness condition).

2. Else, if pkgg = pkyg, the bank is not corrupt, and no entry (m,, pkgg, 1)
is recorded, then set f = 0 and record the entry (m, S, pkgg,0) (unforge-
ability condition).

3. Else, if there is an entry (m, S, pkizg, f') recorded, then let f = f’ (consis-
tency condition).

4. Else, let f = ¢ and record the entry (m, S, pkizg, ¢).

Output (Verified, sid,m, S, f) to P.

Figure 2. Blind Signature Functionality Fgisig

able to find an accepted proof for an invalid statement, even if it sees proofs of
the zero-knowledge simulator before (possibly for invalid but different theorems).
In our case here the underlying relation R*® is defined by (a sequence of) circuits
5 evaluating to 1 if and only if for statement x = U||E||pkgnc||crscom of length
x(n) = 2¢c(n) + 2€¢’(n) and witness w = m/||ul|v||u” of length w(n) = 4n it holds
that E = Enc(pkg,., m||ul|v;u’) and U = Com(crscom,m;u). Such simulation-
sound NIZK proofs exist if trapdoor permutations exist [11].

The final step is to make the signature algorithm Sig of the bank’s unforgeable
signature scheme deterministic. This can be accomplished by adding a key of a
pseudorandom function to the secret signing key. Each time a signature for U
is requested the signing algorithm first applies the pseudorandom function to
U to get the randomness s with which the signature B « Sig(sksig,U;s) is
computed deterministically. The advantage of this modification, which does not
require an additional complexity assumption, is that identical requests are now

also answered identically. For the same consistency reason we also presume that
the verification algorithm of the regular UNIZK proof is deterministic.

Bank B crsBs, pkgg User U
signing key sksig message m € {0,1}"

choose u,v,u’ < {0,1}"

let U < Com(crscom, m;u)

let E < Enc(pki,., m||v||u;u’)

let Zes — U||B||phin 75com

let wss < m||v||ul|u

compute Trss «— Pss(CTSss, Tss, Wss)

U, E, mss
Tss < UHEHpk;EncHCTSC‘Jm
abort if Ves(crsss, Tss, Tss) # 1
let B « Sig(sk,U)
B

————— abort if Vfsig(pks;,, U, B) # 1
compute C' « Enc(pkg,, U||B;v)
set & «— C||pkgnc|| crscom||Phsig|Im
set w « ul[v[|B

let T — P(crszk, z, w)

set S« C||m

Figure 3. UC Blind Signature Scheme: Issue Protocol

We note that our protocol is defined in the common reference string model. In
contrast to the case of UC commitments in [7] where a fresh common reference
string for each commitment through Fcom is required, in our case the once
generated common reference string can be used for several signature generations
by different users; we merely need an independent common reference string for
each party taking the role of a bank.

Construction 3 (Universally Composable Blind Signature Scheme).
Let (KGsig, Sig, Vfsig) be a signature scheme, (KGgnc, Enc,Dec) be an encryp-
tion scheme, and (Ccom,Com) be a commitment scheme. Let (Czi, P,V) be a
non-interactive zero-knowledge proof system for RPS and let (Css, Pss, Vss) be a
non-interactive zero-knowledge proof system for R**. Define the following four
procedures:

CRS Generation. Algorithm Cpg on input 1" generates crszx — Czr(1™),
cr5com < Ccom(1™), crsss + Css(1™) and pairs (pkgnc, Skenc)s (Phenc, Skenc) <
KGenc(1™). It outputs crsps < (crszi, crscom, Prenc PKencs CTSss)-

Key Generation. If party B with access to crspg receives (KeyGen, sid) it checks
that sid = (B, sid') for some sid . If not, it ignores. Else it generates a signa-

ture key pair (pks;g, sksig) <« KGsig(1"). It sets (pkpg, skps) < (pksig, sksig),
stores skpsand outputs (VerificationKey, sid, pkpg).

Signature Issue Protocol. If partyU is invoked with input (Sign, sid, m, pkgg)
for sid = (B, sid') it initiates a run of the interactive protocol in Figure &
with the bank B, where the user gets m and pkgg as input and the bank uses
skps as input. The user outputs (Signature, sid,m,S) for the derived sig-
nature value S.

Signature Verification. If a party receives (Verify, sid,m, S, pkig) it parses
S as S = C||m, computes ¢ « V(crs,z,m) for v = C||pkgyc|| crscom| | phs;g|Im
and outputs (Verified, sid, m,o,).

Theorem 4. Let (KGsjg, Sig, Vfsig) be a length-invariant signature scheme which
is unforgeable against adaptive chosen-message attacks and for which Sig is
deterministic. Let (KGgne, Enc, Dec) be a length-invariant IND-CPA secure en-
cryption scheme, (Ccom, Com) be a length-invariant non-interactive commitment
scheme in the common reference string model which is statistically binding. Also
let (Czx,P,V) be a non-interactive zero-knowledge proof system for RPS with
deterministic verifier V. Let (Css, Pss, Vss) be a simulation-sound non-interactive
zero-knowledge proof for R**. Then the scheme defined in Construction 3 securely
realizes functionality Fpisig for non-adaptive corruptions.

The idea of the proof is as follows. Algorithm BlSig for functionality Fpigig,
supposed to be determined by the ideal-model adversary and to create signa-
tures for honest users, ignores its input m entirely, but instead prepares a dummy
encryption C' «+ Enc(pkg,., 09 *+5("):4) and appends a fake correctness proof
7 generated by the zero-knowledge simulator. The output C||7 is thus indis-
tinguishable from genuinely generated signatures of honest users in the actual
scheme. On the other hand, the additional encryption F and the simulation-
sound zero-knowledge proof allows the ideal-model adversary to extract poten-
tial signatures C||m of malicious users (in black-box simulations), and to provide
them to the functionality. The completeness and consistency condition of Fpisig
is realized by the completeness of the underlying scheme, and unforgeability
follows as for the basic scheme with concurrent security.

Proof. (of Theorem 4) We have to show that for each adversary A attacking
the real-world protocol there exist an ideal-model adversary (aka. simulator)
S in the ideal world with dummy parties and functionality Fpigig such that no
environment Z can distinguish whether it is facing an execution in the real world
with A or one in the ideal world with S.

We build the ideal-model adversary S by black-box simulation of A, relaying
all communication between the environment Z and the (simulated) adversary
A, and acting on behalf of the honest parties in this simulation. Algorithm S
also corrupts a dummy party in the ideal model whenever A asks to corrupt the
corresponding party in the simulation. By assumption this is only done before
the execution starts.

The ideal-model simulator S first generates a reference string crsgg for the
black-box simulation by picking encryption keys (skenc, Phienc)s (SkEnc> PRenc) —

KGgne(1™), generating crscom < Ccom(1™) and running the zero-knowledge simu-
lators to generates crsys as well as crszi for the zero-knowledge proofs. It outputs
crsps = (Pkigne, PKEnc, CTSsss CTSCom, €TSzK). We next describe the simulation of the
honest parties in the black-box simulation:

— Suppose the simulator is woken up through a call (KeyGen, sid) from Fgisig
in the ideal model where sid = (B,sid’). Then the simulator generates
(pkgs, skps) < KGps(1™) as specified by the scheme’s description and lets
BISig be the algorithm that on input m € {0,1}" computes the encryption
C' + Enc(pkgye, 06005 4)) and generates 7 through the zero-knowledge
simulator for relation RS where z «— C/||pkgn.|| crscom||pksig||m, and outputs
S « C||n. Simulator S returns (VerificationKey, sid, pkpg, BISig) to Frisig
in the ideal model. In the black-box simulation it sends pkgg to all parties.

— Suppose that the adversary lets a corrupt user in the black-box simulation
initiate a protocol run with the honest bank by sending values (U, E, 7gs).
Then the simulator first checks the validity of the proof mg; if this check
fails then it ignores this message. Else, S uses the secret key skg,. to recover
m||v|ju from E (and aborts if it fails) and submits (Sign, sid, m, pkgg) on
behalf of the user to the ideal functionality. It immediately receives a request
(Signature, sid, m) from Fgigig. To answer, S computes the signature B «+
Sig(sksig, U) under the unforgeable signature scheme, an encryption C «—
Enc(pkgne, U||B;v) and a proof m < P(crszk, z,w) for the extracted values
and sends (Signature, sid, m,S) for S « C||m back to the functionality. It
also returns B in the black-box simulation to the corrupt user.

— If an honest user requests a signature (Sign, sid, m, pkgg) in the ideal model
and waits to receive (Signature, sid,m,S), generated by the functionality
through algorithm BISig, then the ideal-model adversary generates strings
U «— Com(crscom,0™;u), E — Enc(pkgne,0...0;u) and a proof mgs via the
zero-knowledge simulator of the simulation-sound scheme and lets the user in
the black-box simulation send these values (U, E, 7). If the bank is honest,
then S uses the secret signing key sksig to compute B «— Sig(sksig, U), else
it waits to receive a value B from the adversarial controlled bank.

— If S in the ideal model gets a request (Verify, sid, m, S, pkizg) then it com-
putes ¢ « V(ers, PK, x,7) and returns (Verified, sid,m, S, ¢).

This gives a full description of the ideal-model simulator. For the analysis note
that there are two main differences between the ideal-model and the black-box
simulation compared to an actual attack on the protocol. First, in the black-box
simulation we use fake values (commitments and encryptions of zero-strings,
simulated proofs etc.). The second point to address is that the verification al-
gorithm in the ideal model returns 0 if there is no recorded pair (m,*, pkgg, 1)
while in the real-life protocol Vfgg may output 1; for any other verification re-
quests the answers are identical as the verification algorithm Vfgg merely runs
the deterministic verification algorithm of the NIZK system (and thus guarantees
completeness and, especially, consistency).

We claim that the differences are undetectable for the environment Z. This
is proven through a sequence of games transforming an execution in the ideal-

model scenario into one which is equal to the one of the actual protocol. In
these games we will have full control over the setting, in particular over the
functionality and, in contrast to the ideal-model adversary, we will also read
the inputs of Z to honest users. This is admissible since our goal is to emulate
Z’s environment and to use differences in the output behavior to contradict the
security of the underlying cryptographic primitives.

Experiment Game(n) describes the original attack of Z on the ideal-model
simulation (including the black-box simulation of A).

In Game;(n) we change the way the commitments U on behalf of honest
users are computed in A’s black-box simulation. Originally, the simula-
tor S computes a fake commitment U «— Com(crscom,0™; u). Now, when-
ever the simulator is supposed to create such a commitment, we let U «
Com(erscom,m;u) for the right value m (given as input to the honest user
by Z), and u,v < {0,1}" are picked at random. Because of the secrecy of
Com it is easy to see that Z’s output behavior will not change significantly
when facing Game; (n) instead of Gamey(n).

Next, in Games(n), we replace every encryption C' « Enc(pkg,., 060 +5(%); 1)
in the computations of algorithm BISig through an encryption of the actual
values U||B, i.e., C' «— Enc(pkg,, U||B;v), where we provide the values U and
B transmitted in the black-box simulation “adaptively” to algorithm BISig.
By the security of the encryption scheme this is indistinguishable from the
environment’s viewpoint.

In Games(n) we replace every steps of the zero-knowledge proof in the com-
putation of BISig through steps of the actual proof system, i.e., generation
of erszi through crszx < Czk(1™), and every generation of 7 through the
prover (for the now genuine witness w = wul|v||B). By the zero-knowledge
property this substitution is indistinguishable for the environment Z.

Now we turn to the difference between the ideal-model verification through
list comparisons and the real-life verification through Vfgg. In Gamey(n)
every time the verification algorithm in Games(n) was called by some hon-
est user about input (Verify, sid, m, S, pkgg) then we run the verification
Vfps(crsps, pkpg, m, S) instead (the case pkizg # pkpg is treated as before).
Consider in Gameg(n) the event that some user requests the functionality
to verify a signature (Verify, sid, m,S, pkgg) such that there is no entry
(m, %, pkgg, 1) stored by the functionality (and the bank B is honest) but
such that Vfgg returns 1. This would clearly allow to distinguish the two
games (note that the other direction, that Vfgg yields 0 but there is an
entry, cannot happen by the completeness of the blind signature scheme).
We claim that if such a request should occur with noticeable probability
this would contradict the unforgeability of the blind signature scheme in the
previous section (there, unforgeability was proven for arbitrary, unforgeable
signature scheme for the bank, and thus holds for the deterministic one we
consider here as well).

Specifically, we show how to turn a run of Games(n) with A and Z into an
attack according to experiment ForgeE,S* (n). For this we run the same experi-
ment as in Gameg(n) but this time we are use the oracle access to the bank’s

signing oracle Sig(sksig, -) instead of generating the key pair (sksig, pks;y) our-
selves (recall that the bank is assumed to be honest). Each time an honest
user receives input (Sign, sid, m, pkgg) we generate U, E, g as in Gamez(n),
including a valid commitment U <« Com(crscom, m;u), and submit U to
the bank to receive B. From this answer we honestly compute the signature
S« C||w. We memorize the pair (m, S) and the values (U, B).

If a corrupt user submits U, E, 7y in the black-box simulation then we also
check the proof 7g (and do nothing if it is invalid). If the proof is accepted
then we check if we have stored a pair (U, B) for some B. If so, we return
the same B as before in the black-box simulation but without contacting
the bank in the attack ForgeBS(n) (since the bank’s signature would be
identical we answer consistently). If there is no such pair (U, B) we use sk,
to extract appropriate values m|[v||u. By the simulation soundness of the
NIZK this extraction works with overwhelming probability (because U has
never appeared for an honest user in the execution before). We submit U
to the bank’s signature oracle to receive a value B, which we return to the
corrupt user in the black-box simulation. We also deduce the signature S
with the help of the extracted values and record (m,S) and (U, B).
Suppose that a user at some point sends a request (Verify, sid,m, S, pkg)
for a message m which we have not stored (and which is thus new) but for
which Vfgg accepts. Then we immediately stop and output all previously
stored k message/signature pairs together with (m,S). Note that this im-
plies that all our k£ + 1 pairs are accepted by Vfgs, although we only had k&
interactions with the bank. Hence, if a mismatch in Gamegz(n) happens with
noticeable probability it would refute the unforgeability of the blind signa-
ture scheme of the previous section. It follows that Games(n) and Game4(n)
are indistinguishable.

— In Games(n) we can omit the extraction step where the ideal-model simulator
decrypts E from submissions of corrupt users, in particular, we do not need
to know the secret key skg,. anymore for the simulation. This is so since
the verification now only relies on Vfgg instead of lists. Furthermore every
time we gave a dummy encryption E « Enc(pkg,.,0...0;u’) for an honest
user, we now encrypt the true values E < Enc(pk,., m||v||u;u’) to prepare
the correct values U and C. By the security of the encryption scheme this is
indistinguishable for the environment.

— In Gameg(n) we replace the simulation of proofs mgs for honest users through
proofs computed by the prover’s algorithm for witness m||v||u (with respect
to a truly random string crsy). The zero-knowledge property ensures that
this will not significantly affect the environment’s output.

All the steps in the final game now are exactly as in an attack on the real pro-
tocol with adversary A. Therefore, the environment’s output in the ideal-model
simulation (Gameg(n)) and the real-world execution (Gameg(n)) are indistin-
guishable. a

We finally note that, analogously to the case of our concurrently-secure
scheme, we can also extend the functionality Fgisiz to handle partially blind

signatures, and can realize this functionality by starting with the partially blind
version of our concurrently-secure blind signature scheme and adding the en-
cryption and the simulation-sound proof as before.

Acknowledgments

We thank the anonymous reviewers for comprehensive comments.

References

10.

11.

. Masayuki Abe. A Secure Three-Move Blind Signature Scheme for Polynomially

Many Signatures. Advances in Cryptology — Eurocrypt 2001, Volume 2045 of
Lecture Notes in Computer Science, pages 136—151. Springer-Verlag, 2001.

. Masayuki Abe and Eiichiro Fujisaki. How to Date Blind Signatures. Advances in

Cryptology — Asiacrypt’96, Volume 1163 of Lecture Notes in Computer Science,
pages 244—251. Springer-Verlag, 1996.

. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.

The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind Sig-
nature Scheme. Journal of Cryptology, 16(3):185-215, 2003.

. Alexandra Boldyreva. Efficient Threshold Signatures, Multisignatures and Blind

Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. Public-Key
Cryptography (PKC) 2003, Volume 2567 of Lecture Notes in Computer Science,
pages 31-46. Springer-Verlag, 2003.

. Ran Canetti. Universally Composable Security: A new Paradigm for Cryptographic

Protocols. Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS) 2001. IEEE Computer Society Press, for an updated version see
eprint.iacr.org, 2001.

. Ran Canetti. On Universally Composable Notions of Security for Signature, Certi-

fication and Authentication. Proceedings of Computer Security Foundations Work-
shop (CSFW) 2004. IEEE Computer Society Press, for an updated version see
eprint.iacr.org, 2004.

. Ran Canetti and Marc Fischlin. Universally Composable Commitments. Advances

in Cryptology — Crypto 2001, Volume 2139 of Lecture Notes in Computer Science,
pages 19-40. Springer-Verlag, 2001.

. David Chaum. Blind Signatures for Untraceable Payments. Advances in Cryptol-

ogy — Crypto’82, pages 199-203. Plemum, New York, 1983.

. Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. FEfficient Blind Sig-

natures Without Random Oracles. Security in Communication Networks, Volume
3352 of Lecture Notes in Computer Science, pages 134—148. Springer-Verlag, 2004.
Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally Com-
posable Two-Party and Multi-Party Secure Computation. Proceedings of the An-
nual Symposium on the Theory of Computing (STOC) 2002, pages 494-503. ACM
Press, 2002.

Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust Non-interactive Zero Knowledge. Advances in Cryptology
— Crypto 2001, Volume 2139 of Lecture Notes in Computer Science, pages 566—
598. Springer-Verlag, 2001.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Ivan Damgard and Jens Groth. Non-interactive and Reusable Non-Malleable Com-
mitment Schemes. Proceedings of the Annual Symposium on the Theory of Com-
puting (STOC) 2003, pages 426-437. ACM Press, 2003.

Alfredo De Santis and Giuseppe Persiano. Zero-Knowledge Proofs of Knowledge
Without Interaction. Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS)’92, pages 427-436. IEEE Computer Society Press, 1992.
Marc Fischlin. Round-Optimal Composable Blind Signatures in the Common Ref-
erence String Model. full version. available at www.fischlin.de, 2006.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple NonInteractive Zero Knowl-
edge Proofs Under General Assumption. SIAM Journal on Computing, 29(1):1-28,
1999.

Johan Hastad, Russel Impagliazzo, Leonid Levin, and Michael Luby. A Pseudo-
random Generator from any One-way Function. SIAM Journal on Computing,
28(4):1364-1396, 1999.

Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of Blind Digital Signatures.
Advances in Cryptology — Crypto’97, Volume 1294 of Lecture Notes in Computer
Science, pages 150-164. Springer-Verlag, 1997.

Aggelos Kiayias and Hong-Sheng Zhou. Two-Round Concurrent Blind Signa-
tures without Random Oracles. Number 2005/435 in Cryptology eprint archive.
eprint.iacr.org, 2005.

Yehuda Lindell. Bounded-Concurrent Secure Two-Party Computation Without
Setup Assumptions. Proceedings of the Annual Symposium on the Theory of Com-
puting (STOC) 2003, pages 683-692. ACM Press, 2003.

Yehuda Lindell. Lower Bounds for Concurrent Self Composition. Theory of Cryp-
tography Conference (TCC) 2004, Volume 2951 of Lecture Notes in Computer
Science, pages 203—222. Springer-Verlag, 2004.

Matt Lepinski, Silvio Micali, and Abhi Shelat. Fair Zero-Knowledge. Theory of
Cryptography Conference (TCC) 2005, Volume 3378 of Lecture Notes in Computer
Science, pages 245—-263. Springer-Verlag, 2005.

Moni Naor. Bit Commitment Using Pseudo-Randomness. Journal of Cryptology,
4(2):151-158, 1991.

Moni Naor and Moti Yung. Universal One-Way Hash Functions and Their Cryp-
tographic Applications. Proceedings of the Annual Symposium on the Theory of
Computing (STOC) 1989, pages 33-43. ACM Press, 1989.

Tatsuaki Okamoto. Efficient Blind and Partially Blind Signatures Without Random
Oracles. Theory of Cryptography Conference (TCC) 2006, Volume 3876 of Lecture
Notes in Computer Science, pages 80-99. Springer-Verlag, 2006.

David Pointcheval. Strengthened Security for Blind Signatures. Advances in Cryp-
tology — Eurocrypt’98, Volume 1403 of Lecture Notes in Computer Science, pages
391-405. Springer-Verlag, 1998.

David Pointcheval and Jacques Stern. Security Arguments for Digital Signatures
and Blind Signatures. Journal of Cryptology, 13(3):361-396, 2000.

John Rompel. One-Way Functions are Necessary and Sufficient for Secure Signa-
tures. Proceedings of the Annual Symposium on the Theory of Computing (STOC)
1999, pages 387-394. ACM Press, 1990.

Amit Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS) 1999. IEEE Computer Society Press, 1999.

