
Secure Computation of Constant-Depth Circuits

with Applications to Database Search Problems?

Omer Barkol and Yuval Ishai

Computer Science Department, Technion
{omerb,yuvali}@cs.technion.ac.il

Abstract. Motivated by database search problems such as partial match
or nearest neighbor, we present secure multiparty computation protocols
for constant-depth circuits. Specifically, for a constant-depth circuit C of
size s with an m-bit input x, we obtain the following types of protocols.
– In a setting where k ≥ poly log(s) servers hold C and a client holds
x, we obtain a protocol in which the client privately learns C(x) by
communicating Õ(m) bits with each server.

– In a setting where x is arbitrarily distributed between k ≥ poly log(s)
parties who all know C, we obtain a secure protocol for evaluating
C(x) using O(m · poly(k)) communication.

Both types of protocols tolerate t = k/poly log(s) dishonest parties and
their computational complexity is nearly linear in s. In particular, the
protocols are optimal “up to polylog factors” with respect to communi-
cation, local computation, and minimal number of participating parties.
We then apply the above results to obtain sublinear-communication se-
cure protocols for natural database search problems. For instance, for the
partial match problem on a database of n points in {0, 1}m we get a pro-
tocol with k ≈ 1

2
logn servers, Õ(m) communication, and nearly linear

server computation. Applying previous protocols to this problem would
either require Ω(nm) communication, Ω̃(m) servers, or super-polynomial
computation.

1 Introduction

As networking becomes a common tool and data can be accessible to all, many
applications require distributed access of clients to data servers over the web and
other network environments. Once the search is not locally performed, privacy
might become a major concern. This motivates the problem of privacy-preserving
database search, allowing clients to search a database without revealing their
search queries to the servers storing the database. Since the databases being
searched might be very large, it is desirable to obtain privacy-preserving search
protocols whose communication complexity is sublinear in the database size.

The above problem was extensively studied within the context of private in-
formation retrieval (PIR) [11]. The goal of PIR is to allow a client to privately
retrieve the ith item (say, a bit) from a database stored in one or more servers.

? Research supported by Israel Science Foundation grant 36/03.

PIR can be used as a building block for more complex database search opera-
tions. Using PIR to probe a data structure representing the database, one can
obtain sublinear-communication private protocols for problems such as keyword
search [10, 13] or approximate nearest neighbor search (e.g., using [21]).1 Unfor-
tunately, many natural database search problems that arise in practice are not
known to have efficient data structures, namely ones which provide the guarantee
that each query can be answered by making few probes into the data structure.
For instance, all known algorithms for the partial match problem (aka “keyword
search with wildcards”) require either the number of probes to be nearly linear in
the database size or the data structure to be exponential in the length of database
entries (see, e.g., the best algorithms known for partial match by Charikar et al.
[9] and the survey by Miltersen [22]). Hence, the generic PIR-based approach is
not useful for this problem. The same holds for many other natural and useful
search problems, including Boolean information retrieval (supporting “advanced
Google search” functionality), exact nearest neighbor search, and others.

Our point of departure is the observation that most practical database search
operations can be efficiently implemented using constant depth circuits. (By de-
fault, we allow circuits to use AND, OR, NOT, and XOR gates with unbounded
fan-in and fan-out.) That is, it is possible for the server to represent its database
as a (large) constant-depth circuit C and for the client to independently repre-
sent its query as a (small) input x, such that C(x) returns the answer to the
client’s query on the server’s database. Given this observation, it suffices to ob-
tain protocols for securely evaluating a constant-depth circuit C held by the
server on an input x held by a client, such that the communication complex-
ity of the protocol is dominated by the size of x rather than by the size of C.
Unfortunately, no protocols of this type are known. Using the current toolbox
of techniques for secure two-party computation, one can either obtain protocols
whose communication complexity is (at least) linear in the circuit size [30, 17]
or ones whose computational complexity is exponential in the input size [24].

A good solution to the above problem would imply a major breakthrough in
the theory of secure computation. (A small step in this direction, resolving the
case in which C is a 2-DNF formula, was very recently made in [6].) In the current
work we consider a relaxed setting where (few) different servers hold copies of
C, and the client’s privacy should be protected against every individual server
or collusion of servers of some bounded size t. This “data replication” scenario is
the one originally considered in the context of PIR [11]. It is arguably becoming
more and more relevant to practice, with the widespread use of peer-to-peer
networks, distributed file backup and web caching systems, and other forms
of replicated data. Moreover, in this setting it is possible to avoid the use of
expensive “cryptographic” computations (e.g., modular exponentiations) which
would make the protocols computationally infeasible in practice. Our goal in this
setting is to simultaneously obtain nearly-optimal communication (of the order

1 The PIR-based approach was generalized in [24] to turn arbitrary sublinear-
communication protocols into private ones. However, the resulting protocols gen-
erally require a super-polynomial amount of computation.

of |x|) and local computation (of the order of |C|), while minimizing the number
of servers.

In addition to the client-servers scenario discussed above, we also consider the
complexity of evaluating constant-depth circuits in a multiparty setting, without
any data replication assumptions. Here the circuit C specifies the functionality
to be computed (hence it is known to all parties) and the input x is arbitrarily
partitioned between the parties. In this case, the best known techniques from the
multiparty computation literature would either require linear communication in
|C| [5] or an exponential amount of computation and Ω̃(|x|) parties [3]. Our
goal, as before, is to simultaneously obtain nearly optimal communication and
computation while minimizing the required number of parties (alternatively,
maximizing the security threshold).

1.1 Our Results

We obtain communication-efficient protocols for securely evaluating constant-
depth circuits in both the client-servers setting and the multiparty setting dis-
cussed above. Our main protocols are optimal “up to polylog factors” with
respect to all three parameters of interest: communication, computation, and
number of participating parties. Furthermore, the protocols typically require a
minimal amount of interaction, consisting of only two communication rounds (a
single round of queries and answers in the client-servers case). Since the number
of servers or participating parties is the most crucial resource, we also attempt to
optimize the multiplicative constants involved, as was done in the context of PIR.
In the case of depth 2 circuits (which in particular suffices for capturing general
DNF or CNF evaluation and secure partial match), the number of servers can
be as low as 1

2 log2 |C| while maintaining (essentially) optimal communication
and computation.

We now provide a more detailed account of our results. We let C denote a
circuit of size s and depth c with an m-bit input x. In the client-servers setting,
each of k servers holds C and a client who holds x should privately learn C(x).
In the multiparty setting the circuit C is known to all k parties, where x is
distributed between them, and (by default) they all privately learn C(x). Let t
denote a security threshold (t = 1 by default). We obtain the following two main
types of protocols:

– In the client-servers setting we obtain protocols where the communication
complexity and the client’s computation complexity are Õ(m) per server,
the computation complexity of each server is Õ(s), and k = O(t · logc−1(s)).

– In the multiparty setting we obtain a protocol for k = O(logc−1(s)) parties
in which the communication complexity is O(m · poly(k)), the computation
complexity of each party is Õ(s), and the protocol resists t = Ω(k/ logc−1(s))
dishonest parties.

All these protocols are secure in an information-theoretic sense.
We then apply the above general results and optimize them to obtain efficient

secure protocols for database search problems. For instance, for the partial match

problem on a database of n points in {0, 1}m, we get a protocol with k ≈ 1
2 log n

servers, Õ(m) communication, and nearly linear server computation.

1.2 Overview of Techniques

The main technical tool we use in obtaining the above results is a compact
representation of constant-depth circuits by probabilistic low-degree multivariate
polynomials. We rely on techniques that have been part of a large body of work
proving lower bounds on the size of constant-depth circuits (originating from
[25, 27]), tailoring them to our different goals. Additional tools we employ are
ε-biased generators [23] and randomizing polynomials [19].

Randomizing polynomial provide a secure reduction of a “complex” function-
ality f(x) to a low-degree randomized functionality p(x, r). (Here r represents
“private” randomness chosen by the functionality; both x and r count towards
the degree.) Such reductions are motivated by the fact that most standard pro-
tocols for secure function evaluation can handle low-degree functionalities very
efficiently. Specifically, the main motivation for introducing randomizing poly-
nomials in [19] was the fact that evaluating low-degree polynomials requires few
rounds of interaction. The current motivation is different: We are mainly in-
terested in minimizing the communication complexity. We exploit the fact that
the amount of communication required for evaluating a vector of low-degree
polynomials is dominated by the length of the vector (i.e., the number of out-
puts), rather than by the description size of the polynomials. Thus, our goal is
to construct short vectors of low-degree randomizing polynomials representing
constant-depth circuits.

In all previous constructions of randomizing polynomials from the literature,
the output length of p is at least linear in the representation size of f , even when
f outputs only a single bit. For instance, in [19] it is shown how to construct
a vector of degree-3 randomizing polynomials whose length is quadratic in the
size of a branching program computing f . In our case, both the output length
and the amount of private randomness must be sublinear in the circuit size. To
this end we define the more general notion of a randomizing polynomials col-
lection (RPC), which introduces public randomness in addition to the private
randomness r. Specifically, an RPC is defined by a collection of polynomial vec-
tors pρ(x, r), where the “key” ρ is viewed as public randomness and thus does
not count towards the degree. We say that the RPC pρ(x, r) represents the func-
tion f if: (1) it is possible to recover f(x) from pρ(x, r) with a negligible failure
probability (over the choices of ρ and r), and (2) the output of pρ(x, r) gives
(essentially) no additional information about x, even given the knowledge of the
public randomness ρ. The usual notion of randomizing polynomials corresponds
to the special case in which ρ is empty.

An RPC representation for f naturally gives rise to secure protocols for f ,
similarly to the case of standard randomizing polynomials. Thus, our goals re-
duce to constructing “good” RPCs for constant-depth circuits. The degree of the
RPC corresponds to the minimal number of participating parties (alternatively,
maximal security threshold), and thus serves as our main optimization goal. In

addition to minimizing the degree, we wish to optimize both the output length
and the amount of randomness, and in particular require them to be sublinear
in the circuit size.

Our main RPC construction proceeds in three stages. The first and main
stage applies a variant of the techniques of Razborov and Smolensky [25, 27]
to create a short vector of low-degree randomized polynomials that uses a large
amount of public randomness (but no private randomness) in order to reduce
the degree of f . This representation guarantees that f(x) can be reconstructed
from the outputs of the polynomials with overwhelming probability, yet these
outputs might reveal additional information about x. In the second stage we
reduce the amount of public randomness by using ε-biased generators [23, 1].
Finally, we eliminate the extra information about x revealed by the polynomi-
als using previous constructions of degree-3 randomizing polynomials [19]. This
stage introduces a small amount of private randomness and only incurs a minor
increase to the degree.

Organization. The remainder of the paper is organized as follows. In Section 2
we give some definitions, and in particular define the notion of RPCs. In Section
3 we describe our main RPC construction for constant-depth circuits and in
Section 4 we apply it to obtain secure protocols in both the client-servers setting
and the multiparty setting. Finally, Section 5 discusses applications to concrete
database search problems.

2 Preliminaries

2.1 Circuits

We represent functions using Boolean circuits with unbounded fan-in and fan-
out, as defined below. A circuit C is a labelled directed acyclic graph. The nodes
with no incoming edges are labelled with variables (xi), their negations (x̄i), or
constants (0 or 1). All other nodes are called gates and are labelled with some
operator. Our default basis of operators includes AND, OR, NOT, and XOR. The
nodes from which there are edges to a gate g are called the inputs of g. We
refer to the number of such inputs as the fan-in of g. In the full version we also
consider a generalization of XOR gates to MODpe gates, where p is prime and
e ≥ 1 is an integer. Such a gate outputs 1 iff the sum of its inputs is 0 mod pe

(for pe = 2 this is a NOT− XOR gate).
The size of a circuit is the number of edges. Its depth is the length of the

longest path from a variable node to an output node, where intermediate NOT

and XOR gates do not count towards the depth. Nodes with no outgoing edges
are called the output nodes. We denote by C(x) the output of C on input x, and
say that C computes a function f if C(x) = f(x) for all inputs x.

We will focus on the case of constant-depth circuits. By this we refer to
(polynomial-time uniform) families of circuits whose depth is bounded by some
constant c, independently of the input length. Such circuits over the basis AND,
OR, NOT (resp., AND,OR,NOT,MODpe) correspond to the complexity class

AC0 (resp., AC0(pe)). Note that, using De-Morgan’s law, one can eliminate
AND gates without increasing the depth.

The case of depth-2 circuits will be of particular interest. An n-term DNF
formula is a depth-2 circuit computing the disjunction (OR) of n conjunctions
(AND) of literals. For instance, (x1∧x̄2)∨(x2∧x̄3∧x4) is a 2-term DNF formula.

2.2 Secure Computation

We consider two different scenarios for secure computation: a client-servers sce-
nario, which may be viewed as a distributed form of two-party computation, and
the standard multi-party scenario. We begin by recalling the latter.

Multi-Party Setting. In the multi-party setting there are k parties, each
holding an input xi to a functionality f . By default, we consider deterministic,
single-output functionalities; that is, the output f(x1, . . . , xk) should be learned
by all parties. Generalization to randomized, multiple-output functionalities is
straightforward.

Our protocols in this setting satisfy standard definitions for secure multi-
party computation from the literature [7, 8, 18]. In fact, all our protocols are se-
cure in an information-theoretic sense, assuming the availability of secure point-
to-point channels. More specifically, our protocols will be statistically secure,
where security is parameterized by a (statistical) security parameter σ which is
given to all parties as an additional input.

We will distinguish between security in the semi-honest model (capturing
“honest-but-curious” players or a passive adversary) and security in the mali-
cious model (capturing an active adversary). In the latter case, we assume the
availability of broadcast. In both cases, we allow the adversary to adaptively
corrupt up to t parties.

Client-Servers Setting. Our client-servers model generalizes the model for
information-theoretic PIR introduced in [11]. In this model there is a client (or
user) U who holds an input x of length m, and k servers S1, . . . ,Sk who all hold
the same input C of length s. The goal is for the client to learn the value f(C, x),
for some publicly known function f , while keeping its input x hidden from any
collusion of t servers. We will be particularly interested in the case where the
servers hold (a description of) a constant-depth circuit C and the client holds
an input x to this circuit. In this case, f will be a universal function defined by
f(C, x) = C(x).

All of our protocols in this setting will only require a single round of inter-
action in which the client sends a query to each server and receives an answer
in return. The protocol is ε-correct if the client’s output is correct except with
error probability bounded by ε. By default, ε should be exponentially small in
the security parameter σ.

Similarly to the case of PIR, our default security requirement only considers
the privacy of the client. We say that the protocol is t-private if any collusion of
t servers can learn nothing about the client’s input x.

We will also consider enhanced client-servers protocols that additionally pro-
tect the privacy of the servers’ input. In such a protocol, the client should learn
essentially nothing about C except the output f(C, x). More specifically, the
protocol is said to be δ-server-private (with respect to f) if the view of the client
can be simulated, up to statistical distance of δ, based on its input and output
alone. (See full version for a formal definition.) We require δ(σ) = 2−Ω(σ) by
default. Following the terminology that was used in the context of PIR [16],
we refer to protocols that satisfy this additional server privacy requirement as
being symmetrically private. To enable server privacy without direct interaction
between the servers, it is required to allow the servers to share a common random
string (CRS) [16].

The above security requirements induce three levels of security for client-
servers protocols: (1) basic security, providing client-privacy only; (2) symmetric
privacy with respect to a semi-honest client; and (3) symmetric privacy with
respect to a malicious client.

2.3 Randomizing Polynomials

We generalize the notion of randomizing polynomials from [19] and consider
what we call collections of randomizing polynomials. Before describing our gen-
eralization, we review the original notion of randomizing polynomials.

Randomizing polynomials represent a function f using a vector of multivari-
ate polynomials over a finite field. (In this work, the underlying field will be
GF(2) by default.) Each polynomial has two types of inputs: ordinary inputs x
and random inputs r. A randomizing polynomials vector will usually be denoted
by p(x, r). Note that p is a vector of polynomials which all act on the same
variables x, r. The vector p(x, r) is said to represent a function f if its output
distribution is “equivalent” to the output of f in the following sense. First, given
p(x, r) it is possible to recover f(x) (without knowing r). In the other direction,
given f(x) alone it is possible to sample from the output distribution p(x, r)
induced by a uniform choice of r (without knowing x).

For the purpose of allowing more compact representations, we generalize the
notion of randomizing polynomials by considering collections of randomizing
polynomials. Let pρ(x, r) denote a collection of polynomial vectors, indexed by a
key ρ. When ρ is picked at random, we refer to it as public randomness, whereas
r is referred to as private randomness. We will say that pρ(x, r) represents a
function f(x) if the following two properties hold: (1) it is possible to recover f(x)
from the output of pρ(x, r) (except for a negligible failure probability over the
choices of ρ and r), and (2) the output of pρ(x, r) gives (essentially) no additional
information about x even given the knowledge of the public randomness ρ. These
properties guarantee that the secure computation of f can be reduced to that
of pρ, where ρ is a public random string chosen independently of the inputs.

Definition 1. (Randomizing Polynomials Collection (RPC)) Let
pρ(x, r) = (p1ρ(x, r), p2ρ(x, r), . . . , plρ(x, r)) be a vector of l polynomials over
the input x = (x1, . . . , xm), the private random input r, and the public random
input ρ. All polynomials are over a finite field F , where F = GF(2) by default.
We say that pρ(x, r) is an ε-correct, δ-private randomizing polynomials collec-
tion (RPC) for f(x) if the following holds.

– (ε-correctness) There exists a reconstruction algorithm R such that for every
input x, Prr,ρ[R(pρ(x, r)) 6= f(x)] ≤ ε, where r and ρ are chosen uniformly
and independently. Note that reconstruction should not depend on ρ. (Intu-
itively, correctness should hold for all but a negligible fraction of the ρ’s.)

– (δ-privacy) There exists a simulatorM such that for every input x,

SD[(ρ,M(f(x))), (ρ, pρ(x, r))] ≤ δ,

where r and ρ are chosen uniformly and independently at random and SD
denotes statistical distance. Note that the simulator is not given ρ yet the
simulation should also be successful when considered jointly with ρ. This
implies that the output distribution of pρ(x, r) should be essentially the same
given almost any fixed ρ.

The length of pρ(x, r) is l. Its degree is the maximal degree of a polynomial in
the vector, taking into account only the input variables x and the private random
variables r. We refer to |ρ| as the public randomness complexity and to |r| as
the private randomness complexity.

Universal RPC. We will sometimes want to represent each function f in a class
F by an RPC, such that all RPCs in the class share the same simulator and
reconstruction algorithms. In such a case, we say that the class of RPCs is
universal for the function class F . Our main RPC construcsion will be fully
universal: the same reconstruction algorithm and simulator can be applied for
all functions f . (Of course, the RPC itself varies from one function to another.)
This feature will be useful for obtaining protocols in the client-servers model,
where a circuit held by the servers is evaluated on an input held by the client.

Polynomial Collection (PC). We will also consider RPCs which do not need
to satisfy the privacy requirement. (In fact, such collections will serve as an
intermediate step in constructing RPCs.) In this case, there is no need for private
randomness. We will refer to this relaxed type of RPC as a polynomial collection
(PC) and denote it by pρ(x). A PC of length 1 will also be referred to as a
randomized polynomial. Note that the identity function p(x) = x defines a trivial
PC with no public randomness. However, we will be interested in constructing
universal PCs (whose reconstruction algorithm does not depend on f), and in
particular ones in which the output length is sublinear in the input length.

Randomizing polynomials for branching programs. We will rely on an efficient
representation of branching programs by randomizing polynomials.

Lemma 1. [20] Suppose f(x) can be computed by a branching program of size `.
Then, f can be represented by a vector p(x, r) of degree-3 (perfectly correct and
private) randomizing polynomials of length O(`2) and randomness complexity
O(`2). Moreover, the degree of p in the x variables is 1.

2.4 ε-Biased Generators

The communication complexity of some of our protocols will depend on the
randomness complexity of the underlying RPCs. This calls for the use of pseudo-
randomness. It turns out that the pseudo-random generators we need are only
required to fool linear distinguishers. Thus, we will rely on the following standard
notion of ε-biased generators [23].

Definition 2. (ε-biased generator) A function G : {0, 1}
`
→ {0, 1}

n(`)
is an

ε-biased generator (for some bias function ε(`)) if for all sufficiently large ` and
all linear functions L : GF(2)n(`) → GF(2), we have

|Pr[L(G(U`)) = 1]− Pr[L(Un(`)) = 1]| ≤ ε(`)

By default, the function ε(`) is required to be negligible.

3 Low-Degree RPCs for Constant Depth Circuits

In this section we present our main constructions of low-degree PCs and RPCs
for constant-depth circuits. The high level idea is to simulate the given circuit
in a gate-by-gate fashion, going from the inputs to the output, where each such
simulation step does not add much to the degree and does not create a big error.

For simplicity, we assume that the circuit has a single output and thus com-
putes a boolean function; a generalization to the non-boolean case is straight-
forward. We also restrict the attention to AC0(2) circuits (a generalization to
AC0(pe) circuits appears in the full version). Finally, we may assume without
loss of generality that the circuit contains only OR,XOR,NOT gates and that
the output gate is OR.

A central “gadget” in the construction is the following representation of the
OR function by a single randomized polynomial, namely a PC of length 1.

OR construction with parameter γ. Given an OR gate with t inputs, let R be a
random γ × t matrix over GF(2), and define the randomized polynomial:

pR(x1, . . . , xt) = 1−

γ
∏

i=1

(1− (

t
∑

j=1

Ri,jxj)). (1)

If OR(x) = 0 then so is pR(x), while if OR(x) = 1 then the probability of every
inner product (the sum) to result in 0 or 1 is equal. Thus, pR(x) = OR(x) except
with probability 2−γ over the choice of R, and we have the following.

Lemma 2. An OR gate with t inputs has a 2−γ-correct PC representation over
GF(2) of length 1 and degree γ.

Notice that in this case we only have a one-sided error; however, applying the
OR gadget within the general construction will generally result in a two-sided
error. We now proceed to the case of a general circuit C.

Basic construction with parameter σ. Given a circuit C of size s, we define a
randomized polynomial pgρ(x) for every gate g of C, so that the PC representing
the circuit is the polynomial defined for the output gate. The polynomial pg is
defined inductively as follows. An input is represented by a deterministic polyno-
mial corresponding to its straightforward arithmetization (e.g., x̄i is represented
by 1 − xi). If g is an OR gate, then pg is defined by applying the above OR

construction with γ = log s+ σ to the polynomials representing its inputs. This
step introduces new public randomness. Finally, if g is a XOR or a NOT gate,
then pg is naturally defined in terms of the polynomials representing the input
gates (e.g., their summation in case of XOR). The degree of the output polyno-
mial is bounded by the maximal degree of a polynomial representing a gate (as
a function of its inputs) to the power of the depth of the circuit. Using union
bound on the error probability of the representation2 we have the following:

Lemma 3. Given a circuit C with m inputs, one output, size s and depth c, the
basic construction with parameter σ produces a 2−σ-correct PC representation
for C over GF(2) of length 1, degree at most (log s+σ)c, and public randomness
complexity O(s(log s+ σ)).

The parameters of the above PC representation leave much to be desired.
First, the degree depends on σ which will generally be larger than log s; moreover,
even for depth-2 circuits (capturing the important case of DNF) the degree grows
quadratically with log s + σ. As we shall see, one can make the degree linear in
log s (and independent of σ) in the depth-2 case. Finally, the public randomness
complexity is very large.

We will start by reducing the amount of randomness via the use of ε-biased
generators. We use here the powering construction by Alon et al.:

Lemma 4. [1] There exists an efficient ε-biased generator G : {0, 1}2` → {0, 1}t

with (t− 1)2−`-bias.

We use the above generator to produce the matrix R from the OR construc-
tion (1). To ensure independence between rows, we use a separate seed for every
row. This gives the following:

Lemma 5. Let 0 < ε < 1
2 . An OR gate of t inputs has a PC representation

over GF(2) of length 1, degree γ, (1
2 + ε)γ-correctness, and public randomness

complexity 2γdlog t
ε
e.

2 The random matrices of the different gates are not considered independent in this
analysis and thus the same matrix can be “recycled”.

We turn to the question of optimizing the degree, our most crucial parameter.
The main observation is that one can reduce the error probability in the basic
construction by repeating it σ times in parallel, using independent randomness
in each copy. This will result in a universal PC of length σ from which the output
can be recovered, except with 2−Ω(σ) error probability, by applying some fixed
threshold function. We will then enhance this PC into a universal RPC at a
minor additional cost.

Improved construction with parameter σ. The improved construction is similar
to the basic construction with the following changes:

– OR gates are represented using the construction of Lemma 5.
– The output gate is assigned a special parameter γo when Lemma 5 is applied.
– The representation is repeated σ times in parallel, producing a PC of length
σ with threshold as its reconstruction function.

– If privacy is required, a randomizing polynomials representation of a thresh-
old function is applied to the σ outputs of the PC, producing an RPC.

Theorem 1. Let σ be a security parameter. Given a circuit C with m inputs,
one output, size s and depth c, the improved construction yields representations
of C by:

– a PC over GF(2) of length σ, degree dPC = d(log s + 3)ec−1, 2−Ω(σ)-
correctness, and public randomness complexity O(σ log2 s);

– an RPC over GF(2) of length O(σ4), degree dPC + 2, 2−Ω(σ)-correctness,
2−Ω(σ)-privacy, public randomness complexity O(σ log2 s), and private ran-
domness complexity O(σ4).

The above representations are universal, i.e., their reconstruction algorithm and
simulator do not depend on the circuit C.

Proof. We instantiate the improved construction outlined above with the fol-
lowing parameters. Consider first the case where no ε-biased generators are used
to reduce public randomness. In this case, we choose γ = log s + 2 and γo = 1.
By Lemma 2 each randomized polynomial representing an internal OR gate of
C errs with at most 2−γ probability. Using a union bound, the probability that
at least one of them errs is bounded by s · 2−γ ≤ 1

4 . Since γo = 1, the output
will be 1 with probability at most 1

4 ·
1
2 = 1

8 if f(x) = 0 and at least 3
4 ·

1
2 = 3

8
if f(x) = 1. (Here we assume that an independent random matrix R is used for
the top gate; this has no impact on the asymptotic complexity.)

Consider the PC obtained by concatenating σ copies of the above construc-
tion, using independent randomness in each copy. The degree remains as before.
By Chernoff’s bound, we have a (universal) 2−Ω(σ)-correct reconstruction algo-
rithm that outputs 1 if at least σ/4 out of the σ outputs evaluate to 1.

To optimize the amount of public randomness, we choose the bias parameter
to be ε = 1

s
. The improved construction is then applied with parameters γ =

⌈

(log s+ 2)/ log 1
1

2
+ε

⌉

and γo = 1. The resulting PC has degree γo·(γ)
(c−1) which,

for sufficiently large s, is bounded by d(log s+3)ec−1. The amount of randomness
for each randomized polynomial in the PC is the amount of randomness needed
for a single OR gate which, by Lemma 5, is O(γ log s

ε
) = O(log2 s).

The output of the above PC representation pρ(x) might reveal additional
information about x, other than what follow from C(x). To this end, we apply
a randomizing polynomials representation of a (σ/4)-threshold function to the
σ outputs of pρ. Since any threshold function on σ bits can be computed by
a branching program of size O(σ2), Lemma 1 guarantees a representation by
degree-3, perfectly correct and private randomizing polynomials P (x̃, r) where
both the length and the private randomness complexity are O(σ4). Moreover,
the degree in the x̃ variables is 1. Applying this construction with pρ(x) as an

input produces an RPC P̃ρ(x, r) = P (pρ(x), r) with the required parameters.
Note that the perfect simulator (resp., reconstruction algorithm) of P can

serve as a universal 2−Ω(σ)-private simulator (resp., 2−Ω(σ)-correct reconstruc-
tion algorithm) for the above RPC. This follows from the fact that the simulation
and reconstruction of P are perfect when conditioned on the event that the choice
of ρ does not lead pρ(x) to err. ut

We note that above PC and RPC constructions implicitly define efficient evalu-
ation algorithms whose complexity is nearly linear in the circuit size s (defined
as the number of wires). Moreover, for the purpose of bounding the degree, one
can take s to be the number of OR gates in the circuit. Thus, for the important
special case where C is an n-term DNF formula, we get a PC (resp., RPC) of
degree log n+O(1) and length σ (resp., O(σ4)).

4 Secure Computation of Constant Depth Circuits

In this section we describe the application of low-degree representations to
communication-efficient secure computation. Combined with the results of the
previous section, we will get efficient protocols for constant-depth circuits.

We will separately consider the client-servers model and the multiparty model,
both defined in Section 2.2. In the basic client-servers setting, where only the
privacy of the client is guaranteed, it will suffice to use an underlying PC repre-
sentation of the function we wish to compute. In multi-party setting, as well as
the client-servers setting with server privacy, we will need to rely on the stronger
RPC representation.

The protocols we describe rely on standard techniques for securely evalu-
ating low-degree polynomials, previously used in the contexts of information-
theoretic secure multi-party computation [5, 2, 12, 19] and private information
retrieval [11, 16, 4]. We only sketch the high-level structure of the protocols and
the parameters they achieve. Further details can be found in the full version.

Throughout this section, assume F to be an extension field of GF(2) hav-
ing more than k elements, where k is the number of servers or parties. Most
of the protocols will employ Shamir’s secret-sharing [26] over F in order to se-
curely compute polynomials over its subfield GF(2). We let t denote a security
threshold, where t = 1 by default.

4.1 The Client-Servers Setting

In the general definition of client-servers computation given in Section 2.2, the
client holds an input x, the servers hold an input C, and the client wishes to
learn f(C, x) for some publicly known function f . It will be convenient for our
purpose to focus on the case where C represents a circuit, x is an m-bit input
to this circuit, and f is the universal function defined by f(C, x) = C(x). We
assume that C is taken from some known class C, typically the class of depth-c,
size-s circuits. Thus, the problem we consider is that of allowing the client to
privately learn the value of a circuit C ∈ C held by the servers on its secret input
x.

We start with the case of client-privacy only. In this case, a universal degree-
d PC representation for C gives rise to the following simple protocol. Suppose
k > dt. Let pρ(x) denote be a PC representing the servers’ circuit C. The
client secret-shares each of its input bits between the servers, using the t-private
Shamir’s scheme over F . In parallel, it picks ρ at random and sends it to all k
servers. Each server replies to the client with the output of pρ on the m-tuple
of shares it received.3 The client recovers C(x) by first recovering the output
y of pρ (since k > dt, this can be done by polynomial interpolation) and then
applying the (universal) reconstruction algorithm of C. The error probability of
the protocol is the same as that of pρ. Combining the above protocol with the
representation obtained by Theorem 1 we have the following.

Theorem 2. Let f be the universal circuit evaluation function f(C, x) = C(x).
Suppose k servers hold a circuit C of size s, depth c,m inputs and a single output,
and the client holds an assignment x ∈ {0, 1}m. Then for every integer t ≥ 1
there exists a t-private client-servers protocol with the following parameters:

– The number of servers is k = t · (log s+O(1))c−1.
– The communication consists of O(m log k+σ log2 s) bits sent from the client
to each server and O(σ) bits sent in return.

– The computation of each party is nearly linear in its input length (up to
factors of σ and log k).

In the special case of n-term DNF we can substitute in the above c = 2 and s = n
(see remark following Theorem 1). Thus, we get a protocol with log n + O(1)
servers, Õ(m) communication, and Õ(mn) server computation.

Using a technique of Woodruff and Yekhanin [29], it is possible to reduce
the number of servers by a factor of 2 without substantially increasing the total
communication. Specifically, in the resulting protocol the total communication
is O(mσ logm logc−1 s) bits per server, and the computation of each server is
Õ(sm). The following is implicit in [29]:

Lemma 6. Let t ≥ 1 be an integer, and let p(x) be an m-variate polynomial of
degree d, over a field of a prime order q > dt+ 1. Then, there exists a t-private

3 In fact, it suffices for each server to send back just a single bit by projecting the
answers from F back to GF(2) (cf. [4], Lemma 3).

client-servers protocol to compute p(x) (where p is held by the servers and x by
the client), with k = d dt+1

2 e servers, queries of m field elements per server, and
answers of m+ 1 field elements per server.

The protocol from [29] is similar to the basic client-servers protocol described
above, and in particular the client’s queries have the same structure. The im-
provement comes from the fact that each server replies not only with the value
of p on the point queried by the client, but also with the values of its m par-
tial derivatives. In order to apply Lemma 6 in our context, we should emulate
computation of pρ(x) over GF(2) using computation over a field of a large prime
order q. Since the value of pρ(x) when computed over the integers is bounded by

2O(logc−1 s logm), it suffices to use a prime q of the latter size. This yields the com-
munication complexity specified above. In particular, in the case of n-term DNF
we get a protocol with 1

2 log n+O(1) servers and nearly optimal communication
and computation.

Symmetrically private client-servers protocols. We now briefly discuss an exten-
sion of the above results to the case where server privacy is also a requirement.
(Further details can be found in the full version.) In this case, the stronger RPC
representation should replace the previous RP representation. If the circuit C
held by the servers is represented by a (universal) RPC pρ(x, r), the protocol
will let the client securely evaluate the polynomial vector pρ(x, r), where both
r and ρ are taken from the CRS shared by the servers. (Note that here it is
crucial that r remain hidden from the client.) Unlike the previous case of client
privacy only, here the polynomial evaluation protocol should prevent the client
from learning anything other than the output of pρ. The simple polynomial eval-
uation protocol described before fails to achieve this property. In the case of a
semi-honest client, it is easy to eliminate the extra information from the servers’
answers by masking them with (private) randomness from the CRS. The case of
a malicious client is more difficult, since the queries it sends to the servers might
not be well formed. For instance, the client might share values from F \ {0, 1}
or send shares that are not of the right degree. In the full version we describe
a client-servers protocol for fully secure polynomial evaluation that resists a
malicious client without requiring additional rounds of interaction and with a
very minor complexity overhead. The protocol relies on the conditional disclo-
sure methodology of Gertner et al. [16] and can also be used to obtain better
t-private SPIR protocols than those implied by [16]. Applying this machinery,
we get an enhanced version of Theorem 2 which provides server privacy against
a malicious client, with the main additional cost of increasing the answer size
from σ to σO(1) (reflecting the larger length of the RPC).

4.2 The Multi-Party Setting

Here we consider the standard MPC setting in which an m-bit string x is parti-
tioned between k parties, who all want to learn the output of a publicly known

function f(x). Given an RPC pρ(x, r) representing f , we view pρ as a random-
ized low-degree ideal functionality in which r is a “private” random input and ρ
is a “public” random input. Both r and ρ are independently chosen by the func-
tionality; the difference between them is that ρ is additionally revealed to the
adversary. (Recall that the separation between ρ and r is motivated by the goal
of minimizing the degree of the RPC, which in the current context will corre-
spond to the minimal required number of parties.) The reconstruction algorithm
of the RPC now defines a non-interactive reduction from f to pρ: to securely
compute f(x) the parties first securely compute pρ(x, r) and then locally apply
its reconstruction algorithm.

We turn to the question of efficiently computing the randomized functionality
induced by an RPC pρ of degree d. We require the communication complexity to
be dominated by the length of the inputs and outputs and not by the description
size of p. This can be done by using standard MPC techniques (cf. [5, 3, 15]). In
the semi-honest case, a simple two-round protocol for k > dt parties is described
in [19]. In the malicious case, we can use the following constant-round protocol
for k > (d + 2)t parties. First, the parties apply a VSS protocol (e.g., from [5])
to create degree-t shares of x along with shares of secret random values r, ρ
and shares of 0 (the latter are created by locally adding shares contributed
by different players). Using the protocol from [14] the above requires only two
rounds. One also needs to ensure that the shared values are elements of the
subfield GF(2) rather than general elements of F ; this can be done (without
additional interaction) using a method from [12]. Next, the players reveal ρ
which now defines a public polynomial vector pρ of degree d. Finally, the players
recover pρ(x, r): this is done by having each player locally evaluate pρ on its
shares of x, r, mask the resulting shares with the shares of 0 created in the first
phase, and communicate the result to all other players. The players can now
recover the output of pρ via local error-correction. Combining this protocol with
Theorem 1, we have:

Theorem 3. Let t ≥ 1 be a security threshold, and C be a circuit of size s
and depth c whose m input bits are partitioned between k ≥ Ω(t · logc−1 s) play-
ers. Then, there exists a constant-round, statistically t-secure protocol computing
C(x) with communication complexity O(m · poly(k)).

5 Constant-Depth Circuits for Search Applications

In this section we demonstrate the usefulness of our general results in the context
of database search problems. The goal is to translate the servers’ database into
a constant-depth circuit and the client’s query into a corresponding assignment
in a way that would optimize the complexity of our general constructions. For
the following problems assume the database consists of n points in {0, 1}

m
:

– The partial match decision problem supports queries in {0, 1, ∗}m, where the
symbol ∗ is interpreted as “don’t care”. An answer should be 1 iff there is
a point in the database that agrees with the query in all indices that are

not ∗. We encode the database as an n-term DNF over the 2m variables
x1,0, x1,1, . . . xm,0, xm,1. The DNF is constructed by assigning a term for
every point in the database (e.g., 1011 translates into x1,1∧x2,0∧x3,1∧x4,1).
The query is then translated by applying a two-bit encoding for each symbol
(0 by 10, 1 by 01 and ∗ by 11). As noted in Section 3, for n-term DNF
we get a PC (resp., RPC) of degree log n + O(1), length σ (resp., σO(1))
and 2m variables. Using Theorem 2, we get a client-servers protocol with
log n+O(1) servers, Õ(m) communication and Õ(nm) server computation.
One can reduce the number of servers to 1

2 log n as discussed in Section 4.1.
– The partial match search problem is similar to the decision version except

that a matching point of the database should be retrieved. A naive construc-
tion gives a depth-4 circuit, paying a lot on tie breaking between matching
points. Using the Valiant-Vazirani lemma [28], the database can be trans-
lated to a (probabilistic) circuit with O(m2) inputs, Õ(m) outputs, and size
Õ(nm2).

– The nearest neighbor search problem is a problem where the point with the
smallest Hamming distance to the query should be retrieved. The database
can be translated into an AC0(p) circuit for p > m with m inputs, O(m2)
outputs, sizeO(nm2) and depth 3. The use of MODp enables efficient constant-
depth computation of Hamming distance.

In the full version we describe optimized constructions of constant-depth
circuits for the problems mentioned above as well as for other problems.

Acknowledgement. We would like to thank Ronny Roth for helpful comments.

References

[1] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple construction of almost k-
wise independent random variables. Random Structures and Algorithms, 3(1):289–
304, 1992. Preliminary version in FOCS ’90.

[2] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Proc.
7th STACS, pages 37–48, 1990.

[3] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low commu-
nication overhead. In Proc. 10th CRYPTO, pages 62–76, 1990.

[4] A. Beimel and Y. Ishai. Information-theoretic private information retrieval: A
unified construction. In Proc. 28th ICALP, pages 912–926, 2001.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th STOC, 1988.

[6] D. Boneh, E.J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In Proc. 2nd TCC, pages 325–341, 2005.

[7] R. Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1):143–202, 2000.

[8] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42st FOCS, pages 136–145, 2001.

[9] M. Charikar, P. Indyk, and R. Panigrahy. New algorithms for subset query, partial
match, orthogonal range searching and related problems. In Proc. 29th ICALP,
pages 451–462, 2002.

[10] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords.
Technical report, Department of Computer Science, Technion, 1997.

[11] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information re-
trieval. In Proc. 36th FOCS, pages 41–50, 1995.

[12] R. Cramer, I. Damg̊ard, and U. Maurer. General secure multy-party computation
from any linear secret-sharing scheme. In Proc. of EUROCRYPT, 2000.

[13] M.J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and obliv-
ious pseudorandom functions. In Proc. 2nd TCC, pages 303–324, 2005.

[14] R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. The Round Complexity of
Verifiable Secret Sharing and Secure Multicast. In Proc. 33rd STOC, 2001.

[15] R. Gennaro, M.O. Rabin, and T. Rabin. Simplified VSS and fact-track multiparty
computations with applications to threshold. In Proc. 17th PODC, 1998.

[16] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in
private information retrieval schemes. J. of Computer and Systems Sciences, 60,
2000. Preliminary version in STOC ’98.

[17] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proc. 19th STOC, pages 218–229, 1987.

[18] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge
University Press, 2004.

[19] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In Proc. 41st FOCS,
pages 294–304, 2000.

[20] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In Proc. 29th ICALP, pages 244–256, 2002.

[21] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. In Proc. 30th STOC, 1998.

[22] P.B. Miltersen. Cell probe complexity–a survey. In Pre-Conference Workshop on
Advances in Data Structures at the 19th Conference on Foundations of Software
Technology and Theoretical Computer Science, 1999.

[23] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993.

[24] M. Naor and K. Nissim. Communication preserving protocols for secure function
evaluation. In Proc. 33rd STOC, pages 590–599, 2001.

[25] A. Razborov. Lower bounds for the size of circuits of bounded depth with basis
(AND, XOR). Math. Notes of the Academy of Science of the USSR, 41(4):333–
338, 1987.

[26] A. Shamir. How to share a secret. Communication of the ACM, 22(11):612–613,
1979.

[27] R. Smolensky. Algebric methods in the theory of lower bound for boolean circuit
complexity. In Proc. 19th STOC, pages 77–82, 1987.

[28] L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions.
Theoretical Computer Science, 47:85–93, 1986. Preliminary version in STOC ’85.

[29] D. Woodruff and S. Yekhanin. A geometric approach to information-theoretic
private information retrieval. In Electronic Colloquium on Computational Com-
plexity (ECCC), 2005. Report TR05-009. To appear in CCC 2005.

[30] A. C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, 1986.

