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Abstract. We consider two of the most fundamental theorems in Cryp-
tography. The first, due to H̊astad et al. [HILL99], is that pseudorandom
generators can be constructed from any one-way function. The second
due to Yao [Yao82] states that the existence of weak one-way functions
(i.e. functions on which every efficient algorithm fails to invert with some
noticeable probability) implies the existence of full fledged one-way func-
tions. These powerful plausibility results shape our understanding of
hardness and randomness in Cryptography. Unfortunately, the reduc-
tions given in [HILL99,Yao82] are not as security preserving as one may
desire. The main reason for the security deterioration is the input blow
up in both of these constructions. For example, given one-way functions
on n bits one obtains by [HILL99] pseudorandom generators with seed
length Ω(n8).
This paper revisits a technique that we call the Randomized Iterate, intro-
duced by Goldreich, et. al. [GKL93]. This technique was used in [GKL93]
to give a construction of pseudorandom generators from regular one-way
functions. We simplify and strengthen this technique in order to obtain a
similar reduction where the seed length of the resulting generators is as
short as O(n log n) rather than Ω(n3) in [GKL93]. Our technique has the
potential of implying seed-length O(n), and the only bottleneck for such
a result is the parameters of current generators against space bounded
computations. We give a reduction with similar parameters for security
amplification of regular one-way functions. This improves upon the re-
duction of Goldreich et al. [GIL+90] in that the reduction does not need
to know the regularity parameter of the functions (in terms of security,
the two reductions are incomparable). Finally, we show that the random-
ized iterate may even be useful in the general context of [HILL99]. In
Particular, we use the randomized iterate to replace the basic building
block of the [HILL99] construction. Interestingly, this modification im-
proves efficiency by an n3 factor and reduces the seed length to O(n7)
(which also implies improvement in the security of the construction).
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1 Introduction

In this paper we address two fundamental problems in cryptography: construct-
ing pseudorandom generators from one-way functions and transforming weak
one-way functions into strong one-way functions. The common thread linking
the two problems in our discussion is the technique we use. This technique that
we call the Randomized Iterate was introduced by Goldreich, Krawczyk and Luby
[GKL93] in the context of constructing pseudorandom generators from regular
one-way functions. We revisit this method, both simplify existing proofs and
utilize our new view to achieve significantly better parameters for security and
efficiency. We further expand the application of the randomized iterate to con-
structing pseudorandom generators from any one-way function. Specifically we
revisit the seminal paper of H̊astad, Impagliazzo, Levin and Luby [HILL99] and
show that the randomized iterate can help improve the parameters within. Fi-
nally, we use the randomized iterate method to both simplify and strengthen
previous results regarding efficient hardness amplification of regular one-way
functions. We start by introducing the randomized iterate in the context of
pseudorandom generators, and postpone the discussion on amplifying weak to
strong one-way function to subsection 1.2.

1.1 Pseudorandom Generators and the Randomized Iterate

Pseudorandom Generators, a notion first introduced by Blum and Micali [BM82]
and stated in its current, equivalent form by Yao [Yao82], are one of the corner-
stones of cryptography. Informally, a pseudorandom generator is a polynomial-
time computable function G that stretches a short random string x into a long
string G(x) that “looks” random to any efficient (i.e., polynomial-time) algo-
rithm. Hence, there is no efficient algorithm that can distinguish between G(x)
and a truly random string of length |G(x)| with more than a negligible proba-
bility. Originally introduced in order to convert a small amount of randomness
into a much larger number of effectively random bits, pseudorandom generators
have since proved to be valuable components for various cryptographic applica-
tions, such as bit commitments [Nao91], pseudorandom functions [GGM86] and
pseudorandom permutations [LR88], to name a few.

The first construction of a pseudorandom generator was given in [BM82]
based on a particular one-way function and was later generalized in [Yao82] into
a construction of a pseudorandom generator based on any one-way permutation.
We refer to the resulting construction as the BMY construction. The BMY
generator works by iteratively applying the one-way permutation on its own
output. More precisely, for a given function f and input x define the ith iterate
recursively as xi = f(xi−1) where x0 = f(x). To complete the construction, one
needs to take a hardcore-bit at each iteration. If we denote by b(x) the hardcore-
bit of x (take for instance the Goldreich-Levin [GL89] predicate), then the BMY
generator on seed x outputs the hardcore-bits b(x0), . . . , b(x`).

The natural question arising from the BMY generator was whether one-way
permutations are actually necessary for pseudorandom generators or can one do



with a more relaxed notion. Specifically, is any one-way function sufficient for
pseudorandom generators? Levin [Lev87] observed that the BMY construction
works for any “one-way function on its iterates”, that is, a one-way function
that remains one-way when applied sequentially on its own outputs. However, a
general one-way function does not have this property since the output of f may
have very little randomness in it, and a second application of f may be easy
to invert. A partial solution was suggested by Goldreich et al. [GKL93] that
showed a construction of a pseudorandom generator based on any regular one-
way function (referred to as the GKL generator). A regular function is a function
such that every element in its image has the same number of preimages. The
GKL generator uses the technique at the core of this paper, that we call the
randomized iterate. Rather than simple iterations, an extra randomization step
is added between every two applications of f . More precisely:

Definition (Informal): (The Randomized Iterate) For function f , input
x and random hash functions h1, . . . , h`, recursively define the ith randomized
iterate (for i ≤ `) by:

f i(x, h1, . . . , h`) = xi = f(hi(xi−1))
where x0 = f(x).

The rational is that hi(xi) is now uniformly distributed, and the challenge
is to show that f , when applied to hi(xi), is hard to invert even when the
randomizing hash functions h1, . . . , h` are made public. Once this is shown, the
generator is similar in nature to the BMY generator (the generator outputs
b(x0), . . . , b(x`), h1, . . . , h`).

Finally, H̊astad et al. [HILL99], culminated this line of research by showing
a construction of a pseudorandom generator using any one-way function (called
here the HILL generator). This result is one of the most fundamental and in-
fluential theorems in cryptography. It introduced many new ideas that have
since proved useful in other contexts, such as the notion of pseudo-entropy and
the implicit use of family of pairwise-independent hash functions as randomness
extractors. We note that HILL departs from GKL in its techniques, taking a
significantly different approach.

The Complexity and Security of the Previous Constructions. While the
HILL generator fully answers the question of the plausibility of a generator based
on any one-way function, the construction is highly involved and very inefficient.
Other than the evident contrast between the simplicity and elegance of the BMY
generator to the complex construction and proof of the HILL generator, the
parameters achieved in the construction are far worse, rendering the construction
impractical.

In practice, it is not necessarily sufficient that a reduction translates poly-
nomial security into polynomial security. In order for reductions to be of any
practical use, the concrete overhead introduced by the reduction comes into
play. There are various factors involved in determining the security of a reduc-
tion. In this discussion, however, we focus only on one central parameter, which
is the length m of the generator’s seed compared to the length n of the input
to the underlying one-way function. The BMY generator takes a seed of length



m = O(n), the GKL generator takes a seed of length m = Ω(n3) while the HILL
construction produces a generator with seed length on the order of m = Ω(n8).4

The length of the seed is of great importance to the security of the resulting
generator. While it is not the only parameter, it serves as a lower bound to how
good the security may be. For instance, the HILL generator on m bits has security
that is at best comparable to the security of the underlying one-way function,
but on only O( 8

√
m) bits. To illustrate the implications of this deterioration in

security, consider the following example: Suppose that we only trust a one-way
function when applied to inputs of at least 100 bits, then the GKL generator
can only be trusted when applied to a seed of length of at least one million bits,
while the HILL generator can only be trusted on seed lengths of 1016 and up
(both being highly impractical). Thus, trying to improve the seed length towards
a linear one (as it is in the BMY generator) is of great importance in making
these constructions practical.

Our Results on Pseudorandom Generators.

Regular One-Way Functions: We give a construction of a pseudorandom
generator from any regular one-way function with seed length O(n log n). We
note that our approach has the potential of reaching a construction with a linear
seed, the bottleneck being the efficiency of the current bounded-space generators.
Our construction follows the randomized iterate method and is achieved in two
steps:

– We give a significantly simpler proof that the GKL generator works, allowing
the use of a family of hash functions which is pairwise-independent rather
than n-wise independent (as used in [GKL93]). This gives a construction
with seed length m = O(n2) (see Theorem 5).

– The new proof allows for the derandomization of the choice of the randomiz-
ing hash functions via the bounded-space generator of Nisan [Nis92], further
reducing the seed length to m = O(n log n) (see Theorem 6).

The proof method: Following is a high-level description of our proof method.
For simplicity we focus on a single randomized iteration, that is on x1 = f1(x, h) =
f(h(f(x))). In general, the main task at hand is to show that it is hard to find
x0 = f(x) when given x1 = f1(x, h) and h. This follows by showing that any
procedure A for finding x0 given (x1, h) enables to invert the one-way function f .
Specifically, we show that for a random image z = f(x), if we choose a random
and independent hash h′ and feed the pair (z, h′) to A, then A is likely to return
a value f(x′) such that h′(f(x′)) ∈ f−1(z) (and thus we obtain an inverse of z).

Ultimately, we assume that A succeeds on the distribution of (x1, h), where
h is such that x1 = f1(x, h), and want to prove A is also successful on the

4 The seed length actually proved in [HILL99] is O(n10), however it is mentioned that
a more careful analysis can get to O(n8). A formal proof for the O(n8) seed length
construction is given by Holenstein [Hol06].



distribution of (x1, h′) where h′ is chosen independently. Our proof is inspired
by a technique used by Rackoff in his proof of the Leftover Hash Lemma (in
[IZ89]). Rackoff proves that a distribution is close to uniform by showing that it
has collision-probability5 that is very close to that of the uniform distribution.
We would like to follow this scheme and consider the collision-probability of
the two aforementioned distributions. However, in our case the two distributions
could actually be very far from each other. Yet, with the analysis of the collision-
probabilities, we manage to prove that the probability of any event under the
first distribution is polynomially related to the probability of the same event
under the second distribution. This proof generalizes nicely also to the case of
many iterations.

The derandomization using bounded-space follows directly from the new
proof. In particular, consider the procedure that takes two random inputs x0 and
x1 and random h1, . . . , h`, and compares f `(x0, h1, . . . , h`) and f `(x1, h1, . . . , h`).
This procedure can be run in bounded-space since it simply needs to store the
two intermediate iterates at each point. Also, this procedure accepts with prob-
ability that is exactly the collision-probability of (f `(x, h1, . . . , h`), h1, . . . , h`).
Thus, replacing h1, . . . , h` with the output of a bounded-space generator cannot
change the acceptance rate by much, and the collision-probability is thus unaf-
fected. The proof of security of the derandomized pseudorandom generator now
follows as in the proof when using independent randomizing hash functions.
Any One-Way Function: The HILL generator takes a totally different path
than the GKL generator. We ask whether the technique of randomized-iterations
can be helpful for the case of any one-way function, and give a positive answer
to this question. Interestingly, this method also improves the efficiency by an n3

factor and reduces the seed length by a factor of n (which also implies improve-
ment in the security of the construction) over the original HILL generator. All in
all, we present a pseudorandom generator from any one-way function with seed
length O(n7) (Corollary 10) which is the best known to date.

Unlike in the case of regular functions, the hardness of inverting the random-
ized iterate deteriorates quickly when using any one-way function. Therefore we
use only the first randomized iterate of a function, that is x1 = f(h(f(x))).
Denote the degeneracy of y by Df (y) = dlog

∣∣f−1(y)
∣∣e (this is a measure that

divides the images of f to n categories according to their preimage size). Let b
denote a hardcore-bit (again we take the Goldreich-Levin hardcore-bit [GL89]).
Loosely speaking, we consider the bit b(x0) when given the value (x1, h) (re-
call that x0 = f(x)) and make the following observation: When Df (x0) ≥
Df (x1) then b(x0) is (almost) fully determined by (x1, h), as opposed to when
Df (x0) < Df (x1) where b(x0) is essentially uniform. But in addition, when
Df (x0) = Df (x1) then b(x0) is computationally-indistinguishable from uniform
(that is, looks uniform to any efficient observer), even though it is actually fully
determined. The latter stems from the fact that when Df (x0) = Df (x1) the
behavior is close to that of a regular function.

5 The collision-probability of a distribution is the probability of getting the same
element twice when taking two independent samples from the distribution.



As a corollary we get that the bit b(x0) has entropy of no more than 1
2 (the

probability of Df (x0) < Df (x1)), but has entropy of at least 1
2 + 1

O(n) in the eyes
of any computationally-bounded observer (the probability of Df (x0) ≤ Df (x1)).
In other words, b(x0) has entropy 1

2 but pseudo-entropy of 1
2 + 1

O(n) . It is this
gap of 1

O(n) between the entropy and pseudo-entropy that eventually allows the
construction of a pseudorandom generator.

Indeed, a function with similar properties lies at the basis of the HILL con-
struction. HILL give a different construction that has entropy p but pseudo-
entropy of at least p + 1

O(n) . However, in the HILL construction the entropy
threshold p is unknown (i.e., not efficiently computable), while with the ran-
domized iterate the threshold is 1

2 . This is a real advantage since knowledge
of this threshold is essential for the overall construction. To overcome this, the
HILL generator enumerates all values for p (up to an accuracy of Ω( 1

n )), runs the
generator with every one of these values and eventually combines all generators
using an XOR of their outputs. This enumeration costs an additional factor n
to the seed length as well an additional factor of n3 to the number of calls to
the underlying function f .
On pseudorandomness in NC1: For the most part, the HILL construction
is “depth” preserving. In particular, given two “non-uniform” hints of log n bits
each (that specify two different properties of the one-way function), the reduction
gives generators in NC1 from any one-way function in NC1. Unfortunately,
without these hints, the depth of the construction is polynomial (rather than
logarithmic). Our construction eliminates the need for one of these hints, and
thus can be viewed as a step towards achieving generators in NC1 from any one-
way function in NC1 (see [AIK04] for the significance of such a construction).

Related Work: Recently, Holenstein [Hol06] gave a generalized proof to the
HILL construction. His proof formally proves the best known seed length for
the HILL construction O(n8), and further shows that if the underlying one-way
function has exponential security (e.g. 2−Cn for a constant C) then the seed
length can be as low as O(n5), or even O(n4 log2 n) if the security of the PRG
is not required to be exponential (but rather superpolynomial). In subsequent
work [HHR06], we show a construction of a PRG based on exponentially strong
one-way functions with seed length of only O(n2) or respectively O(n log2 n)
for a PRG with just superpolynomial security. The new construction follows by
further developing the techniques introduced in this paper.

1.2 One-Way Functions - Amplification from Weak to Strong

The existence of one-way functions is essential to almost any task in cryptog-
raphy (see for example [IL89]) and also sufficient for numerous cryptographic
primitives, such as the pseudorandom generators discussed above. In general,
for constructions based on one-way functions, we use what are called strong
one-way functions. That is, functions that can only be inverted efficiently with
negligible success probability. A more relaxed definition is that of an α-weak one-
way function where α(n) is a polynomial fraction. This is a function that any
efficient algorithm fails to invert on almost an α(n) fraction of the inputs. This



definition is significantly weaker, however, Yao [Yao82] showed how to convert
any weak one-way function into a strong one. The new strong one-way function
simply consists of many independent copies of the weak function concatenated
to each other. The solution of Yao, however, incurs a blow-up factor of at least
ω(1)/α(n) to the input length of the strong function6, which translates to a
significant loss in the security (as in the case of pseudorandom generators).

With this security loss in mind, several works have tried to present an efficient
method of amplification from weak to strong. Goldreich et al. [GIL+90] give a
solution for one-way permutations that has just a linear blowup in the length
of the input. This solution generalizes to “known-regular” one-way functions
(regular functions whose image size is efficiently computable), where its input
length varies according to the required security. The input length is linear when
security is at most 2Ω(

√
n), but deteriorates up to O(n2) when the required

security is higher (e.g., security 2O(n)).7 Their construction uses a variant of
randomized iterates where the randomization is via one random step on an
expander graph.

Our Contribution to Hardness Amplification: We present an alternative
efficient hardness amplification for regular one-way functions. Specifically, we
show that the mth randomized iterate of a weak one-way function along with
the randomizing hash functions form a strong one-way function (for the right
parameter m). Moreover, in Theorem 13 we show that the latter holds also
for the derandomized version of the randomized iterate, giving an almost lin-
ear construction. Our construction is arguably simpler and has the following
advantages:

1. While the [GIL+90] construction works only for known regular weak one-way
functions, our amplification works for any regular weak one-way functions
(whether its image size is efficiently computable or not).

2. The input length of the resulting strong one-way function is O(n log n) re-
gardless of the required security. Thus, for some range of the parameters our
solution is better than that of [GIL+90] (although it is worse than [GIL+90]
for other ranges).

Note that our method may yield an O(n) input construction if bounded-space
generators with better parameters become available.
The Idea: At the basis of all hardness amplification lies the fact that for any
inverting algorithm, a weak one-way function has a set that the algorithm fails
upon, called here the failing-set of this algorithm. The idea is that a large enough
number of randomly chosen inputs are bound to hit every such failing-set and
thus fail every algorithm. Taking independent random samples works well, but
when trying to generate the inputs to f sequentially this rationale fails. The
reason is that sequential applications of f are not likely to give random output,

6 The ω(1) factor stands for the logarithm of the required security. For example, if the
security is 2O(n) then this factor of order n.

7 Loosely speaking, one can think of the security as the probability of finding an inverse
to a random image f(x) simply by choosing a random element in the domain.



and hence are not guaranteed to hit a failing-set. Instead, the natural solution is
to use randomized iterations. However, it might be easy for an inverter to find
some choice of randomizing hash functions so that all the iterates are outside of
the required failing-set. To overcome this, the randomizing hash functions are
also added to the output, and thus the inverter is required to find an inverse that
includes the original randomizing hash functions. In the case of permutations it
is obvious that outputting the randomizing hash functions is harmless, and thus
the mth randomized iterate of a weak one-way permutation is a strong one-
way permutation. However, the case of regular functions requires our analysis
that shows that the randomized iterate of a regular one-way function remains
hard to invert when the randomizing hash functions are public. We also note
that the proof for regular functions has another subtlety. For permutations the
randomized iterate remains a permutation and therefore has only a single inverse.
Regular functions, on the other hand, can have many inverses. This comes into
play in the proof, when an inverting algorithm might not return the right inverse
that is actually needed by the proof.

A major problem with the randomized iterate approach is that choosing fully
independent randomizing hash functions requires an input as long as that of
Yao’s solution (an input of length O(n ·ω(1)/α(n))). What makes this approach
appealing after all, is the derandomization of the hash functions using space-
bounded generators, which reduces the input length to only O(n log n). Note
that in this application of the derandomization, it is required that the bounded-
space generator not only approximate the collision-probability well, but also
maintain the high probability of hitting any failing-set.

We note that there have been several attempts to formulate such a con-
struction, using all of the tools mentioned above. Goldreich et al. [GIL+90] did
actually consider following the GKL methodology, but chose a different (though
related) approach. Phillips [Phi93] gives a solution with input length O(n log n)
using bounded-space generators but only for the simple case of permutations
(where [GIL+90] has better parameters). Di Crescenzo and Impagliazzo [DI99]
give a solution for regular functions, but only in a model where public random-
ness is available (in the mold of [HL92]). Their solution is based on pairwise-
independent hash functions that serve as the public randomness. We are able
to combine all of these ingredients into one general result, perhaps due to our
simplified proof.

Additional Issues:

– On Non-Length-Preserving Functions: Throughout the paper we focus
on length preserving one-way functions. In the full version we demonstrate
how our proofs may be generalized to use non-length preserving functions.
This generalization requires the use of a construction of a family of almost
pairwise-independent hash functions.

– The Results in the Public Randomness Model: Similarly to previous
works, our results also give linear reductions in the public randomness model.
This model (introduced by Herzberg and Luby [HL92]) allows the use of
public random coins that are not regarded a part of the input. However,



our results introduce significant savings in the amount of public randomness
that is necessary.

Paper Organization: In Section 2, we present our construction of pseudoran-
dom generators from regular one-way functions. In Section 3, we present our
improvement to the HILL construction of pseudorandom generators from any
one-way function. Finally, in Section 4, we present our hardness amplification of
regular one-way functions. Due to space limitations, we only give the outlines of
some of the proofs. For the same reasons, we omit the standard definitions and
notations. Both the full proofs and the definitions can be found in the paper’s
full version [HHR05].

2 Pseudorandom Generators from Regular One-Way
Functions

Some Motivation and the Randomized Iterate

Recall that the BMY generator simply iterates the one-way permutation f on
itself, and outputs a hardcore-bit of the intermediate step at each iteration. The
crucial point is that the output of the function is also uniform in {0, 1}n since f
is a permutation. Hence, when applying f to the output, it is hard to invert this
last application of f , and therefore hard to predict the new hardcore-bit (Yao
shows [Yao82] that the unpredictability of bits implies pseudorandomness). Since
the seed is essentially just an n bit string and the output is as long as the number
of iterations, the generator actually stretches the seed.

We want to duplicate this approach for general one-way functions, but unfor-
tunately the situation changes drastically when the function f is not a permu-
tation. After a single application of f , the output may be very far from uniform,
and in fact, may be concentrated on a very small and easy fraction of the inputs
to f . Thus, reapplying f to this output gives no hardness guarantees at all. In an
attempt to salvage the BMY framework, Goldreich et. al. [GKL93] suggested to
add a randomization step between every two applications of f , thus making the
next input to f a truly random one. This modification that we call randomized
iterates lies at the core of our work and is defined next:

Definition 1 (The kth Randomized Iterate of f) Let f : {0, 1}n → {0, 1}n

and let H be an efficient family of pairwise-independent hash functions from
{0, 1}n to {0, 1}n. For input x ∈ {0, 1}n and h1, . . . , hk−1 ∈ H define the kth

Randomized Iterate fk : {0, 1}n ×Hk → Im(f) recursively as:

fk(x, h1, . . . , hk) = f(hk(fk−1(x, h1, . . . , hk−1))),

where f0(x) = f(x). For convenience we denote by xk def= fk(x, h1, . . . , hk).8

Another handy notation is the kth explicit randomized iterate f̂k : {0, 1}n ×
Hk → Im(f)×Hk defined as:

f̂k(x, h1, . . . , hk) = (fk(h1, . . . , hk), h1, . . . , hk).
8 We make use the notation xk only when the values of h1, . . . , hk and x are clear by

the presentation.



The application of the randomized iterate for pseudorandom generators is
a bit tricky. On the one hand, such a randomization costs a large number of
random bits, much larger than what can be compensated for by the hardcore-bits
generated in each iteration. So in order for the output to actually be longer than
the input, we also output the descriptions of the hash functions (in other words,
use the explicit randomized iterate f̂k). But on the other hand, handing out the
randomizing hash gives information on intermediate values such as hi(xi). Hence,
f might no longer be hard to invert when applied to such an input. Somewhat
surprisingly, the last randomized iterate of a regular one-way function remains
hard to invert even when the hash functions are known. This fact, which is
central to the whole approach, was proved in [GKL93] when using a family of
n-wise independent hash functions. We give a simpler proof that extends to
pairwise-independent hash functions as well.

Remark: In the definition of randomized iterate we define f0(x) = f(x). This
was chosen for ease of notation and consistency with the results for general OWFs
(Section 3). For the regular OWF construction it suffices to define f0(x) = x,
thus saving a single application of the function f .

The Last Randomized Iteration is Hard to Invert
In this section we formally state and prove the key observation mentioned above.
That is, that after applying k randomized-iterations of a regular one-way func-
tion f , it is hard to invert the last iteration, even if given access to all of the
hash functions leading up to this point.

Lemma 2 Let f be a length-preserving regular one-way function, H be an effi-
cient family of pairwise-independent length-preserving hash functions and xk be
the kth randomized iterates of f (Definition 1). Then for any ppt A and every
k ∈ poly(n), we have:

Pr
(x,h1,...,hk) ← (Un,Hk)

[A(xk, h1, . . . , hk) = xk−1] ∈ neg(n)

where the probability is also taken over the random coins of A.
More precisely, if such a ppt A succeeds with probability ε, then there exists

a probabilistic polynomial time oracle machine MA that succeeds in inverting f
with probability at least ε3/8(k+1) with essentially the same running time as A.

We briefly give some intuition to the proof, illustrated with regard to the
first randomized iterate. Suppose that we have an algorithm A that always finds
x0 given x1 = f1(x, h) and h. In order to invert the one-way function f on an
element z ∈ Im(f), we simply need to find a hash h′ that is consistent with z,
in the sense that there exists an x′ such that z = f1(x′, h′). Now we simply run
y = A(z, h′), and output h′(y) (and indeed f(h′(y)) = z). The point is that if f
is a regular function, then finding a consistent hash is easy, because a random
and independent h′ is likely to be consistent with z. The actual proof follows
this framework, but is far more involved due to the fact that the reduction starts
with an algorithm A that has only a small (yet polynomial) success probability.



Proof: Suppose for sake of contradiction that there exists an efficient algorithm
A that given (xk, h1, . . . , hk) computes xk−1 with probability ε for some poly-
nomial fraction ε(n) = 1/poly(n) (for simplicity we write ε). In particular, A

inverts the last-iteration of f̂k with probability at least ε, that is

Pr
(x,h1,...,hk) ← (Un,Hk)

[f(h(A(f̂k(x, h1, . . . , hk)))) = fk(x, h1, . . . , hk)] ≥ ε

Our goal is to use this procedure A in order to break the one-way function f .
Consider the procedure MA for this task:

MA on input z ∈ Im(f):
1. Randomly (and independently) choose h1, . . . , hk ∈ H.
2. Apply A(z, h1, . . . , hk) to get an output y.
3. If f(hk(y)) = z output hk(y), otherwise abort.

The rest of the proof of Lemma 2 shows that MA succeeds with probability
at least ε3/8(k + 1) on inputs z ∈ Im(f).

We start by focusing our attention only on those inputs for which A succeeds
reasonably well. Recall that the success probability of A is taken over the choice
of inputs to A, as induced by the choice of x ∈ {0, 1}n and h1, . . . , hk ∈ H and
the internal coin-tosses of A. The following Markov argument (proof omitted)
implies that the probability of getting an element in the set that A succeeds on
is not very small:

Claim 3 Let SA ⊆ Im(f̂k) be the subset defined as:

SA =
{

(y, h1, . . . , hk) ∈ Im(f̂k) | Pr[f(hk(A(y, h1, . . . , hk))) = y] >
ε

2

}
,

then
Pr

(x,h1,...,hk) ← (Un,Hk)
[f̂k(x, h1, . . . , hk) ∈ SA] ≥ ε

2
.

Now that we identified a subset of polynomial weight of the inputs that A
succeeds upon, we want to say that MA has a fair (polynomially large) chance
to hit outputs induced by this subset. This is formally shown in the following
lemma.

Lemma 4 For every set T ⊆ Im(f̂k), if

Pr
(x,h1,...,hk) ← (Un,Hk)

[f̂k(x, h1, . . . , hk) ∈ T ] ≥ δ,

then
Pr

(z,h1,...,hk) ← (f(Un),Hk)
[(z, h1, . . . , hk) ∈ T ] ≥ δ2/(k + 1).

We stress that the probability in the latter inequality is over z drawn from f(Un)
and an independently chosen h1, . . . , hk ∈ H.



Assuming Lemma 4, we may conclude the proof of Lemma 2. By Claim 3 we
have that Pr[(xk, h1, . . . , hk) ∈ SA] ≥ ε

2 . By Lemma 4, taking T = SA and δ =
ε/2, we get that Pr[(z, h1, . . . , hk) ∈ SA] ≥ ε2/4(k+1). Thus, MA has a ε2/4(k+
1) chance of hitting the set SA on which it will succeed with probability at least
ε/2. Altogether, MA succeeds in inverting f with the polynomial probability
ε3/8(k + 1), contradicting the one-wayness of f .

Proof: (of Lemma 4) The lemma essentially states that with respect to f̂k, any
large subset of inputs induces a large subset of outputs. Thus, there is a fairly
high probability of hitting this output set simply by sampling independent z and
h1, . . . , hk. Intuitively, if a large set of inputs induces a small set of outputs, then
there must be many collisions in this set (a collision means that two different
inputs lead to the same output). However, we show that this is impossible by
proving that the collision-probability of the function f̂k is small. The proof
therefore follows by analyzing the collision-probability of f̂k. For every two inputs
(x0, h1

0, . . . , hk
0) and (x1, h1

1, . . . , hk
1) to f̂k, in order to have a collision we

must first have that hi
0 = hi

1 for every i ∈ [k], which happens with probability
(1/ |H|)k. Now, given that hi

0 = hi
1 = hi for all i (with a random hi ∈ H),

we require also that xk
0 = fk(x0, h1, . . . , hk) equals xk

1 = fk(x1, h1, . . . , hk). If
f(x0) = f(x1) (happens with probability 1/ |Im(f)|), then a collision is assured.
Otherwise, there must be an i ∈ [k] for which xi−1

0 6= xi−1
1 but xi

0 = xi
1 (where

x0 denotes the input x). Since xi−1
0 6= xi−1

1 , due to the pairwise-independence of
hi, the values hi(xi−1

0 ) and hi(xi−1
1 ) are uniformly random values in {0, 1}n, and

thus f(hi(xi−1
0 )) = f(hi(xi−1

1 )) happens with probability 1/ |Im(f)|. Altogether:

CP (f̂k(Un,Hk)) ≤ 1

|H|k
k∑

i=0

1
|Im(f)| ≤

k + 1

|H|k |Im(f)|
(1)

On the other hand, we check the probability of getting a collision inside the set
T , which is a lower bound on the probability of getting a collision at all. We
first request that both (x0, h1

0, . . . , hk
0) ∈ T and (x1, h1

1, . . . , hk
1) ∈ T . This

happens with probability at least δ2. Then, once inside T , we know that the
probability of collision is at least 1/ |T |. Altogether:

CP (f̂k(Un,Hk)) ≥ δ2 1
|T | (2)

Combining (1) and (2) we get |T |
|H|k|Im(f)| ≥ δ2

k+1 .
But the probability of getting a value in T when choosing a random element in
Im(f)×Hk is exactly |T |

|H|k|Im(f)| . Thus, Pr[(z, h1, . . . , hk) ∈ T ] ≥ δ2/(k + 1) as
requested.

Remark: The proof of Lemma 4 is where the regularity of the one-way func-
tion is required. In the case of general one-way functions, we cannot apply
the above proof, since the collision-probability at the heart of the proof (i.e.,



CP (f̂k(Un,Hk))) might be much larger than the collision probability of the uni-
form distribution over Im(f). Alternatively, we could prove the lemma in the
case that the last element in a sequence of applications is at least as heavy as all
the elements along the sequence. Unfortunately, for general OWFs this occurs
with probability that deteriorates linearly (in the length of the sequence). Thus,
using a long sequence of iterations is likely to lose the hardness of the original
OWF. 9

A Pseudorandom Generator from a Regular One-Way Function
After showing that the randomized-iterations of a regular one-way function are
hard to invert, it is natural to follow the footsteps of the BMY construction to
construct a pseudorandom generator. Rather than using simple iterations of the
function f , randomized-iterations of f are used instead, with fresh randomness
in each application. As in the BMY case, a hardcore-bit of the current input is
taken at each stage. Formally:
Theorem 5 Let f : {0, 1}n → {0, 1}n be a regular length-preserving one-way
function and let H be an efficient family of pairwise-independent length preserv-
ing hash functions, let G be:

G(x, h1 . . . , hn, r) = (br(x0), . . . , br(xn), h1, . . . , hn, r),
where:
– x ∈ {0, 1}n and h1 . . . , hn ∈ H.
– Recall that x0 = f(x) and for 1 ≤ i ≤ n xi = f(hi(xi−1)).
– br(xi) denotes the GL-hardcore bit of xi.

Then G is a pseudorandom generator.
Note that the above generator does not require the knowledge of the preimage

size of the regular one-way function. The generator requires just n+1 calls to the
underlying one-way function f (each call is on an n bit input). The generator’s
input is of length m = O(n2) and it stretches the output to m + 1 bits. The
proof of security follows by a standard hybrid argument and is given in the full
version of the paper [HHR05].

An Almost-Linear-Input Construction from a Regular One-Way
Function
The pseudorandom generator presented in the previous section (Theorem 5)
stretches a seed of length O(n2) by one bit. Although this is an improvement
over the GKL generator, it still translates to a rather high loss of security. That
is, the security of the generator on m bits relies on the security of regular one-
way function on

√
m bits. In this section we give a modified construction of the

pseudorandom generator that takes a seed of length only m = O(n log n).
Notice that the input length of the generator is dominated by the description

of the n independent hash functions h1, . . . , hn. The idea of the new construc-
tion is to give a derandomization of the choice of the n hash functions. Thus,
h1, . . . , hn are no longer chosen independently, but are chosen in a way that
9 In [HHR06] we use a variant of the latter idea to get an efficient pseudorandom from

exponentially hard one-way functions.



is sufficient for the proof to go through. The derandomization uses generators
against bounded-space distinguishers. Specifically, we can use the generator of
Nisan [Nis92] (or that of Impagliazzo, Nisan and Wigderson [INW94]). An im-
portant observation is that calculating the randomized iterate of an input can be
viewed as a bounded-space algorithm, alternatively presented here as a bounded-
width layered branching-program. More accurately, at each step the branching
program gets a random input hi and produces xi+1 = f(hi(xi)). We will show
that indeed when replacing h1, . . . , hn with the output of a generator that fools
related branching programs, then the proof of security still holds (and specifically
the proof of Lemma 4).

For our application we use the bounded-space generator with parameters
t = n, S = 2n and ` = 2n (or more generally, ` is taken to be the description
length of a hash function in H). Finally, the error is chosen to be ε = 2−n. The
generator therefore stretches O(n log n) bits to n · 2n bits. Denote the bounded-
space generator by BSG : {0, 1}cn log n → {0, 1}2n2

, where c is a universal con-
stant. For convenience denote ñ = cn log n.

The New Pseudorandom Generator
Theorem 6 For any regular length-preserving one-way function f , let G′ be:

G′(x, h̃, r) = (br(x0), . . . , br(xn), h̃, r),

where:

– x ∈ {0, 1}n and h̃ ∈ {0, 1}ñ.
– (h1, . . . , hn) = BSG(h̃).
– Recall that x0 = f(x) and for 1 ≤ i ≤ n, xi = f(hi(xi−1)).
– br(xi) denotes the GL-hardcore bit of xi.

Then G′ is a pseudorandom generator.
Proof outline: The proof of the derandomized version follows in the steps of
the proof of Theorem 5. We give a high-level outline of this proof, focusing only
on the main technical lemma that changes slightly.

The proof first shows that given the kth randomized iterate xk and all of the
randomizing hash functions, it is hard to compute xk−1 (analogously to Lemma
2), only now this also holds when the hash functions are chosen as the output
of the bounded-space generator. The proof is identical to the proof of 2, only
replacing appearances of (h1, . . . , hk) with the seed h̃. Again, the key to the proof
is the following technical lemma (slightly modified from Lemma 4, the proof of
the lemma is given in the full version [HHR05]).

Lemma 7 For every set T ⊆ Im(f)× {0, 1}ñ, if

Pr
(x,h̃) ← (Un,Uñ)

[(xk, h̃) ∈ T ] ≥ δ,

then
Pr

(z,h̃) ← (f(Un),Uñ)
[(z, h̃) ∈ T ] ≥ δ2/(k + 2),

where probability is over z ∈ f(Un) and an independently chosen h̃ ∈ {0, 1}ñ.



Once we know that xk−1 is hard to compute, we deduce that one cannot
predict a hardcore-bit br(xk−1) given xk and the seed to the bounded-space
generator. From here, the proof follow just as the proof of Theorem 5 in showing
that the output of G′ is an unpredictable sequence and therefore a pseudorandom
sequence.

Remark: It is tempting to think that one should replace Nisan/INW generator
in the above proof with the generator of Nisan and Zuckerman [NZ96]. That
generator may have seed of size O(n) (rather than O(n log n)) when S=2n as in
our case. Unfortunately, with such a short seed, that generator will incur an error
ε = 2−n1−γ

for some constant γ, which is too high for our proof to work. In order
for the proof to go through we need that ε < poly(n)/ |Im(f)|. Interestingly, this
means that we get a linear-input construction when the image size is significantly
smaller than 2n. In order to achieve a linear-input construction in the general
case, we need better generators against LBPs (that have both short seed and
small error).

3 Pseudorandom Generator from Any One-Way Function

Our implementation of a pseudorandom generator from any one-way function
follows the route of [HILL99] (we follow the presentation and proof of the HILL
generator given in [Hol06]), but takes a totally different approach in the imple-
mentation of its initial step.

The “pseudo-entropy” of a distribution is at least k, if it is computationally-
indistinguishable from some distribution that has entropy k. The basic building
block of the HILL generator is a “pseudo-entropy pair”.10 Informally, the latter is
a pair of a function and predicate on the same input with the following property:
When given the output of the function, the pseudo-entropy of the predicate’s
output is noticeably larger than the real (conditional) entropy of this bit. In
their construction [HILL99] exploit this gap between real and pseudo entropy to
construct a pseudorandom generator. We show that the first explicit randomized
iterate of a one-way function together with a standard hardcore predicate forms
a pseudo-entropy pair. Moreover, this pair has better properties than the original
one and hence “plugging” it as the first step of the HILL construction results in
a better overall construction. Let us now turn to a more formal discussion. We
define the pseudo-entropy pair as follows:

Definition 8 [Pseudo-entropy pair (PEP)] Let δ and γ be some positive func-
tions over N and let g : {0, 1}n → {0, 1}`(n) and b : {0, 1}n → {0, 1} be
polynomial-time computable functions. We say that (g, b) is a (δ, γ)-PEP if

1. H(b(Un) | g(Un)) ≤ δ(n).
2. b is a (δ(n) + γ(n))-hard predicate of g.

10 We note that [HILL99] used this notion implicitly without giving it an explicit
definition.



[HILL99] show how to construct a (δ, α)-PEP, where δ ∈ [0, 1] is some unknown
value and α is any fraction noticeably smaller than 1

2n , using any one-way func-
tion.11 Then they present a construction of a pseudorandom generator using a
(δ, 1

O(n) )-PEP where δ is known. To overcome this gap, the HILL generator
enumerates all values for δ (up to an accuracy of Ω( 1

n )), runs the generator with
every one of these values and eventually combines all generators using an XOR
of their outputs. This enumeration costs an additional factor of n to the seed
length as well as n3 times more calls to the underlying one-way function.

We prove that the first explicit randomized iterate of a one-way function can
be used to construct a ( 1

2 , α)-PEP, where α is any fraction noticeably smaller
than 1

2n . By combining our PEP with the second part of the [Hol06] construc-
tion, we get a pseudorandom generator that is more efficient and has better
security than the original construction due to [HILL99]/[Hol06] (the efficiency
improves by a factor of n3 and the security by a factor of n). Formally, we get
the following theorem.

Theorem 9 Let f : {0, 1}n → {0, 1}n be an efficiently computable function and
let ε, γ : N→ [0, 1]. Then there is an efficiently computable function G with the
following properties:

– G is length expanding.
– G has input length O(n6 log( 1

ε(n) )).
– Any algorithm A that distinguishes the output of G from the uniform distrib-

ution with advantage γ, can be used to construct an algorithm that inverts f
with probability Ω( 1

n13 ) and runs in time poly( 1
Ω( γ

n7 log( 1
ε
)
)−ε , n, TA(n)), where

TA is the running time of A.

As a corollary we deduce the main statement of this section:

Corollary 10 Let f : {0, 1}n → {0, 1}n be a one-way function, then there exists
a pseudorandom generator with seed length O(n7).

A Pseudo-Entropy Pair Based on the Randomized Iterate
For a given one-way function f , we have defined (Definition 1) its first explicit
randomized iterate as f̂1(x, h) = (f(h(f(x))), h). We present an “extended”
version of the above function with the following properties: First, it maintains
some hardness of the original one-way function. The hardness is maintained in a
sense that with probability 1

2 + 1
2n it is hard to compute the value of x0 = f(x)

given the output. Second, we show that with probability 1
2 the value of x0 can

be determined w.h.p. from the output. Formally,

11 [HILL99] actually prove somewhat stronger result. Not only that the predicate of
their PEP is (δ+α)-hard, but the hardness comes from the existence of a “hardcore-
set” of density δ + 1

2n
. Where the latter is a subset of the input such that the value

of b is computationally unpredictable over it. This additional property was used by
[HILL99] original proof, but it is not required by the new proof due to [Hol06]. We
note that our PEP, presented next, also has such a hardcore-set



Definition 11 (The Extended Randomized Iterate) Let f : {0, 1}n → {0, 1}n

be a one-way function, let m = d3 log(n) + 8e and let H and HE be two families
of pairwise-independent hash functions from {0, 1}n to {0, 1}n and {0, 1}n to
{0, 1}m respectively. We define g, the extended randomized iterate of f , as:

g(x, h, hE) = (f̂1(x, h), hE(f(x)), hE)

where x ∈ {0, 1}n, h ∈ H and hE ∈ HE.
Lemma 12 Let H, HE and g be as in Definition 11. For r ∈ {0, 1}n, let
g′(x, h, hE , r) = (g(x, h, hE), r) and let b(x, h, hE , r) = br(f(x)), where br is
the Goldreich-Levin predicate. Let W be a random variable uniformly distributed
over Dom(g) and let α be noticeably smaller than 1

2n , then the following hold:

1. H(b(W ) | g′(W )) ≤ 1
2 .

2. b is a
(

1
2 + α

)
-hard predicate of g′, for any α that is noticeably smaller than

1
2n .

Hence (g′, b) is a ( 1
2 , α)-PEP.

4 Hardness Amplification Of Regular One-Way Functions

In this section we present an efficient hardness amplification of any regular weak
one-way function. As mentioned in the introduction (Section 1.2), the key to
hardness amplification lies in the fact that every α-weak one-way function has
a failing-set for every efficient algorithm. This is a set of density almost α that
the algorithm fails to invert f upon. Sampling sufficiently many independent in-
puts to f is bound to hit every failing set and thus fail every algorithm. Indeed,
the basic hardness amplification of Yao [Yao82] does exactly this. Since inde-
pendent sampling requires a long input, we turn to use the randomized iterate,
which together with the derandomization method, reduces the input length to
O(n log n).

Theorem 13 Let f : {0, 1}n → {0, 1}n be a regular α(n)-weak one-way func-
tion, let m = d 4n

α(n)e and let f̂m and H be as in Definition 1. Let BSG be a
bounded-space generator against (2n, n + 1, 2n)-layered-branching-programs with
seed length ñ ∈ O(n log n) and error 2−2n. Define f ′ : {0, 1}n × {0, 1}ñ →
{0, 1}n × {0, 1}ñ as

f ′(x, h̃) = (fm(x, h1, . . . , hm), h̃)

where x ∈ {0, 1}n, h̃ ∈ {0, 1}ñ and h1, . . . , hm = BSG(h̃). Then f ′ is a (strong)
a one-way function.
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