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Gregor Leander3, Jaume Mart́ı-Farré2, and Carles Padró2
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Abstract. Error correcting codes and matroids have been widely used
in the study of ordinary secret sharing schemes. In this paper, we study
the connections between codes, matroids and a special class of secret
sharing schemes, namely multiplicative linear secret sharing schemes.
Such schemes are known to enable multi-party computation protocols
secure against general (non-threshold) adversaries.

Two open problems related to the complexity of multiplicative LSSSs
are considered in this paper.

The first one deals with strongly multiplicative LSSSs. As opposed to the
case of multiplicative LSSSs, it is not known whether there is an efficient
method to transform an LSSS into a strongly multiplicative LSSS for the
same access structure with a polynomial increase of the complexity. We
prove a property of strongly multiplicative LSSSs that could be useful
in solving this problem. Namely, using a suitable generalization of the
well-known Berlekamp-Welch decoder, we show that all strongly multi-
plicative LSSSs enable efficient reconstruction of a shared secret in the
presence of malicious faults.

The second one is to characterize the access structures of ideal multi-
plicative LSSSs. Specifically, we wonder whether all self-dual vector space
access structures are in this situation. By the aforementioned connection,
this in fact constitutes an open problem about matroid theory, since it
can be re-stated in terms of representability of identically self-dual ma-
troids by self-dual codes. We introduce a new concept, the flat-partition,
that provides a useful classification of identically self-dual matroids. Uni-
form identically self-dual matroids, which are known to be representable
by self-dual codes, form one of the classes. We prove that this prop-
erty also holds for the family of matroids that, in a natural way, is the
next class in the above classification: the identically self-dual bipartite
matroids.
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1 Introduction

Two open problems on multiplicative linear secret sharing schemes are studied
in this paper. Our results deal with the connections between linear codes, rep-
resentable matroids and linear secret sharing schemes. Some facts about these
connections are recalled in Section 1.2. The reader is referred to [22] for a general
reference on Matroid Theory and to [5, 19, 28, 29] for more information about the
relation between secret sharing schemes and matroids.

1.1 Multiplicative Linear Secret Sharing Schemes and General

Secure Multi-Party Computation

In aK -linear secret sharing scheme (K -LSSS) on the set of players P = {1, . . . , n},
the share of every player i ∈ P is a vector in Ei, a vector space of finite dimension
over the finite field K , and is computed as a fixed linear function of the secret
value k ∈ K and some other randomly chosen elements in K .

More formally, any sequence Π = (π1, . . . , πn, πn+1) of surjective linear map-
pings πi : E → Ei, where E and Ei are vector spaces of finite dimension over K
and En+1 = K , defines a K -linear secret sharing scheme Σn+1(Π) on the set of
players P = {1, . . . , n}. For any vector x ∈ E, the values (πi(x))1≤i≤n are shares
of the secret value k = πn+1(x) ∈ K . The access structure, Γn+1(Π) of this
scheme, that is, the family of qualified subsets, consists of all subsets A ⊂ Pn+1

such that
⋂
i∈A kerπi ⊂ kerπn+1.

Linear secret sharing schemes are usually defined in a more general way by
considering that the vector space En+1 corresponding to the secret value is not
necessarily equal to K . We are not going to consider such LSSSs in this paper.

The complexity of a LSSS Σ is defined as λ(Σ) =
∑n

i=1 dimEi ≥ n, which
corresponds to the total number of field elements that are distributed. The
schemes with complexity λ(Σ) = n are called ideal . For any finite field K and
for any access structure Γ , there exists a K -LSSS for Γ [14]. We notate λK(Γ )
for the minimum complexity of the K -LSSSs with access structure Γ . If there
exists an ideal K -LSSS for Γ , that is, if λK(Γ ) = n, we say that Γ is a K -vector
space access structure.

Linear secret sharing schemes were first considered, only in the ideal case,
in [4]. General Linear secret sharing schemes were introduced by Simmons [27],
Jackson and Martin [15] and Karchmer and Wigderson [16] under other names
such as geometric secret sharing schemes or monotone span programs.

In a LSSS, any linear combination of the shares of different secrets results
in shares for the same linear combination of the secret values. Because of that,
LSSSs are used as a building block of multi-party computation protocols. Nev-
ertheless, if we require protocols computing any arithmetic circuit, a similar



property is needed for the multiplication of two secrets, that is, the LSSS must
be multiplicative.

We illustrate the multiplicative property of LSSSs by analyzing the Shamir’s
(d, n)-threshold scheme [26]. In this scheme, the secret k ∈ K and the shares ki ∈
K , where i = 1, . . . , n, are the values of a random polynomial with degree at most
d− 1 in some given points. The secret is recovered by Lagrange interpolation. If
n ≥ 2d − 1, the product kk′ of the two secret values is a linear combination of
any 2d−1 values ci = kik

′
i. This linear combination is obtained by interpolating

the product of the two random polynomials that were used to distribute the
shares. This multiplicative property of the Shamir’s scheme is used in [3, 8, 9,
11] to construct multi-party computation protocols that are secure against a
threshold-based adversary.

In order to obtain efficient multi-party computation protocols for a gen-
eral adversary structure, a generalization of the multiplicative property of the
Shamir’s scheme to any linear secret sharing scheme is proposed in [10].

Specifically, a linear secret sharing scheme over the finite field K is said to
be multiplicative if every player i ∈ P can compute, from his shares ki, k

′
i of two

shared secrets k, k′ ∈ K , a value ci ∈ K such that the product kk′ is a linear
combination of all the values c1, . . . , cn. We say that a secret sharing scheme is
strongly multiplicative if, for any subset A ⊂ P such that P −A is not qualified,
the product kk′ can be computed using only values from the players in A.

Observe that the Shamir’s (d, n)-secret sharing scheme is multiplicative if
and only if n ≥ 2d− 1, and it is strongly multiplicative if and only if n ≥ 3d− 2.
An access structure is said to be Q2, or Q3, if the set of players is not the union of
any two, or, respectively, three, unqualified subsets. In general, as a consequence
of the results in [10, 13], an access structure Γ can be realized by a multiplicative
LSSS if and only if it is Q2, and Γ admits an strongly multiplicative LSSS if and
only if it is Q3.

Cramer, Damg̊ard and Maurer [10] presented a method to construct, from any
K -MLSSS Σ with Q2 access structure Γ , an error-free multi-party computation
protocol secure against a passive adversary which is able to corrupt any set of
players B /∈ Γ and computing any arithmetic circuit C over K . The complexity
of this protocol is polynomial in the size of C, log |K | and λ(Σ). They prove
a similar result for an active adversary. In this case, the resulting protocol is
perfect with zero error probability if the LSSS is strongly multiplicative, with a
Q3 access structure Γ .

One of the key results in [10] is a method to construct, from any K -LSSS Σ
with Q2 access structure Γ , a multiplicative K -LSSS Σ ′ with the same access
structure and complexity λ(Σ ′) = 2λ(Σ). That is, if µK(Γ ) denotes the minimum
complexity of allK -MLSSSs with access structure Γ , the above result means that
µK(Γ ) ≤ 2λK(Γ ) for any finite field K and for any Q2 access structure Γ .

Therefore, in the passive adversary case, the construction of efficient multi-
party computation protocols can be reduced to the search of efficient linear secret
sharing schemes. Specifically, a multi-party computation protocol computing any
arithmetic circuit C over K and secure against a passive adversary which is able



to corrupt any set of players B /∈ Γ can be efficiently constructed from any LSSS
whose access structure Γ ′ is Q2 and Γ

′ ⊂ Γ .

This is not the situation when an active adversary is considered, because it is
not known whether it is possible to construct, for any Q3 access structure Γ , a
strongly multiplicative LSSS whose complexity is polynomial on the complexity
of the best LSSS for Γ .

Nevertheless, the active adversary case is also solved in [10] if an exponentially
small error probability is allowed. A construction is given in [10] for the active
adversary case that efficiently provides, from any LSSS with Q3 access structure
Γ , a multiparty computation protocol with exponentially small error probability,
secure against an active adversary which is able to corrupt any set of players not
in Γ .

1.2 Codes, Matroids and Secret Sharing Schemes

Let us take Q = {1, . . . , n, n+1} and Pi = Q−{i} for any i ∈ Q. This notation
will be used all through the paper. From now on, vectors appearing in matrix
operations will be considered as one-row matrices.

Let Π = (π1, . . . , πn, πn+1) be a sequence of surjective linear mappings
πi : E → K , that is, non-zero vectors in the dual space E∗. We are going to
suppose always that those vectors span E∗. Observe that Π can be seen as a
linear mapping Π : E → Kn+1 and, once a basis of E is fixed, it can be rep-
resented by the d × (n + 1) matrix M = M(Π) such that Π(x) = xM for all
x ∈ E. Observe that rank(M) = d and that the i-th column of M corresponds
to the linear form πi.

The matrix M is a generator matrix of a [n + 1, d ]-linear code C = C(Π).
The columns of M define a K -representable matroid M = M(Π) on the set
of points Q. This matroid depends only on the code C, that is, it does not
depend on the choice of the generator matrix M . In this situation, we say that
M is the matroid associated to the code C and also that the code C is a K -
representation of the matroidM. Observe that different codes can represent the
same matroid. Important properties about the weight distribution of a linear
code can be studied from its associated matroid. Several results on this relation
between matroids and codes are given in [1, 6, 7, 12] and other works.

Besides, the code C defines an ideal linear secret sharing scheme Σi(Π) for
every i ∈ Q. Every codeword of C is in the form (π1(x), . . . , πi(x), . . . , πn+1(x))
and can be seen as a distribution of shares for the secret value πi(x) ∈ K
among the players in Pi = Q − {i}. Observe that the access structure Γi(Π)
of the scheme Σi(Π), which is a K -vector space access structure, consists of
all subsets A ⊂ Pi such that πi ∈ 〈πj : j ∈ A〉. Therefore, A ⊂ Pi is a
minimal qualified subset in that structure if and only if A∪{i} is a circuit of the
matroid M(Π). As a consequence, the access structures Γi(Π) are determined
by the matroidM(Π). This connection between ideal secret sharing schemes and
matroids, which applies to non-linear schemes as well, was discovered by Brickell
and Davenport [5] and has been studied afterwards by several authors [2, 19–21,



28–30]. It plays a key role in one of the main open problems in secret sharing:
the characterization of the access structures of ideal secret sharing schemes.

Actually, non-ideal linear secret sharing schemes can also be represented as
linear codes. In the general case, several columns of the generator matrix are
assigned to every player.

Error correction in linear codes is related to an important property of secret
sharing schemes: the possibility of reconstructing the shared secret value even if
some shares are corrupted.

The different notions of duality that are defined for codes, for matroids and
for access structures are closely related.

Let N be a parity check matrix for the code C = C(Π). That is, N is a
(n−d+1)× (n+1) matrix with rank(N) = n−d+1 and MN> = 0, where N>

denotes the transpose of N . The matrix N is a generator matrix of a [n+1, n−
d+ 1]-linear code C⊥, which is called the dual code of the code C. The code C is
said to be self-dual if C⊥ = C. In this case, 2d = n+ 1 and MM> = 0 for every
generator matrix M .

If the linear code C defines a (not necessarily ideal) LSSS with access structure
Γ , then the dual code C⊥ defines a LSSS for the dual access structure Γ ∗ = {A ⊂
P : P −A /∈ Γ}. As a consequence of this fact, λK(Γ

∗) = λK(Γ ) for every access
structure Γ and for every finite field K .

The matroid N associated to the dual code C⊥ is the dual matroid of the
matroid M corresponding to C, that is, the family of bases of N = M∗ is
B(M∗) = {B ⊂ Q : Q−B ∈ B(M)}, where B(M) is the family of bases ofM.

Moreover, for every i ∈ Q, if Γi and Γ
′
i are the access structures on the set Pi

that are determined, respectively, by the matroids M and M∗, then Γ ′i = Γ ∗i .
Therefore, the dual of a K -representable matroid is also K -representable and
the same applies to K -vector space access structures.

Observe that the matroid M associated to a self-dual code is identically
self-dual, that is,M =M∗. Nevertheless, it is not known whether every repre-
sentable identically self-dual matroid can be represented by a self-dual code.

Duality plays an important role in the study of the multiplicative property
of LSSSs. First of all, an access structure Γ is Q2 if and only if Γ

∗ ⊂ Γ . This
fact and the aforementioned relation between duality in codes and LSSSs are
the key points in the proof of the bound µK(Γ ) ≤ 2λK(Γ ) given in [10]. Besides,
the ideal LSSS defined by a self-dual code is multiplicative and, hence, its access
structure is such that µK(Γ ) = λK(Γ ).

2 Our Results

2.1 On Strongly Multiplicative Linear Secret Sharing Schemes

The first open problem we consider in this paper deals with the efficient con-
struction of strongly multiplicative LSSSs. As we said before, no efficient general
reductions are known for it at all, except for some upper bounds on the minimal
complexity of strongly multiplicative LSSSs in terms of certain threshold cir-
cuits. That is, the existence of a transformation that renders an LSSS strongly



multiplicative at the cost of increasing its complexity at most polynomially is
an unsolved question.

We shed some light on that problem by proving a new property of strongly
multiplicative LSSSs. Using a suitable generalization of the well-known Berle-
kamp-Welch decoder for Reed-Solomon codes, we show Theorem 1, which is
proved in Section 4, that all strongly multiplicative LSSSs allow for efficient re-
construction of a shared secret in the presence of malicious faults. In this way, we
find an interesting connection between the problem of the strong multiplication
in LSSSs and the existence of codes with efficient decoding algorithms.

Theorem 1. Let s = (s1, . . . , sn) be a full vector of shares for a secret s ∈ K ,

computed according to a strongly multiplicative K -LSSS with access structure Γ
on n players. Let e denote the all zero vector, except where it states the errors

that a set of players A 6∈ Γ have introduced in their respective shares. Define

c = s+ e. Then the secret s can be recovered from c in time poly(n, log |K|).

2.2 On Ideal Multiplicative Linear Secret Sharing Schemes

The characterization of the access structures of ideal MLSSSs is the second open
problem that is studied in this work. That is, we are interested in determining
which Q2 vector space access structures can be realized by an ideal MLSSS or,
equivalently, for which Q2 access structures there exists a finite field K with
µK(Γ ) = λK(Γ ) = n.

This is a case of the more general problem of determining the cases in which
the factor 2 loss in the construction of MLSSSs given in [10] is necessary. That
is, to find out in which situations the bound µK(Γ ) ≤ 2λK(Γ ) can be improved.

The (d, n)-threshold structures with n ≥ 2d− 1 are examples of access struc-
tures that can be realized by an ideal LSSS. Other examples are obtained from
self-dual codes. If the linear code C(Π) is self-dual, then, the ideal LSSSs Σi(Π),
where i ∈ Q, are multiplicative. Therefore, for every i ∈ Q, the vector space
access structure Γi = Γi(Π) is such that µK(Γi) = λK(Γi) = n. Observe that
those access structures are self-dual, that is, Γ ∗i = Γi.

On the other hand, there exist examples of Q2 access structures Γ such that
λK(Γ ) = n for some finite field K but do not admit any ideal MLSSS over any
finite field. The arguments that are used to prove this fact do not apply if a
self-dual vector space access structure is considered. An infinite family of such
examples will be given in the full version of the paper.

Self-dual access structures coincide with the minimally Q2 access structures,
that is, with the Q2 access structures Γ such that any substructure Γ

′ ( Γ is not
Q2. The results in this paper lead us to believe that any self-dual vector space
access structure can be realized by an ideal multiplicative linear secret sharing
scheme and, hence, to state the following open problem. One of the goals of this
paper is to move forward in the search of its solution.

Problem 1. To determine whether there exists, for any self-dual K -vector space
access structure Γ , an ideal multiplicative L-LSSS, being the finite field L an
algebraic extension of K.



Since µK(Γ ) ≤ 2λK(Γ ) for any Q2 access structure Γ , to study this open
problem seems to have a limited practical interest. Nevertheless, its theoretical
interest can be justified by several reasons.

First, due to the minimality of the Q2 property, self-dual access structures
are an extremal case in the theory of MLSSSs. Moreover, self-duality seems to be
in the core of the multiplicative property. For instance, the construction in [10]
providing the bound µK(Γ ) ≤ 2λK(Γ ) is related to self-dual codes and, hence,
to ideal MLSSSs for self-dual access structures.

Besides, the interest of Problem 1 is increased by the fact that, as we pointed
out before, it can be stated in terms of an interesting open problem about the
relation between Matroid Theory and Code Theory. Namely, by studying how the
connection between codes, matroids and LSSSs applies to multiplicative LSSSs,
we prove in Section 5.1 that Problem 1 is equivalent to the following one.

Problem 2. To determine whether every identically self-dual K -representable
matroid can be represented by a self-dual linear code over some finite field L, an
algebraic extension of K .

Finally, we think that the results and techniques in this paper, and the ones
that possibly will be found in future research on that problem, can provide a
better understanding of the multiplicative property and may be useful to find
new results on the existence of efficient strongly multiplicative LSSSs. In partic-
ular, the study of the characterization of the access structures of ideal strongly
multiplicative LSSSs, which should be also attacked by using Matroid Theory,
may lead to interesting advances on that problem. For instance, one can ob-
serve a remarkable difference in the strong multiplicative case: the minimality
of the Q3 property does not imply any important matroid property comparable
to self-duality.

We say that a matroid is self-dually K -representable if it can be represented
by a self-dual code over the finite field K . Any self-dually representable matroid
is identically self-dual and representable. The open problem we consider here is
to decide whether the reciprocal of this fact is true.

The uniform matroids Ud,n and the Z2-representable matroids are the only
families of matroids for which it is known that all identically self-dual matroids
are self-dually representable.

There exist several methods to combine some given matroids into a new one.
The sum, which is defined in Section 5.3, is one of them. We show in Section 5.3
that the the sum of two self-dually representable matroids is equally self-dually
representable and that Problem 2 can be restricted to indecomposable matroids,
that is, matroids that are not a non-trivial sum of two other matroids.

In order to take the first steps in solving Problem 2, we introduce the concept
of flat-partition of a matroid, which is defined in Section 5.3. On one hand,
we use the flat-partitions to characterize in Proposition 4 the indecomposable
identically self-dual matroids. On the other hand, the number of flat-partitions
provide a useful classification of identically self-dual matroids. The identically
self-dual matroids that do not admit any flat-partition are exactly the uniform
matroids Ud,2d, which, as we said before, are self-dually representable.



We prove in Theorem 2 that the identically self-dual matroids with exactly
one flat-partition are self-dually representable as well. These matroids are pre-
cisely the identically self-dual bipartite matroids. In a bipartite matroid , the set
of points is divided in two parts and all points in each part are symmetrical.
The access structures defined by these matroids are among the bipartite ac-

cess structures, which were introduced in [23]. As a consequence of the results
in [23], bipartite matroids are representable. Bipartite matroids have been inde-
pendently studied in [20, 21], where they are called matroids with two uniform

components.
Bipartite access structures are also interesting for their applications because

they appear in a natural way in situations in which the players are divided into
two different classes. They are closely related to other families of access structures
that have practical interest as well: the hierarchical access structures [30] and
the weighted threshold access structures [2, 26].

Theorem 2. LetM be an identically self-dual bipartite matroid. Then,M can

be represented by a self-dual linear code over some finite field K . Equivalently,

every self-dual bipartite vector space access structure can be realized by an ideal

MLSSS over some finite field K .

Therefore, the bipartite matroids form another family of matroids for which
all identically self-dual matroids are self-dually representable. Most of the iden-
tically self-dual matroids in this family are indecomposable. So, the existence of
self-dual codes that represent them could not be derived from other matroids
that were known to be self-dually representable.

3 Multiplicative Linear Secret Sharing Schemes

Some definitions and basic results about multiplicative linear secret sharing
schemes are given in the following.

We begin by recalling some notation and elementary facts about bilinear
forms. If α, β : E → K are linear forms, α ⊗ β denotes the bilinear form α ⊗
β : E ×E → K defined by (α⊗ β)(x,y) = α(x)β(y). These bilinear forms span
the vector space of all bilinear forms on E, which is denoted by E∗⊗E∗ and has
dimension d2, where d = dimE. Actually, if {e1, . . . , ed} is a basis of E∗, then
{ei ⊗ ej : 1 ≤ i, j ≤ d} is a basis of E∗ ⊗ E∗. Since E∗∗ = E, the vector space
of the bilinear forms on E∗ is E ⊗ E, which is spanned by {x⊗ y : x,y ∈ E}.
Finally, observe that (E⊗E)∗ = E∗⊗E∗. This is due to the fact that any bilinear
form α⊗ β ∈ E∗ ⊗E∗ induces a linear form α⊗ β : E ⊗E → K , determined by
(α⊗ β)(x⊗ y) = α(x)β(y).

If Σ = Σn+1(π1, . . . , πn, πn+1) is an LSSS and A ⊂ Pn+1, we notate ΣA for
the natural restriction of Σ to the players in A, that is, the scheme defined by
the linear mappings ((πi)i∈A, πn+1). The next definition deals with general (not
necessarily ideal) LSSSs.



Definition 1. Let Σ = Σn+1(π1, . . . , πn, πn+1) be a K -LSSS with access struc-

ture Γ . The scheme Σ is said to be multiplicative if, for every i ∈ Pn+1 =
{1, . . . , n}, there exists a bilinear form φi : Ei × Ei → K such that (πn+1 ⊗
πn+1)(x1,x2) =

∑n
i=1 φi(πi(x1), πi(x2)) for any pair of vectors x1,x2 ∈ E. We

say that Σ is strongly multiplicative if the scheme ΣPn+1−A is multiplicative for

every A ⊂ Pn+1 with A /∈ Γ .

It is not difficult to check that the access structure of a multiplicative LSSS
must be Q2. Equally, strongly multiplicative LSSSs only exist for Q3 access
structures.

Let Σ = Σn+1(Π) be an ideal LSSS. Every bilinear form φ : K×K → K can
be defined by φ(x, y) = λxy for some λ ∈ K. Therefore, Σ is multiplicative if
and only if there exist values λi ∈ K such that πn+1⊗πn+1 =

∑n
i=1 λi(πi⊗πi).

Equally, Σ is strongly multiplicative if and only if, for every A /∈ Γn+1(Π), there
exist values λi,A ∈ K such that πn+1 ⊗ πn+1 =

∑
i∈Pn+1−A

λi,A(πi ⊗ πi). The

values λi or λi,A form the recombination vector introduced in [10].
Since the bilinear forms πi ⊗ πi can be seen as vectors in (E ⊗ E)∗, we can

consider the LSSS Σµ
n+1(Π) = Σn+1(π1 ⊗ π1, . . . , πn ⊗ πn, πn+1 ⊗ πn+1), which

has access structure Γ µ
n+1(Π) = Γn+1(π1 ⊗ π1, . . . , πn ⊗ πn, πn+1 ⊗ πn+1). That

is, A ∈ Γµ
n+1(Π) if and only if πn+1⊗πn+1 is a linear combination of the vectors

{πi ⊗ πi : i ∈ A}.

Lemma 1. Let Σ = Σn+1(Π) be an ideal LSSS. Then, the following properties

hold.

1. Γµn+1(Π) ⊂ Γn+1(Π).
2. Σ is multiplicative if and only if Γ µ

n+1(Π) 6= ∅.
3. Σ is strongly multiplicative if and only if (Γn+1(Π))

∗ ⊂ Γµn+1(Π).

4 Reconstruction of a Secret in the Presence of Errors

In any LSSS with a Q3 access structure Γ , unique reconstruction of the secret
from the full set of n shares is possible, even if the shares corresponding to an
unqualified set A /∈ Γ are corrupted. Nevertheless, it is not known how to do that
efficiently. In this section we prove Theorem 1, which implies that, if the LSSS
is strongly multiplicative, there exists an efficient reconstruction algorithm.

We only consider here the ideal LSSS case. Proofs extend easily to the general
case, at the cost of some notational headaches.

First we review the familiar case of Shamir’s secret sharing scheme, where
t+1 or more shares jointly determine the secret, and at most t shares do not even
jointly contain any information about the secret. Exactly when t < n

3 , unique
reconstruction of the secret from the full set of n shares is possible, even if at
most t shares are corrupted. This can be done efficiently, for instance by the
Berlekamp-Welch decoding algorithm for Reed-Solomon codes.

Let p be a polynomial of degree at most t, and define p(0) = s. Let s be the
vector with si = p(i), i = 1, . . . , n, and let e be a vector of Hamming-weight at



most t. Write c = s+ e. Given c only, compute non-zero polynomials F and E
with deg(F ) ≤ 2t and deg(E) ≤ t, such that F (i) = ci · E(i), for i = 1, . . . , n.
This is in fact a system of linear equations in the coefficients of F and E, and it
has a non-trivial solution. Actually, for every polynomial E such that E(i) = 0
whenever the i-th share is corrupted, that is, ci 6= ei, the polynomials F = pE
and E are a solution to the system. Moreover, from Lagrange’s Interpolation
Theorem, all solutions are in this form. Therefore, for all F , E that satisfy the
system, it holds that E(i) = 0 if the i-th share is corrupted. The corrupted shares
are then deleted by removing all ci with E(i) = 0 from c. All that remains are
incorrupted shares, that is, cj = sj , and there will be more than t of those left.

Below we present an efficient reconstruction algorithm for the more general
situation where the secret is shared according to a strongly multiplicative LSSS
with a Q3 access structure Γ . We do this by appropriately generalizing the
Berlekamp-Welch algorithm. Note that such generalizations cannot generally
rely on Lagrange’s Interpolation Theorem, since LSSSs are not in general based
on evaluation of polynomials.

Pellikaan [24] has previously generalized the Berlekamp-Welch algorithm and
has shown that his generalized decoding algorithm applies to a much wider class
of error correcting codes. Technically, our generalization bears some similarity
to that of [24].

Strong multiplication was first considered in [10] and was used to construct
efficient multi-party computation protocols with zero error in the active adver-
sary model. More precisely it is used in the Commitment Multiplication Protocol

to ensure that commitments for a, b and c are consistent in the sense that ab = c
with zero probability to cheat.

We now prove Theorem 1. Let Π = (π1, . . . , πn, πn+1) be a sequence of
linear forms πi : E → K such that Σ = Σn+1(Π) is a strongly multiplicative
LSSS with Q3 access structure Γ = Γn+1(Π). Let us consider also the scheme
Σµ = Σµ

n+1(Π) = Σn+1(π1⊗π1, . . . , πn⊗πn, πn+1⊗πn+1). From Lemma 1, the
access structure of this scheme, Γ µ = Γµn+1(Π), is such that Γ

∗ ⊂ Γµ.

Let us fix a basis for E and the induced basis of E ⊗ E. Let M and M̂ be
the matrices associated, respectively, to the schemes Σ and Σµ. Observe that,
if d = dimE, the matrix M has d rows and n+ 1 columns while M̂ has d2 rows
and n+ 1 columns.

If u,v ∈ Kk, then u ∗ v denotes the vector (u1v1, . . . , ukvk). Observe that

(x⊗ y)M̂ = ((πi ⊗ πi)(x⊗ y))1≤i≤n+1 = (πi(x)πi(y))1≤i≤n+1 = (xM) ∗ (yM)

for every pair of vectors x,y ∈ E.
Let us consider s′ = (s1, . . . , sn, sn+1) = xM . Then, s = (s1, . . . , sn) is a full

set of shares for the secret sn+1 = πn+1(x). Let A ⊂ Pn+1 be a non-qualified
subset, that is, A /∈ Γ . Let e = (e1, . . . , en) be a vector with ei = 0 for every
i /∈ A. Write c = (c1, . . . , cn) = s+ e. Given only c, the secret sn+1 is recovered
efficiently as follows.

Let N̂ and N be the matrices that are obtained, respectively, from M̂ and
M by removing the last column. Observe that c = xN + e. Let us consider the



system of linear equations {
ŷN̂ = c ∗ (yN)
πn+1(y) = 1

where the unknowns are the d2 coordinates of the vector ŷ ∈ E ⊗ E and the d
coordinates of the vector y ∈ E. We claim that this system of linear equations
always has a solution and that sn+1 = (πn+1 ⊗ πn+1)(ŷ) for every solution
(ŷ,y). Therefore, the secret sn+1 can be obtained from c by solving that system
of linear equations.

This is argued as follows. Note that (ŷ,y) is a solution if and only if (ŷ −
x ⊗ y)N̂ = e ∗ (yN). Since A /∈ Γ , there exists a vector z ∈ E such that
πn+1(z) = 1 while πi(z) = 0 for every i ∈ A. Observe that (x⊗z, z) is a solution
for every vector z ∈ E in that situation. Indeed, e ∗ (zN) = 0, because zN
is zero where e is non-zero. Let (ŷ,y) be an arbitrary solution and consider

(ŷ−x⊗y)M̂ = (t1, . . . , tn, tn+1). Then, (t1, . . . , tn) are shares of the secret tn+1

according to the LSSS Σµ. Since (t1, . . . , tn) = e ∗ (yN), we get that ti = 0 for
every i ∈ Pn+1 −A and, hence, tn+1 = 0 because Pn+1 −A ∈ Γ ∗ ⊂ Γµ. Finally,
(πn+1⊗πn+1)(ŷ−x⊗y) = tn+1 = 0 and (πn+1⊗πn+1)(ŷ) = (πn+1⊗πn+1)(x⊗
y) = πn+1(x)πn+1(y) = sn+1. ut

A positive application of Theorem 1 is as follows. Using a strongly multiplica-
tive LSSS, the Commitment Multiplication Protocol (CMP) from [10] is directly
a Verifiable Secret Sharing scheme (VSS). This saves a multiplicative factor n in
the volume of communication needed, since the general reduction from VSS to
CMP is not needed in this case.

5 Ideal Multiplicative Linear Secret Sharing Schemes,

Self-Dual Linear Codes and Identically Self-Dual

Matroids

5.1 Equivalence between the Two Problems

A matroidM is said to be connected if, for every two different points i, j ∈ Q,
there exists a circuit C with i, j ∈ C. In a connected access structure, every
participant is at least in a minimal qualified subset. If M(Π) is a connected
matroid, all access structures Γi(Π) are connected. Moreover, as a consequence
of [22, Proposition 4.1.2], if one of the access structures Γi(Π) is connected,
then M(Π) is connected and, hence, all the other access structures Γj(Π) are
connected.

We say that a linear code C with generator matrix M is almost self-dual if
there exists a non-singular diagonal matrix D = diag(λ1, . . . , λn, λn+1) such that
MD is a parity check matrix.

Lemma 2. Let Π = (π1, . . . π2d) be a sequence of linear forms in E∗ = (Kd)∗

such that the matroid M(Π) is identically self-dual and connected. In the space

S(E) of the symmetric bilinear forms on E, the vectors {πj ⊗ πj : j ∈ Q−{i}}



are linearly independent for any i ∈ Q. Besides, the code C(Π) is almost self-dual
if and only if the vectors {πj ⊗ πj : j ∈ Q} are linearly dependent.

Proof. Let us suppose that the vectors {πj ⊗ πj : 1 ≤ j ≤ 2d − 1} are linearly
dependent. Then, we can suppose that π1 ⊗ π1 =

∑2d−1
i=2 λi(πi ⊗ πi). The access

structure Γ1(Π) is self-dual and connected. Then, there exists a minimal qualified
subset A ⊂ P1 such that 2d ∈ A. We can suppose that A = {r+1, . . . , 2d−1, 2d}.
Since Γ1(Π) is self-dual, P1 −A = {2, . . . , r} is not qualified. Then, there exists
a vector x ∈ E such that π1(x) = 1 and πi(x) = 0 for every i = 2, . . . , r.

Therefore, π1 =
∑2d−1

i=r+1(λiπi(x))πi, a contradiction with the fact that A =
{r+1, . . . , 2d−1, 2d} is a minimal qualified subset of the access structure Γ1(Π).

Observe that
∑2d

i=1 λi(πi ⊗ πi) = 0 if and only if the diagonal matrix D =
diag(λ1, . . . , λ2d−1, λ2d) is such that MDM> = 0. ut

By taking into account that a non-connected matroid can be divided into
connected components [22, Proposition 4.1.2], the equivalence between Prob-
lems 1 and 2 is an immediate consequence of the following two propositions. We
skip the proof of the first one.

Proposition 1. Let M be an identically self-dual representable connected ma-

troid on the set of points Q = {1, . . . , 2d} and let Γ2d(M) be the access structure
induced by M on the set P2d. Then Γ2d(M) can be realized by an ideal multi-

plicative K -LSSS if and only ifM can be represented by an almost self-dual code

C over the field K.

Proposition 2. Let M be an identically self-dual matroid that is represented,

over the finite field K , by an almost self-dual code. Then, there exists a finite

field L , which is an algebraic extension of K , such that M is represented by a

self-dual code over L .

Proof. Let C be an almost self-dual code over a finite field K . Let M be a
generator matrix and D = diag(λ1, . . . , λ2d−1, λ2d) the non-singular diagonal
matrix such that MD is a parity check matrix. Let us consider, in an extension
field L ⊃ K , the diagonal matrix D1 = diag(

√
λ1, . . . ,

√
λ2d−1,

√
λ2d). Then, the

matrix M1 = MD1 is a generator matrix of a self-dual code C1. The matroids
associated to C and to C1 are equal. ut

5.2 Known Families of Self-Dually Representable Matroids

There are two families of matroids for which it is known that all identically
self-dual matroids are self-dually representable.

The uniform matroids are the first example. A uniform matroid Ud,n is iden-
tically self-dual if and only if n = 2d. The access structure Γ2d(Ud,2d) is the
threshold structure Γd,2d−1, which can be realized by an ideal multiplicative K-
LSSS for any finite field K with |K | ≥ 2d. Namely, the Shamir’s polynomial
scheme. Therefore, the matroid Ud,2d can be represented by an almost self-dual
code over any finite field K with |K | ≥ 2d.



The second family is formed by the Z2-representable matroids. For any of
these matroids M, there exists a unique Z2-representation. That is, there ex-
ists a unique linear code C over Z2 whose associated matroid is M. If M is
an identically self-dual Z2-representable matroid, the codes C and C⊥ are Z2-
representations of M and, hence, C = C⊥. Therefore, all identically self-dual
Z2-representable matroids are self-dually Z2-representable. For instance, an iden-
tically self-dual binary matroid M on the set Q = {1, . . . , 8} is obtained from
the eight vectors in the set {(v1, v2, v3, v4) ∈ Z4

2 : v1 = 1}. All access structures
that are obtained fromM are isomorphic to the access structure defined by the
Fano Plane by considering the points in the plane as the players and the lines
as the minimal qualified subsets [18]. Therefore, this access structure can be
realized by an ideal multiplicative Z2-LSSS.

5.3 Flat-Partitions and Sum of Matroids

We recall next the definition and some properties of the sum of two matroids.
More information on that topic can be found in [22, Chapter 7].

LetM1 andM2 be connected matroids on the sets Q1 and Q2, respectively.
Let B1 and B2 be their families of bases. Let us suppose that Q1 ∩ Q2 = ∅
and let us take two points q1 ∈ Q1 and q2 ∈ Q2. The sum of M1 and M2 at

the points q1 and q2, which will be denoted by M = M1 ⊕(q1,q2) M2, is the
matroid on the set of points Q = (Q1 ∪ Q2) \ {q1, q2} whose family of bases
is B = B′1 ∪ B′2, where B′1 = {B1 ∪ C2 ⊂ Q : B1 ∈ B1, C2 ∪ {q2} ∈ B2} and
B′2 = {C1 ∪B2 ⊂ Q : C1 ∪ {q1} ∈ B1, B2 ∈ B2}.

It is not difficult to check that B is the family of bases of a matroid and that
M is a connected matroid with dimM = dimM1 + dimM2 − 1. The proof of
the following proposition will be given in the full version of the paper.

Proposition 3. The matroid M = M1 ⊕(q1,q2) M2 is identically self-dual if

and only if both M1 and M2 are identically self-dual.

We say that a sum of matroids M1 ⊕M2 is trivial if one of the matroids
Mi is the uniform matroid U1,2. In this case,M1 ⊕ U1,2

∼=M1. A matroidM
is indecomposable if it is not isomorphic to any non-trivial sum of matroids.

LetM be a matroid on a set of points Q and let (X1, X2) be a partition of
Q. We say that (X1, X2) is a flat-partition of M if X1 and X2 are flats of M.
The next proposition, which is a consequence of the results in [22, Chapter 7],
provides a characterization of indecomposable identically self-dual matroids in
terms of their flat-partitions

Proposition 4. Let M be a connected identically self-dual matroid. Then M
is indecomposable if and only if there is no flat-partition (X1, X2) of M with

rank(X1) + rank(X2) = dim(M) + 1.

As a consequence of Proposition 3 and the next two propositions, whose
proofs will be given in the full version of the paper, the search for an answer to
Problem 2 can be restricted to indecomposable matroids.



Proposition 5. LetM =M1⊕(q1,q2)M2 be a non-trivial sum of two identically

self-dual matroids. Then M is K -representable if and only if both M1 and M2

are K -representable.

Proposition 6. Let M1 and M2 be two matroids that are represented over a

finite field K by almost self-dual codes. Then, the sumM =M1⊕(q1,q2)M2 can

be represented over K by an almost self-dual code. Besides, if M1 and M2 are

self-dually K -representable, the sum M is self-dually L -representable, where L
is an algebraic extension of K with (K : L) ≤ 2.

5.4 Identically Self-Dual Bipartite Matroids

It is not hard to see that the uniform matroid Ud,2d on the set Q = {1, . . . , 2d}
does not admit any flat-partition. As a direct cosequence of the next lemma, any
non-uniform identically self-dual matroid admits at least one flat partition.

Lemma 3. LetM be an identically self-dual matroid and let C ⊂ Q be a circuit

of M with rank(C) < dim(M). Let us consider the flat X1 = 〈C〉 and X2 =
Q \X1. Then, (X1, X2) is a flat-partition of M.

Proof. We have to prove that X2 is a flat. Otherwise, there exists x ∈ X1∩〈X2〉.
Since C is a circuit, there exists a basis B1 of X1 with x /∈ B1. Besides, there
exists C2 ⊂ X2 such that B = B1 ∪C2 is a basis ofM. Let us consider the basis
B′ = Q \B and let us take B2 = B′ ∩X2.

We are going to prove that 〈B2〉 = X2. If not, there exists y ∈ X2 \ 〈B2〉.
Observe that y ∈ C2 and that B2 ∪ {y} is an independent set. Therefore, Q \
(B2 ∪ {y}) = X1 ∪ (C2 \ {y}) is a spanning set. Since 〈B1〉 = X1, we have that
B′′ = B1 ∪ (C2 \ {y}) is equally a spanning set, a contradiction with B ′′ ( B.

Therefore, x ∈ 〈B2〉, a contradiction with B2 ∪ {x} ⊂ B′. ut

As said before, any identically self-dual uniform matroid Ud,2d can be repre-
sented by a self-dual code C over some finite field K . By the above observation,
this means that the identically self-dual matroids that do not admit any flat-
partition are self-dually representable.

A natural question arising at this point is whether the same occurs with
the identically self-dual matroids that admit exactly one flat-partition. Proposi-
tion 8 shows that these matroids coincide with the identically self-dual bipartite
matroids.

Definition 2. Let d, r1 and r2 be any integers such that 1 < ri < d < r1 + r2.
Let us take Q = {1, . . . , n, n+1} and a partition (X1, X2) of Q with |Xi| ≥ ri. We

define the matroid M = M(X1, X2, r1, r2, d) by determining its bases: B ⊂ Q
is a basis of M if and only if |B| = d and d − rj ≤ |B ∩ Xi| ≤ ri, where
{i, j} = {1, 2}. Observe that (X1, X2) is a flat-partition of Q with rank(Xi) = ri.
Any matroid in this form is said to be bipartite.

We skip the proof of the next proposition, which determines which bipartite
matroids are identically self-dual.



Proposition 7. LetM =M(X1, X2, r1, r2, d) be a bipartite matroid. Then,M
is identically self-dual if and only if |Q| = 2d and |X1| = d+ r1 − r2.

Proposition 8. Let M be a connected identically self-dual matroid. Then, M
is bipartite if and only if it admits exactly one flat-partition.

Proof. Let us suppose that M is bipartite, that is, M = M(X1, X2, r1, r2, d).
We have to prove that (X1, X2) is the only flat-partition of M. Let (Y1, Y2)
be a flat-partition of M. We can suppose that |Y1| ≥ d = dim(M). If |Y1 ∩
Xi| ≥ d − rj for all {i, j} = {1, 2}, there exists B ⊂ Y1 such that |B| = d
and d − rj ≤ |B ∩Xi| ≤ ri. Since Y1 does not contain any basis of M, we get
|Y1∩X1| < d−r2 or |Y1∩X2| < d−r1. Without loss of generality, we assume that
|Y1∩X2| < d−r1. Then, |Y1∩X1| > r1 because |Y1∩X1|+|Y1∩X2| ≥ d. Besides,
since d+r2−r1 = |Y1∩X2|+|Y2∩X2|, we have that |Y2∩X2| > r2. Observe that,
for i = 1, 2, any subset of ri points in Xi is independent and, hence, Xi ⊂ Yi
because Yi is a flat and contains a basis of Xi. Therefore, (X1, X2) = (Y1, Y2).

Let us suppose now that (X1, X2) is the only flat-partition of M. We are
going to prove thatM is the bipartite matroidM(X1, X2, r1, r2, d), where ri =
rank(Xi) and d = dim(M). It is not difficult to check that 1 < ri < d < r1 + r2
and that d− rj ≤ |B ∩Xi| ≤ ri if B is a basis ofM and {i, j} = {1, 2}. We only
have to prove that any set B ⊂ Q such that |B| = d and d− rj ≤ |B ∩Xi| ≤ ri
for {i, j} = {1, 2} is a basis of M. Let us suppose that, on the contrary, there
exists such a subset B that is not a basis. Then, there exists a circuit C ⊂ B. Let
us consider Y1 = 〈C〉 and Y2 = Q\Y1. From Lemma 3, (Y1, Y2) is a flat-partition
ofM. The proof is concluded by showing that this flat-partition is different from
(X1, X2). If Y1 = Xi for some i = 1, 2, we have C ⊂ Xi. Since |C| ≤ ri and C is
a circuit, rank(Y1) < ri, a contradiction. ut

The access structures defined by bipartite matroids were first considered
in [23], where the authors proved that they are vector space access structures,
that is, they admit an ideal LSSS. As a direct consequence of this fact, any
bipartite matroid is representable.

Theorem 2 extends this result of [23] by showing that, additionally, the iden-
tically self-dual bipartite matroids are self-dually representable. This is done by a
refinement of the approach of [23] based on techniques from Algebraic Geometry.

From Propositions 4, 7 and 8, if r1 + r2 − d > 1, the identically self-dual
bipartite matroid M = M(X1, X2, r1, r2, d) is indecomposable. Therefore, we
found a new large family of identically self-dual matroids giving an affirmative
answer to Problem 2 and, hence, a new large family of self-dual vector space
access structures for which Problem 1 has a positive answer.

The proof of Theorem 2, which is quite long and involved, will be given
in the full version of the paper. In the following, we present a brief sketch of
it. Given an identically self-dual bipartite matroid M = M(X1, X2, r1, r2, d),
one has to prove the existence of a finite field K and a set of K -linear forms
{π1, . . . , π2d} satisfying two requirements: first, they must be a K -representation
of the matroidM and, second, the vectors {πi⊗πi : 1 ≤ i ≤ 2d}must be linearly
dependent.



In order to prove the existence of those linear forms, we conveniently choose
some fixed vectors {π1, . . . , πn1

} corresponding to the points in the flat X1 and
a family of vectors {w(x) : x ∈ K} ⊂ (Kd)∗ depending on one parameter.
Afterwards, we use some Algebraic Geometry to prove that there exist vectors
πn1+i = w(β−1

i ), where i = 1, . . . , n2 = |X2|, such that the vectors {π1, . . . , π2d}
have the required properties. Specifically, the second requirement above is sat-
isfied if the point (β1, . . . , βn2

) is a zero of a system of polynomial equations on
n2 variables. These equations define an algebraic variety M in Zn2

p , where Zp is
the algebraic closure of the finite field Zp. If p is large enough, the variety M
is irreducible [25]. The first requirement is verified if other polynomials on the
same variables are not zero in the point (β1, . . . , βn2

). Every one of these equa-
tions defines and algebraic variety Vj in Zn2

p . We prove thatM is not a subset of
any of the varieties Vj and, since M is irreducible, this implies M 6⊂ ⋃Vj [17].

Therefore there exists a point (β1, . . . , βn2
) ∈ M − (⋃Vj) ⊂ Zn2

p . Finally, we
take a finite field K, an algebraic extension of Zp containing all values βi, and
over that field, the linear forms πn1+i = w(β−1

i ).
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