
Constant-Round Multiparty Computation Using

a Black-Box Pseudorandom Generator

Ivan Damg̊ard1? and Yuval Ishai2??

1 Aarhus University (ivan@daimi.au.dk)
2 Technion (yuvali@cs.technion.ac.il)

Abstract. We present a constant-round protocol for general secure mul-
tiparty computation which makes a black-box use of a pseudorandom
generator. In particular, the protocol does not require expensive zero-
knowledge proofs and its communication complexity does not depend
on the computational complexity of the underlying cryptographic prim-
itive. Our protocol withstands an active, adaptive adversary corrupting
a minority of the parties. Previous constant-round protocols of this type
were only known in the semi-honest model or for restricted classes of
functionalities.

1 Introduction

General secure computation is often perceived as being inherently impracti-
cal. One valid reason for this perception is the fact that all current proto-
cols either require many rounds of interaction (e.g., [20, 5, 27, 35, 13, 22]),
or alternatively require only a constant number of rounds but make use of
expensive zero-knowledge proofs for each gate of the circuit being computed
(e.g., [40, 4, 28, 6, 26, 34, 25]). Indeed, in all constant-round protocols from
the literature, players need to provide zero-knowledge proofs for statements that
involve the computation of a pseudorandom generator or other cryptographic
primitives on which the “semi-honest” version of the protocol relies. Thus, these
protocols make a non-black-box use of their underlying cryptographic primitives.
We stress that this holds for all settings of secure computation with security
against malicious parties, both in the two-party and in the multi-party case.
The only exceptions to this general state of affairs are unconditionally secure
protocols that apply to restricted classes of functionalities such as NC1 [2] or
protocols that require an exponential amount of computation [3].

In this work we consider the setting of multiparty computation with an honest
majority, and present a general constant-round protocol that makes a black-box
use of a pseudorandom generator.3 Similarly to all general constant-round proto-
cols from the literature, our protocol relies on Yao’s garbled circuit technique [40],

? Supported by BRICS, Basic research in Computer Science, Center of the Danish
National Research Foundation and FICS, Foundations in Cryptography and Security,
funded by the Danish Natural Sciences Research Council.

?? Research supported by Israel Science Foundation grant 36/03.
3 Here we assume the standard model of secure point-to-point channels.

which was later adapted to the multi-party setting by Beaver, Micali, and Rog-
away [4]. The latter “BMR protocol” requires players to verifiably secret-share
seeds to a PRG as well as the outputs of the PRG on these seeds. To ensure that
this is done correctly, the protocol makes a non-black-box use of the PRG by re-
quiring players to prove via (distributed) zero-knowledge that the shared seeds
are consistent with the shared PRG outputs. We get around this problem by
modifying the basic structure of the BMR protocol, using “distributed symmet-
ric encryption” and error-correction to replace the zero-knowledge proofs. Before
providing a more detailed account of our results we give some more background
to put them in context.

Black-box reductions in cryptography. Most reductions between cryptographic
primitives are (fully) black box, in the sense that they implement a primitive
A by using some other primitive B as an oracle, without depending on the
implementation details of B. Moreover, the security proof of such reductions
is also black-box in the sense that an adversary breaking A can be used as
an oracle in order to break the underlying primitive B. (See [36] for a more
detailed definition and discussion.) In contrast, a non-black-box reduction can
use the “code” of B when implementing A. Most examples for non-black-box
reductions in cryptography are ones in which the construction of A requires
parties to prove in zero-knowledge statements that involve the computation of
the underlying primitive B. For instance, the construction of an identification
scheme from a one-way function [14] makes a non-black-box use of the one-way
function. A rich line of work, originating from [24], uses oracle separations to
rule out the existence of (various forms of) black-box reductions. Most notably,
it is shown in [24] that there is no black-box reduction from key agreement to a
one-way function. A common interpretation of such results is that they rule out
the existence of “practically feasible” reductions. Indeed, all known examples
for non-black-box reductions in cryptography involve a considerable overhead.
In the context of cryptographic protocols, this overhead typically involves not
only local computation but also communication: the communication complexity
of the protocol B depends on the computational complexity of the underlying
primitive A.4 Our work provides further demonstration for the usefulness of
distinguishing between the two types of reductions.

Constant-round secure computation. The question of implementing secure com-
putation in a constant number of rounds has attracted a considerable amount of
attention. The first general constant-round protocol for secure two-party compu-
tation was given by Yao [40]. Yao’s original protocol considered only the case of
semi-honest parties; an extension to the case of malicious parties (equivalently,
an active adversary) was given by Lindell [28]. While Yao’s original protocol
makes a black-box use of the underlying primitives (a pseudorandom generator
and oblivious transfer), the protocol from [28] relies on the methodology of Gol-

4 In some cases it is possible to reduce the communication overhead by using
communication-efficient zero-knowledge arguments (cf. [31]). However, this approach
would make the computational overhead even higher.

dreich, Micali, ad Wigderson [20] and thus makes a non-black-box use of these
primitives. Recently, Katz and Ostrovsky obtained a two-party protocol with an
optimal exact round complexity [25].

An extension of Yao’s protocol to the case of multiparty computation with an
honest majority was given by Beaver, Micali, and Rogaway [4] (see also [37, 39]).
Similarly to the two-party case, the BMR protocol makes a black-box use of a
PRG in the semi-honest case and a non-black-box use of a PRG in the malicious
case. (Because of the honest majority assumption, the protocol does not need
to rely on OT.) Constant-round multiparty protocols withstanding a dishon-
est majority were recently obtained by Katz et al. [26] and by Pass [33]. (The
latter protocol also achieves bounded concurrent security, extending a previous
two-party protocol of Pass and Rosen [34].) These protocols are only proved
secure with respect to a non-adaptive adversary and allow the adversary to pre-
vent honest parties from receiving any output (even when corrupting a minority
of the parties). Like the two-party protocols, these protocols follow the GMW
methodology and thus make a non-black-box use of the underlying primitives.

Finally, there has also been a considerable amount of work on unconditionally
secure constant-round multiparty computation in the case of an honest major-
ity (e.g. [2, 15, 23, 9]). Unfortunately, all known protocols in this setting can
only be efficiently applied to restricted classes of functions such as NC1 or non-
deterministic logspace.

1.1 Our Results

We consider the model of computationally secure multiparty computation against
an active, adaptive adversary corrupting up to t < n/2 players. Our default
network model assumes secure point-to-point channels and the availability of
broadcast (see more on that later). As stated above, our main result is a new
“black-box feasibility” result. Specifically, we construct the first general constant-
round protocol which makes a black-box use of a PRG (equivalently, using [21], a
black-box use of a one-way function). Since much of our motivation comes from
the goal of making secure computation more efficient, we also attempt to min-
imize the amount of interaction and communication required by our protocols.
To this end, it is convenient to cast the protocols in the following “client-server”
framework.

The client-server model. We divide the players into “input clients” who provide
inputs, “output clients” who receive outputs, and “servers” who perform the
actual computation. The security of the protocol should hold as long as at most
t servers are corrupted, regardless of the number of corrupted clients. These
three sets of players need not be disjoint, hence this is a strict generalization
of the standard MPC framework in which all parties play all three roles. It
also represents a likely scenario for applying MPC in practice, using specialized
(but untrusted) servers to perform the bulk of the work. We stress again that
this is just a refinement of the standard model. The main advantage of this
refinement, besides conceptual clarity, is that it allows to decouple the number

of “consumers” from the required “level of security”. (The latter depends on the
number of servers and the security threshold.) For instance, we can have just two
clients and many servers (which may be viewed a distributed implementation of
two-party computation), or a very large number of clients and only few servers.
The latter might be the most realistic setting for secure computations involving
inputs from many players.

Linear preprocessing. We present our main protocol in two stages. First, we
present a protocol in what we call the “linear preprocessing model”. In this
model, it is assumed that there is a trusted setup phase where a dealer can
provide clients and servers with linearly-correlated resources, e.g., Shamir-shares
of random secrets. Then we use standard subprotocols for emulating the trusted
setup in the plain model. The linear preprocessing model is motivated by the
pseudorandom secret-sharing technique of [11]: when the number of servers is
small, linear preprocessing can be emulated using a “once and for all” setup
phase in which (roughly

(

n
t

)

) replicated and independent seeds are given to
the players. Following this setup, the players can locally generate the required
correlated shares without further interaction.5

Our protocols. Our main protocol in the linear preprocessing model requires only
two communication rounds when t < n/5. In the first round each input client
broadcasts its masked inputs to the servers, and in the second round the servers
send to each output client a total of O(n2|C|k) bits, where |C| is the size of the
circuit being computed and k is a security parameter. In the plain model, one
can obtain similar protocols at the cost of a higher communication complexity
and additional rounds of interaction. When t < n/5, it suffices to use 3 rounds
of interaction by relying on a VSS protocol from [17]. Alternatively, it is possible
to tolerate t < n/3 or even t < n/2 malicious servers at the expense of further
increasing the communication and the (constant) number of rounds.

In the case of computing a randomized functionality which has no inputs,
the 2-round protocol in the linear preprocessing model becomes totally non-
interactive when combined with pseudorandom secret-sharing. That is, to se-
curely compute such a functionality it suffices for each server to send a single mes-
sage to each output client, without using any broadcasts. Such non-interactive
protocols can be used to obtain efficient distributed implementations of a trusted
dealer in a wide range of applications.

On the use of broadcast. As in most of the MPC literature, our network model
assumes the availability of broadcast as an atomic primitive. However, using the
(expected) constant-round broadcast protocol of Feldman and Micali [16, 29],
our protocols can be turned into (expected) constant-round protocols also in
the point to point model. Concerning the communication complexity, since it is
possible to implement our protocol so that the number of broadcasts involved is

5 The method of [11] was only proved to be secure in the case of a non-adaptive
adversary. Thus, when relying on pseudorandom secret sharing our protocol loses its
provable adaptive security.

independent of |C| (using the techniques of [22]), one can get the same (amor-
tized) communication complexity in the point-to-point model. Moreover, in the
typical scenario where the number of servers is small, even a “brute-force” sim-
ulation of the broadcasts will not have a major impact on efficiency.

Organization. The remainder of the paper is organized as follows. In Section 2 we
define our security model and preprocessing models, and present some standard
subprotocols in these models. Our main protocol and its variations are presented
in Section 3, where the underlying distributed encryption idea is highlighted in
Section 3.3. Due to our elaborate use of techniques from previous works (mostly
in the context of information-theoretic multiparty computation), we omit some
of the low-level details and assume the reader’s familiarity with standard MPC
techniques from the literature. Some discussions and extensions (e.g., the case
t < n/2) were omitted for lack of space and can be found in the full version.

2 Preliminaries

The Model. We consider a system consisting of several players, who interact
in synchronous rounds via authenticated secure point-to-point channels and a
broadcast medium. Players can be designated three different roles: input clients
who hold inputs, output clients who receive outputs, and servers who may be
involved in the actual computation. As discussed in Section 1.1, this is just a gen-
eralization of the standard model, where each party can play all three roles. We
denote the number of servers by n. The functionalities we wish to compute only
receive inputs from input clients and only provide outputs to output clients. For
simplicity we will only explicitly consider deterministic functionalities providing
all output clients with the same output, though an extension of our results to
the general case is straightforward.6 (In contrast, we will employ sub-protocols
that compute randomized functionalities and provide servers and input clients
with outputs as well.)

We assume by default an active, adaptive, rushing adversary corrupting at
most t servers. (There is no restriction on the number of corrupted clients.) We
refer the reader to, e.g., [7] for the standard definition of security in this model.

Our protocols will employ secret-sharing over a finite field K = GF(2k),
where k is a security parameter that will be used as the length of a seed to
a PRG. Slightly abusing notation, each server Pi is assigned a unique nonzero
value i ∈ K.

2.1 Linear Preprocessing

As discussed in Section 1.1, it will be convenient to describe and analyze our pro-
tocols in the linear preprocessing model, where we allow some restricted trusted
setup as described below. The protocols can then be converted to the plain

6 Standard reductions from the general case to this special case involve interaction
between output clients. This can be avoided by directly generalizing the protocol to
the randomized multi-output case.

model, where no setup assumptions or preprocessing are allowed, at the price of
some efficiency loss.

In the linear preprocessing model, we assume a dealer who initially gives to
each player a set of values in K or in its subfield GF(2). The values distributed
by the dealer are restricted to be “linearly correlated”. Specifically, the dealer
picks a random codeword in a linear code defined overK or over GF(2), and then
hands to each player a subset of the coordinates in the codeword. It is public
which subsets are used, but the values themselves are private. This procedure
can be repeated multiple times, possibly using different linear codes.

Of course, we do not expect that such a dealer would exist in practice. This
is only a convenient abstraction, that can be formalized as an ideal functionality.
We later separately look at how such a dealer may be implemented.

Note that in Shamir’s secret sharing scheme, shares are computed as linear
functions of the secret and random elements chosen by the dealer. We may there-
fore assume that the dealer can give to players Shamir shares of a random secret
or of 0. More concretely, we assume that the following subroutines are available.
When they are called in our protocol descriptions that follow, this should be
taken to mean that the players retrieve from their preprocessed material values
as specified below.

RandSS(t) Each server Pi obtains f(i), where f is a random polynomial over
K of degree at most t.

RandSS0(t) Same as RandSS(t), except that f is subject to f(0) = 0.
RandSSbin(t) Same as RandSS(t), except that f is subject to the restriction that

f(0) is either 0 or 1. Note that this correlation pattern is linear over GF(2).
RandSS

P (t) Same as RandSS(t), except that player P additionally receives f .
RandSS

P
bin(t) Same as RandSSbin(t), except that P additionally receives f .

As discussed in Section 1.1, the linear preprocessing model is motivated by
the pseudorandom secret-sharing technique from [11] (see also [19]). When the
number of servers is small, a “once and for all” setup is sufficient for enabling
players to execute any number of calls to the above subroutines without having
to communicate.

One can emulate the linear preprocessing model in the plain model using
constant-round interaction between players. This is trivial for a passive adver-
sary, and can be done for an active adversary based on standard verifiable secret
sharing schemes from the literature (e.g., [5, 12, 10]). In particular, [12] shows
how to build VSS from any linear secret sharing scheme, and this can conve-
niently be used to implement RandSSbin(t) using VSS over GF(2).

Our protocols will invoke the following variants of VSS as subroutines.

VSS
P (t) Player P has a value s ∈ K as private input. The goal is for each server
to receive a Shamir share of s. Using linear preprocessing, this only requires
a single round of broadcast: in the setup phase we invoke RandSS

P (t). Then
the value r = f(0) can be computed by P , and P broadcasts z = s− r. Each
server Pi takes z + f(i) to be his private output.

VSS
P
bin(t) Player P has private input a value b ∈ GF(2). The goal is for each
server to receive a Shamir share of b (computed over K). This can be imple-
mented similarly to VSS

P (t), replacing RandSS
P (t) by RandSS

P
bin(t).

2.2 Secure Computation of Low-Degree Polynomials

In the linear preprocessing model, we now show how to securely compute the
following functionality, which will be useful later.

The functionality is defined by Q(), a degree d polynomial over K in l vari-
ables x1, ..., xl. Each input client is to supply values for some of the variables,
the others are to be chosen at random by the functionality. For each server Pi
we define an index set Di; these sets are mutually disjoint and designate subsets
of the random inputs to Q(). If j ∈ Di, the functionality will output xj to Pi.
Finally, the functionality will output Q(x1, ..., xl) to the output clients, as well
as Shamir shares of this value to the servers.

The functionality is specifically designed to fit into our protocol for computing
Yao-garbled circuits to be presented later. In particular, some of the random
values xj will be used as encryptions keys. Each such key has to be known to
exactly one server, and this is the reason why the functionality outputs some
of the xj ’s to the servers. This functionality, denoted by FQ,D1,...,Dn

, is more
precisely defined as follows:

1. In the first round, it receives from each honest input client the xj ’s this client
supplies. In addition, it receives from the honest input clients and servers a
set of values of the form produced in the linear preprocessing model. More
precisely, these additional inputs take the following form:
– For each xj that is supplied by input client I, a set of values for RandSS

I(t)
(as determined by a polynomial fj).

– For each xj that is random, a set of values for RandSS(t) (as determined
by a polynomial fj).

– For each xj that is random and where j ∈ Di, a set of values for

RandSS
Pi(t) (as determined by a polynomial fj).

– A set of values for RandSS0(dt) (as determined by a polynomial f0).
The functionality computes the shares and polynomials that all the above
results in for the corrupt players and outputs this to the adversary. For
instance, for every xj supplied by corrupt input client I, this will be the
polynomial fj(). Note that, due to our assumed constraint on the number of
corrupt servers, the honest players’ information is enough to determine this
information for the corrupt players. Also, for each xj supplied by an honest
input client, it sends xj − fj(0) to the adversary. (No information is sent to
honest players in this round.)

2. In round 2, the functionality receives from each corrupt input client the xj ’s
that it is responsible for. For each j ∈ Di, the functionality will output xj to
Pi. It then outputs to each server a Shamir share of the value Q(x1, . . . , xl)
generated by the polynomial Q(f1(), f2(), ..., fl()) + f0() (this will be a uni-
variate polynomial of degree at most dt). Finally, the functionality outputs
Q(x1, . . . , xl) to all output clients.

We securely implement the above functionality in the linear preprocessing
model using the following standard protocol:7

1. We do the following for each xj : if xj is supplied by input client I, execute

VSS
I(t) where I uses xj as his private input. The communication implied

by this is the only communication in the first round.

If xj is random, execute RandSS(t). If xj is random and j ∈ Di, execute

RandSS
Pi(t). In all cases, a set of shares of xj is obtained. Let xj,i be the

share of xj obtained by server Pi. We execute RandSS0(dt), creating shares of
a degree dt polynomial that evaluates to 0 in 0. Let zi be the share obtained
by server Pi.

2. In the second round, each server Pi sends Q(x1,i, . . . , xl,i) + zi to each out-
put client. Each output client considers the values he receives as points
on a degree dt polynomial f , reconstructs the polynomial (applying error-
correction in the active adversary case) and outputs f(0). Each server Pi
outputs Q(x1,i, . . . , xl,i) + zi, and the values xj for which j ∈ Di.

We now show the security of this protocol using Canetti’s UC framework [8].
We only show this for environments that supply inputs of correct form as speci-
fied above. This is sufficient, since we will only use the functionality in conjunc-
tion with the linear preprocessing, which is assumed to produce values of the
right form.

Theorem 1. There exists a 2-round protocol computing FQ,D1,...,Dn
, the proto-

col is secure for all environments that supply inputs for honest players as spec-
ified in the description of FQ,D1,...,Dn

. Furthermore, the protocol is secure for
an adaptive adversary corrupting at most t servers and an arbitrary number of
clients. For a passive adversary, we assume dt < n, for an active adversary we
need (d + 2)t < n. The communication complexity involves each output client
receiving n field elements and each input client broadcasting its (masked) inputs.

Proof. To prove security, we describe the required simulator (ideal model adver-
sary), which as usual works by running an internal copy of the real-life adversary.
In the first round, we receive a set of polynomials and shares from the ideal func-
tionality, which we pass on to the adversary. In particular, this includes, for each
corrupt input client, a random polynomial fj() of degree at most t, for each xj
this client supplies. When the adversary broadcasts a values rj on behalf of the
client, we compute xj = fj(0)− rj and give xj as input to the ideal functional-
ity. We also received from the ideal functionality fj(0)− xj for each xj supplied
by an honest client. We use these values to simulate the broadcasts of honest
clients. Note that for each corrupt server Pi, the information received from the
functionality now defines a share xj,i of each xj , and that it also defines a share
zi of the degree dt sharing of 0.

7 For our purposes the degree d of Q will be no larger than 3, hence we will not
consider optimizations that apply to a larger d.

In the second round, the ideal functionality sends Q(x1, ..., xl) to the simu-
lator (we assume the adversary has corrupted at least one output client, oth-
erwise the simulation becomes trivial). For each corrupt output client, we use
the value Q(x1, ..., xl) and the shares of it known by corrupt servers to inter-
polate a random polynomial f of degree at most dt with f(0) = Q(x1, ..., xl)
and f(i) = Q(x1,i, . . . , xl,i) + zi, for each corrupt Pi, where the xj,i, zi are the
previously defined values for Pi. Then for each honest server Pi, we claim f(i)
as the value sent by Pi.

To establish adaptive security, we now show how to reconstruct the history
of the players if they are corrupted after the protocol. Earlier corruptions are
handled by truncating the reconstruction procedure.

If an input client or a server is corrupted after the protocol, we learn all his
input, and pass this on to the adversary. This already determines his view of the
protocol, and is consistent with what the adversary already knows by definition
of the ideal functionality.

If an output client is corrupted after the protocol, we need not produce new
values, as all output clients receive the same set of messages from honest servers,
and these were already produced earlier.

It is straightforward to verify that this simulation leads to perfect indistin-
guishability between the real and ideal process. Namely, the only item that is
produced using different algorithms in the two is the polynomial that determines
Q(x1, ..., xl). However, it is in both cases a random polynomial of degree at most
dt under the constraints that it is consistent with corrupt servers’ shares and its
value at 0 is Q(x1, ..., xl). ut

The protocol can be easily extended to secure computation in parallel of sev-
eral low-degree polynomials, on some set of inputs, where some inputs may go to
several polynomials. While it is not clear that this is implied by the composition
theorem (because of the overlapping inputs) it can be shown by a trivial exten-
sion of the above proof. One can also modify the protocol so that only shares
of Q(x1, ..., xl) are computed for the servers, and not the value itself, by simply
not sending the shares to the output clients.

3 Constant-Round MPC Using a Black-Box PRG

In this section we present our main protocol. We start in Section 3.1 by describing
a variant of Yao’s garbled circuit technique on which we rely. Then, in Section 3.2
we sketch the BMR approach for computing a garbled circuit in a distributed
way. Finally, in Sections 3.3 and 3.4 we describe our modified approach.

3.1 The Basic Garbled Circuit Technique

Loosely speaking, the garbled circuit technique allows to represent a circuit C
on ` input bits by an “encrypted” circuit E(C) along with ` pairs of random
keys, such that given E(C) and the ` keys corresponding to a specific input

b1, . . . , b`, one can efficiently compute the output C(b1, . . . , b`), but this is the
only information about the inputs that can be learned. Yao designed a method
for generating such encrypted circuits, and used it to obtain a general constant-
round two-party protocol for semi-honest parties. (See [30] for a formal proof
of security of Yao’s protocol and [32, 1] for other variants of this technique.)
This protocol was generalized to the multi-party case by Beaver, Micali and
Rogaway [4]. The circuit encryption process can be done in parallel for every
gate in C, yielding a constant-round protocol for secure function evaluation.

We now describe how the basic technique for garbling a circuit works, by
specifying how a trusted functionality could prepare an encrypted circuit and
input keys as above. We will later show various protocols for implementing this
functionality.

Without loss of generality, we assume the function to be computed is de-
scribed as a Boolean circuit C with 2-input NAND gates. Let the number of
wires in the circuit be W . We number the wires from 0 to W − 1. For simplicity,
we assume the circuit produces just a single output bit, to be learnt by all output
clients, where this bit corresponds to the last wire, number W − 1. Each input
wire w has a bit bw assigned to it, where each such bit is supplied by an input
client. We will be using an index 0 ≤ j ≤ 2W − 1, where the values 2w, 2w + 1
are assigned to wire w.

We assume we have available a secure secret-key encryption scheme ES(),
where S is a k-bit key. We need to assume that the cryptosystem is semantically
secure as long as each key is used on at most 2z messages, of length k + 1 bits
each, where z is the maximal fan-out in C.

To compute the garbled circuit, we get as input the bits bw for each input
wire, and then proceed as follows (see below for intuition):

– For every wire w, choose a random bit λw (masking the true value of the
wire) and random keys S2w, S2w+1.

– For every gate g in C, do the following: suppose g has input wires α, β and
output wire γ. Define the following values

a00
g = S2γ+δ00g

; δ00
g = (λα nand λβ)⊕ λγ

a01
g = S2γ+δ01g

; δ01
g = (λα nand λ̄β)⊕ λγ

a10
g = S2γ+δ10g

; δ10
g = (λ̄α nand λβ)⊕ λγ

a11
g = S2γ+δ11g

; δ11
g = (λ̄α nand λ̄β)⊕ λγ

Define Acd
g = (acdg , δ

cd
g), for c, d ∈ {0, 1}. We compute the encryptions

ES2α
(ES2β

(A00
g))

ES2α
(ES2β+1

(A01
g))

ES2α+1
(ES2β

(A10
g))

ES2α+1
(ES2β+1

(A11
g))

– We output, for each g, the 4 encryptions as above along with the mask λW−1

of the output wire - this is the encrypted circuit which we denote by E(C).
We also output, for each input wire w, the values bw ⊕ λw and S2w+(bw⊕λw)

- these are the encrypted inputs.

A word about the underlying intuition behind this: assume we knew all the
inputs and did an ordinary computation of the circuit. This would result in
assigning a bit bw to every wire w. Instead, we get to know exactly one of the
two encryption keys that are assigned to each wire, namely the key S2w+(bw⊕λw)

and the bit bw⊕λw, and this is ensured for all input wires initially. We can think
of this information as an encrypted representation of the bit bw. This also means
that by making λW−1 public, we reveal the output bit, and only that bit.

The idea behind making the individual gates work in this scenario is to
encrypt the keys and bits that might be assigned to the gate’s output wire
under keys assigned to input wires in such a way that players will be able to
decrypt the “correct” key and bits for the output wire, and only this information.
For instance, suppose that some gate g in the circuit has input wires α, β and
output wire γ. If the information known for the input wires is S2α+c, c and
S2β+d, d for bits c, d, then the bit that should be revealed for output wire is
δcdg = ((c ⊕ λα) nand (d ⊕ λβ)) ⊕ λγ, and so the key that should revealed is
S2γ+δcdg

. The idea is therefore to encrypt these two values under S2α+c and
S2β+d, for all 4 values of c, d.

Anyone who is given encrypted circuit and inputs can compute the output
by the following local circuit evaluation procedure: for each input wire w, the key
S2w+(bw⊕λw) and the bit bw⊕λw are given. There will now be a number of gates,
for which a key and a bit are known for both input wires. Let g be such a gate,
say with input wires α, β and output wire γ. Since we know bα⊕λα and bβ⊕λβ ,
we know which of the encryptions associated to g we can decrypt, namely those
where both involved keys are known. We decrypt and obtain as result a key and
a bit, which are easily seen to be S2γ+(bγ⊕λγ) and the bit bγ ⊕ λγ . Continuing
this way, we will obtain a key and a bit bW−1⊕λW−1 for the output wire W −1.
Since we also know λW−1, we can compute the output bit bW−1.

3.2 The BMR Protocol

The protocol from [4] can be seen as a concrete proposal for an encryption scheme
E as required for the garbled circuit technique and a protocol for computing
E(C). Their scheme assumes a pseudorandom generator G taking as input a k-
bit seed (such a generator can be constructed from any one-way function [21]).
For a seed s, the output of G(s) is split into k-bit blocks where the j’th block is
denoted by G(s)j .

A key S in the encryption scheme consists of n subkeys S = (s1, s2, . . . , sn),
each of which is k bits long, and where initially si is known only to Pi. An
element m ∈ K is encrypted under S as ES(m) = m ⊕ G(s1)j ⊕ ... ⊕ G(sn)j ,
assuming m is the j’th k-bit string we encrypt under S.

Assuming m and each si have been secret shared among the servers, we
can securely compute the encryption by having server i locally compute and
secret share G(si)j . We can then use linearity of the secret sharing to get shares
of ES(m), and send these shares to the output clients. This will work, and
makes only a black-box use of G, if the adversary is passive. But if he is active,
each server needs to prove in zero-knowledge that he has computed and secret

shared G(si)j correctly. In general, this requires generic zero-knowledge tech-
niques, which means we no longer make a black-box use of G, and also leads to
a major loss of efficiency.

3.3 Our Distributed Encryption Scheme

We now suggest a different encryption scheme for the garbled circuit technique,
allowing to avoid the use of zero-knowledge proofs in the case of an active ad-
versary. We assume as before a pseudorandom generator G which expands a k
bit seed. A key S consists again of n subkeys S = (s1, s2, . . . , sn) where initially
si is known only to Pi.

Consider now a situation where a message m ∈ K has been secret shared
among the n servers using a polynomial of degree d, where t ≤ d < n. Let mi

denote the share of m given to Pi. To encrypt such a message under a key S,
we will let each server encrypt the share he knows under his part of the key
(expanded by G).

We define Ej
S(m) = (G(s

1)j⊕m1, ..., G(s
n)j⊕mn). Having received the parts

of the ciphertext Ej
S(m) from the servers and given the key S, one can decrypt

each share and reconstruct m from the shares, where error correction8 is used
to recover m if the adversary has actively corrupted some of the servers. The
following lemma is straightforward.

Lemma 1. The above distributed encryption scheme has the following proper-
ties:

– If an adversary is given up to t of the si’s, and Ej
S is used on at most one

message m, the encryption keeps m semantically secure.
– If the adversary is passive, and an honest output client is given S and receives
Ej
S(m) from the servers, he can decrypt correctly if d < n.

– If the adversary is active, and an honest output client is given S and receives
Ej
S(m) from the servers, he can decrypt correctly if d+ 2t < n.

This generalizes in a straightforward way to cases where two keys U, V are used.
We write Ei

U (E
j
V (m)) = (G(u

1)i ⊕G(v1)j ⊕m1, ..., G(u
n)i ⊕G(vn)j ⊕mn).

In the following, we will be encrypting several elements in K under the same
key. This is done in the natural way, by using a fresh part of the output from G
for each new element.

3.4 Distributed Computation of a Garbled Circuit

We now apply the distributed encryption idea for securely computing a garbled
circuit using a black-box PRG. The protocol takes place in the linear preprocess-
ing model, and will use the subroutines and protocols described in Sections 2.1
and and 2.2.
8 In the case t < n/2 the subkeys and the message will be distributed using authenti-
cated shares, in which case the decryption will involve a correction of erasures rather
than errors.

1. In round 1, for each wire w = 0..W − 1 the servers execute RandSSbin(t) to
create shares of the secret wire masks λw’s. Also, for i = 1..n, j = 0..2W −1,
they execute RandSS

Pi(t) to create shares of the subkeys sij , such that s
i
j

is known to Pi. Finally, for each input bit bw held by input client Ij , the

players execute VSS
Ij (t) (i.e., with Ij as dealer) and bw as shared secret.

Thus the only communication in round 1 consists of broadcasts done in the
VSS subroutines.

2. In round 2, the servers first do some local computation.

– For each input wire w and i = 1..n, each server locally computes a ran-
dom share of the value si2w+(bw⊕λw). Note that since we work over a field
of characteristic 2, this value can be written as a degree 2 polynomial,
namely (1 + bw + λw)s

i
2w + (bw + λw)s

i
2w+1. We can therefore compute

shares of the value si2w+(bw⊕λw) defined by a random degree 2t polyno-
mial and send all these shares to the output clients, using the protocol
from Section 2.2.

– For each input wire w, the servers compute shares of the value bw ⊕ λw
and send them to the output clients.

– For each gate g in the circuit, suppose the two inputs and output wire
are wires α, β, γ, respectively. Then for each i = 1..n, the servers locally
compute random shares of the values

a00,i
g = si2γ+δ00g

; δ00
g = (λα nand λβ)⊕ λγ

a01,i
g = si2γ+δ01g

; δ01
g = (λα nand λ̄β)⊕ λγ

a10,i
g = si2γ+δ10g

; δ10
g = (λ̄α nand λβ)⊕ λγ

a11,i
g = si2γ+δ11g

; δ11
g = (λ̄α nand λ̄β)⊕ λγ

Note that these values can be written as degree 3 polynomials in the
already shared values, for instance, a00,i

g = (λαλβ+λγ)s
i
2γ+(1+λαλβ+

λγ)s
i
2γ+1. We can therefore use the protocol from Section 2.2 to lo-

cally compute these random shares (without sending them to the output
clients).

3. Let acdg = (acd,1g , ..., acd,ng), for c, d ∈ {0, 1}. (This vector of n subkeys replaces

the single key acdg in the basic garbled circuit construction from Section 3.1).

Define Acd
g = (Acd

g , δ
cd
g). The servers can now reveal to the output clients en-

cryptions of the form ES2α+c
(ES2β+d

(Acd
g)) using the distributed encryption

scheme from Section 3.3. (Note that both the data we need to encrypt and
the encryption subkeys are already shared in the required form.)

4. The output clients now apply the local circuit evaluation procedure described
in Section 3.1, replacing ordinary decryption with distributed decryption
(Section 3.3).

Theorem 2 (Black-box constant-round protocol in linear preprocess-
ing model). In the linear preprocessing model, there is a general 2-round MPC
protocol making a black-box use of a pseudorandom generator. The protocol tol-
erates an active, adaptive adversary corrupting t < n/5 servers and an arbitrary

number of clients. 9 The communication complexity for computing a circuit C
involves O(n2|C|k) bits sent to each output client, and each input client must
broadcast its (masked) inputs to the n servers.

Proof sketch: Formally speaking, we want to prove that the above protocol
realizes a functionality FC that accepts inputs b1, ..., b` from the input clients
and then outputs C(b1, ..., b`) to all output clients.

Let Flow−degree be an extended version of FQ,D1,...,Dn
, computing all polyno-

mials of degree 2, 3 and shares we compute in the protocol π as described above
(see the remarks following Theorem 1). Let πFlow−degree be the protocol we ob-
tain by replacing in the natural way steps 1 and 2 in π by a call to Flow−degree.
By Theorem 1 and the composition theorem, to show security of π, it is sufficient
to show security of πFlow−degree .

We now describe a black-box simulator for this protocol. The simulator
proceeds by running internally copies of the linear preprocessing functionality,
Flow−degree and the (initially) honest players. The internal copies of honest play-
ers are called virtual honest players. They will be given 0’s as input instead of
the real values of their bi’s (which are unknown to the simulator). Otherwise
all these internal entities proceed according to the protocol. There are only two
differences between this and the real process: When the adversary specifies input
bits to Flow−degree, this in particular fixes values of the bi’s for the corrupt play-
ers. The simulator then sends these bits to FC . Second, when we get C(b1, ..., b`)
from FC and construct the encrypted circuit, we assign a number of ciphertexts
to the output gate g, exactly one of which will be decrypted in the local evalua-
tion procedure. The simulator will put the bit λW−1 ⊕ C(b1, ..., b`) as plaintext
inside this encryption. This is done as follows: the degree 3t polynomial that
defines this bit is of the form g() + z() where z() is a random degree 3t poly-
nomial with z(0) = 0. We then change z() to a random z′()of the same degree,
but such that g(0) + z′(0) is that value we want and z′() is consistent with the
shares of corrupt players. This change introduces no inconsistencies in the view
of the virtual players, since z() is used for nothing else than randomizing g. The
simulated execution now results in output C(b1, ..., b`) which is consistent with
what the ideal functionality gives to the honest clients.

It remains to be described how the simulator handles corruptions. We de-
scribe how the simulator will reconstruct the view of a newly corrupted player.
We assume the player is corrupted after the protocol terminates. For earlier cor-
ruptions, the reconstruction procedure is truncated appropriately. The general
idea is that the simulator already has the views of the virtual honest players,
including the one the adversary now wants to corrupt. We then modify this infor-
mation so it becomes consistent with what we learn as a result of the corruption,
without changing what the adversary already knows.

If an input client is corrupted, we learn his input bit(s), say bw. We already
broadcasted a value rw related to this, and the virtual client has from the pre-
processing a polynomial fw with fw(0) = rw. We then change fw to f

′
w, so f

′
w is

9 In the full paper, we give an optimized version of Theorem 1 for the case of a passive
adversary, allowing us to prove the above theorem for t < n/2 in this case.

random of degree at most t, subject to f ′w(0) = bw⊕rw, and fw(c) = f ′w(c) for all
corrupt Pc. We now want to claim that the virtual honest players used the poly-
nomial g′w() = f ′w()+rw in the further computation, instead of gw() = fw()+rw
we used so far. Note that, to compute the garbled inputs, the protocol computes
a set of degree-2 polynomials. Consider one of them, say Q(bw, λw, s2w, s2w+1).
Say the last 3 variables are shared using polynomials g2(), g3(), g4(). Before cor-
ruption, we had Q(0, λw, s2w, s2w+1) shared using a univariate polynomial of
the form Q(gw(), g2(), g3(), g4()) + zw(), where zw() is random of degree 2t and
zw(0) = 0. Define z

′
w() by

Q(gw(), g2(), g3(), g4()) + zw() = Q(g′w(), g2(), g3(), g4()) + z′w()

and change zw() to z
′
w(). This will change honest virtual server’s shares, but not

the corrupted server’s shares, by construction of f ′w(), g
′
w(). It will also preserve

the data sent to output clients. We now give to the adversary the updated view
of the virtual client.

If a server or an output client is corrupted, note that this does not result
in any new data learnt from FC . We can therefore give the current view of the
virtual output client or server to the adversary.

This concludes the description of the simulator. The intuition of the analysis
of the simulation is that all plaintext data are identically distributed in simula-
tion as in real execution, the difference lies in the data that remain encrypted,
and this cannot be detected efficiently by semantic security of the encryption.

ut

3.5 The Plain Model

To implement the above protocol in the plain model, we need to emulate the
procedures for generating random shared secrets. The cost of the resulting pro-
tocol is dominated by the cost of emulating O(n|C|) invocations of (different
variants of) RandSS(t). In the semi-honest case, each invocation of RandSS(t)
can be implemented in a straightforward way by letting each player distribute a
random secret and output the sum of the shares it received. (In fact, it suffices
that t + 1 players share secrets.) In the malicious case, one could use a similar
procedure based on any standard constant-round VSS protocol from the litera-
ture (e.g., the one from [5]). In fact, using the 2-round VSS protocol from [17],
one can obtain a 3-round protocol in the plain model (assuming t < n/5).

We can weaken the assumption on t in the active case to t < n/3 by replac-
ing the non-interactive polynomial evaluation protocol from Theorem 1 by an
interactive one (e.g., using [5]). The resulting protocol will have a larger (but
still constant) number of rounds and a higher communication complexity. In the
full version, we sketch how to use the VSS and multiplication protocol from [10]
to further extend the feasibility result to the case t < n/2. This is based on two
observations: first, a variant of our distributed encryption scheme can be used
to encrypt values that have been shared under any VSS with a non-interactive
reconstruction protocol. Second, by requiring that all values in the computation

as well as shares of these values are VSS’ed, we can obtain a multiplication pro-
tocol that is guaranteed to terminate in a constant number of rounds, even for
the case of t < n/2. Thus, our main feasibility result in the plain model is the
following:

Theorem 3 (Black-box constant-round protocol in plain model). In the
plain model, there is a general constant-round MPC protocol making a black-box
use of a pseudorandom generator. The protocol tolerates an active, adaptive
adversary corrupting t < n/2 servers and an arbitrary number of clients.

References

[1] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing
polynomials and their applications. In Proc. 20th Conference on Computational
Complexity, 2005.

[2] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a con-
stant number of rounds. In Proc. 8th ACM PODC, pages 201–209, 1989.

[3] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low commu-
nication overhead (extended abstract). In Proc. of CRYPTO ’90.

[4] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In Proc. of 22nd STOC, pages 503–513, 1990.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. of 20th STOC,
pages 1–10, 1988.

[6] C. Cachin, J. Camenisch, J. Kilian, and J. Muller. One-round secure computation
and secure autonomous mobile agents. In Proceedings of ICALP’ 00, 2000.

[7] R. Canetti. Security and composition of multiparty cryptographic protocols. In
J. of Cryptology, 13(1), 2000.

[8] R. Canetti. Ran Canetti. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. FOCS 2001: 136-145.

[9] R. Cramer and I. Damg̊ard. Secure distributed linear algebra in a constant number
of rounds. In Proc. Crypto 2001.

[10] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient Mul-
tiparty Computations Secure Against an Adaptive Adversary. In Proc. EURO-
CRYPT 1999, pages 311-326.

[11] R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In Proc. of second TCC, 2005.

[12] R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In Proc. of EUROCRYPT ’00, LNCS 1807,
pp. 316-334, 2000.

[13] R. Cramer, I. Damg̊ard, and J. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Proc. of EUROCRYPT ’01 , LNCS 2045, pp. 280-299,
2001.

[14] U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge Proofs of Identity. J. Cryptology
1(2): 77-94 (1988).

[15] Uri Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In Proc. 26th STOC, pages 554–563. ACM, 1994.

[16] P. Feldman and S. Micali. An Optimal Algorithm for Synchronous Byzantine
Agreement. SIAM. J. Computing, 26(2):873–933, 1997.

[17] R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. The Round Complexity of
Verifiable Secret Sharing and Secure Multicast. In Proceedings of the 33rd ACM
Symp. on Theory of Computing (STOC ’01), pages 580-589, 2001.

[18] R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. On 2-round secure multiparty
computation. In Proc. Crypto ’02.

[19] N. Gilboa and Y. Ishai. Compressing cryptographic resources. In Proc. of
CRYPTO ’99.

[20] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game (ex-
tended abstract). In Proc. of 19th STOC, pages 218–229, 1987.

[21] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[22] M. Hirt and U. M. Maurer. Robustness for Free in Unconditional Multi-party
Computation. CRYPTO 2001: 101-118.

[23] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In Proc. 41st FOCS, pp.
294–304, 2000.

[24] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. Proceedings of 21st Annual ACM Symposium on the Theory of
Computing, 1989, pp. 44 – 61.

[25] J. Katz and R. Ostrovsky. Round-Optimal Secure Two-Party Computation. In
CRYPTO 2004, pages 335-354.

[26] J. Katz, R. Ostrovsky, and A. Smith. Round Efficiency of Multi-party Computa-
tion with a Dishonest Majority. In EUROCRYPT 2003, pages 578-595.

[27] J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th STOC,
pages 20–31, 1988.

[28] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-
tation. J. Cryptology 16(3): 143-184 (2003). Preliminary version in Crypto 2001.

[29] Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of protocols
without simultaneous termination. In Proc. PODC 2002, pages 203-212.

[30] Y. Lindell and B. Pinkas. A Proof of Yao’s Protocol for Secure Two-Party Com-
putation. Cryptology ePrint Archive, Report 2004/175, 2004.

[31] M. Naor and K. Nissim. Communication preserving protocols for secure function
evaluation. In Proc. STOC 2001, pages 590-599.

[32] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In Proc. 1st ACM Conference on Electronic Commerce, pages 129–139,
1999.

[33] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In Proc. STOC 2004, pages 232-241.

[34] R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a
Constant Number of Rounds. FOCS 2003.

[35] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority. In Proc. 21st STOC, pages 73–85. ACM, 1989.

[36] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of Reducibility between
Cryptographic Primitives. TCC 2004: 1-20.

[37] P. Rogaway. The Round Complexity of Secure Protocols. PhD thesis, MIT, June
1991.

[38] A. Shamir. How to share a secret. Commun. ACM, 22(6):612–613, June 1979.
[39] S. R. Tate and K. Xu. On garbled circuits and constant round secure function

evaluation. CoPS Lab Technical Report 2003-02, University of North Texas, 2003.
[40] A. C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pp.

162–167, 1986.

