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Abstract. Using a recent idea of Gaudry and exploiting rational repre-
sentations of algebraic tori, we present an index calculus type algorithm
for solving the discrete logarithm problem that works directly in these
groups. Using a prototype implementation, we obtain practical upper
bounds for the difficulty of solving the DLP in the tori T2(Fpm) and
T6(Fpm) for various p and m. Our results do not affect the security of
the cryptosystems LUC, XTR, or CEILIDH over prime fields. However,
the practical efficiency of our method against other methods needs fur-
ther examining, for certain choices of p and m in regions of cryptographic
interest.

1 Introduction

The first instantiation of public key cryptography, the Diffie-Hellman key agree-
ment protocol [5], was based on the assumption that discrete logarithms in finite
fields are hard to compute. Since then, the discrete logarithm problem (DLP)
has been used in a variety of cryptographic protocols, such as the signature and
encryption schemes due to ElGamal [6] and its variants. During the 1980’s, these
schemes were formulated in the full multiplicative group of a finite field Fp. To
speed-up exponentiation and obtain shorter signatures, Schnorr [24] proposed
to work in a small prime order subgroup of the multiplicative group F×p of a
prime finite field. Most modern DLP-based cryptosystems, such as the Digital
Signature Algorithm (DSA) [9], follow Schnorr’s idea.

Lenstra [15] showed that by working in a prime order subgroup G of F×pm ,
for extensions that admit an optimal normal basis, one can obtain a further
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speed-up. Furthermore, Lenstra proved that when |G| | Φm(p) with Φm(x) the
m-th cyclotomic polynomial and |G| > m, the minimal surrounding field of G
truly is Fpm and not a proper subfield. Lacking any knowledge to the contrary,
the security of this cryptosystem has been based on two assumptions: firstly,
the group G should be large enough such that square root algorithms [18] are
infeasible and secondly, the minimal finite field in which G embeds should be
large enough to thwart index calculus type attacks [18]. In these attacks one
does not make any use of the particular form of the minimal surrounding finite
field, i.e., Fpn , but only its size and the size of the subgroup of cryptographic
interest.

More recent proposals, such as LUC [25], XTR [16] and CEILIDH [22], im-
prove upon Schnorr’s and Lenstra’s idea, the latter two working in a subgroup
G ⊂ F×q6 with |G| | Φ6(q) = q2 − q + 1, where q is a prime power. Brouwer,

Pellikaan and Verheul [2] were the first to give a cryptographic application of
effectively representing elements in G using only two Fq-elements, instead of six,
effectively reducing the communication cost by a factor of three.

Rubin and Silverberg [22] showed how to interpret and generalise the above
cryptosystems using the algebraic torus Tn(Fq) which is isomorphic to the sub-
group Gq,n ⊂ F×qn of order Φn(q). For “rational” tori, elements of Tn(Fq) can be
compactly represented by ϕ(n) elements of Fq, obtaining a compression factor
of n/ϕ(n) over the field representation.

In this paper we develop an index calculus algorithm that works directly on
rational tori Tn(Fq) and consequently show that the hardness of the DLP can
depend on the form of the minimal surrounding finite field. The algorithm is
based on the purely algebraic index calculus approach by Gaudry [10] and ex-
ploits the compact representation of elements of rational tori. The very existence
of such an algorithm shows that the lower communication cost offered by these
tori, may also be exploited by the cryptanalyst.

In practice, the DLP in T2 and T6 are most important, since they determine
the security of the cryptosystems LUC [25], XTR [16], CEILIDH [22], and MNT
curves [19]. We stress that when defined over prime fields Fp, the security of these
cryptosystems is not affected by our algorithm. Over extension fields however,
this is not always the case. In this paper, we provide a detailed description of our
algorithm for T2(Fqm) and T6(Fqm). Note that this includes precisely the systems
presented in [17], and also those described in [28, 27] via the inclusion of Tn(Fp) in
T2(Fpn/2) and T6(Fpn/6) when n is divisible by two or six, respectively, which for
efficiency reasons is always the case. Our method is fully exponential for fixed m
and increasing q. From a complexity theoretic point of view, it is noteworthy that
for certain very specific combinations of q and m, for example when m! ≈ q, the
algorithms run in expected time Lqm(1/2, c), which is comparable to the index
calculus algorithm by Adleman and DeMarrais [1]. However, our focus will be
on parameter ranges of practical cryptographic interest rather than asymptotic
results.

A complexity analysis and prototype implementation of these algorithms,
show that they are faster than Pollard-Rho in the full torus T2(Fqm) for m ≥ 5



and in the full torus T6(Fqm) for m ≥ 3. However, in cryptographic applications
one would work in a prime order subgroup of Tn(Fqm) of order around 2160; in
this case, our algorithm is only faster than Pollard-Rho for larger m.

From a practical perspective, our experiments show that in the cryptographic
range, the algorithm for T6(Fqm) outperforms the corresponding algorithm for
T2(Fq3m) and that it is most efficient when m = 4 or m = 5. Furthermore, for
m = 5, both algorithms in practice outperform Pollard-Rho in a subgroup of
T6(Fq5) of order 2160, for q30 up to and including the 960-bit scheme based in
T30(Fp) proposed in [27]. Compared to Pollard ρ our method seems to achieve in
practice a 1000 fold speedup; its practical comparison with Adleman-DeMarrais
is yet to be explored. Our experiments show that it is currently feasible to solve
the DLP in T30(Fp) with dlog2 pe = 20, where we assume that a computation of
around 245 seconds is feasible.

The remainder of this paper is organised as follows. In Section 2 we briefly
review algebraic tori and the notion of rationality. In Section 3 we present the
philosophy of our algorithm and explain how it is related to classical index
calculus algorithms. In Sections 4 and 5 we give a detailed description of the
algorithm for T2(Fqm) and T6(Fqm) respectively. Finally, we conclude and give
pointers for further research in Section 6.

2 Discrete Logs in Extension Fields and Algebraic Tori

Extension fields possess a richer algebraic structure than prime fields, in particu-
lar those with highly composite extension degrees. This has led some researchers
to suspect that such fields may be cryptographically weak. For instance, in
1984 Odlyzko stated that fields with a composite extension degree ‘may be very
weak’ [21]. The main result of this paper shows that these concerns may indeed
be valid. A naive attempt to exploit the available subfield structure of extension
fields in solving discrete logarithms, naturally leads one to consider the DLP on
algebraic tori, as we show below.

2.1 A simple reduction of the DLP

Let k = Fq and let K = Fqn be an extension of k of degree n > 1. Assume that
g ∈ K is a generator of K× and let h = gs with 0 ≤ s < qn − 1 be an element
we wish to find the discrete logarithm of with respect to g.

Then by applying to g and h the norm maps NK/kd
with respect to each

intermediate subfield kd of K, and solving the resulting discrete logarithms
in these subfields, a simple argument shows that one can determine s mod
lcm{Φd(q)}d|n,d6=n, where Φd(q) is the d-th cyclotomic polynomial evaluated at q.
Modulo a cryptographically negligible factor, the remaining modular informa-
tion required to determine the full discrete logarithm comes from the order Φn(q)
subgroup of K×. As observed by Rubin and Silverberg [22], this subgroup is pre-
cisely the algebraic torus Tn(Fq).



2.2 The algebraic torus

In their CRYPTO 2003 paper [22], Rubin and Silverberg introduced the notion
of torus-based cryptography. Their central idea was to interpret the subgroups
of K× as algebraic tori, and by exploiting birational maps from these groups to
affine space, they obtained an efficient compression mechanism for elements of
extension fields. Along with the existing public key cryptosystems XTR [16] and
LUC [25], their method provides a reduction in bandwidth requirements for finite
field discrete logarithm based protocols, which is becoming increasingly relevant
as key-size recommendations become larger in order to maintain security levels.

Definition 1. Let k = Fq and let K = Fqn be an extension of k of degree n > 1.
We define the algebraic torus Tn(Fq) as

Tn(Fq) = {α ∈ K | NK/kd
(α) = 1 for all subfields k ⊆ kd ( K}.

Strictly speaking, Tn(Fq) refers only to the Fq-rational points on the affine alge-
braic variety Tn, rather than the torus itself (see [22] for the exact construction).

Note that since Tn(Fq) is simply a subgroup of F×qn , the group operation
can be realised as ordinary multiplication in the field Fqn . The dimension of the
variety Tn is φ(n) = deg(Φn(x)), with φ(·) the Euler totient function.

Let Gq,n denote the subgroup of F×qn of order Φn(q). The following lemma
from [22] provides some useful properties of Tn.

Lemma 1.

1. Tn(Fq) ∼= Gq,n and hence #Tn(Fq) = Φn(q).
2. If h ∈ Tn(Fq) is an element of prime order not dividing n, then h does not

lie in a proper subfield of Fqn/Fq.

It follows that Tn(Fq) may be regarded as the ‘primitive’ subgroup of F×qn ,
since by Lemma 1 it does not embed into a proper subfield. Hence in practice, one
always uses a subgroup of Tn(Fq) in cryptographic applications, since otherwise
a given DLP embeds into a proper subfield of Fqn (see also [15]). In fact, using
the decomposition

xn − 1 =
∏

d|n

Φd(x)

in Z[x], the group F×qn can be seen to be almost the same as the direct product
∏

d|n Tn(Fq). Hence finding an efficient algorithm to solve the DLP on algebraic
tori enables one to solve DLPs in extension fields, as well as vice versa.

2.3 Rationality of tori over Fq

In order to compress elements of the variety Tn, we make use of rationality,
for particular values of n. The rationality of Tn means there exists a birational
map from Tn to φ(n)-dimensional affine space Aφ(n). This allows one to represent
nearly all elements of Tn(Fq) with just φ(n) elements of Fq, providing an effective



compression factor of n/φ(n) over the embedding of Tn(Fq) into Fqn . Since Tn has
dimension φ(n), this compression factor is optimal. Tn is known to be rational
when n is either a prime power, or is a product of two prime powers, and is
conjectured to be rational for all n [22].

Formally, rationality can be defined as follows.

Definition 2. Let Tn be an algebraic torus over Fq of dimension d = φ(n), then
Tn is said to be rational if there is a birational map ρ : Tn → Aφ(n) defined over

Fq.

This means that there are subsets W ⊂ Tn and U ⊂ Aφ(n), and rational func-
tions ρ1, . . . , ρφ(n) ∈ Fq(x1, . . . , xn) and ψ1, . . . , ψn ∈ Fq(y1, . . . , yφ(n)) such that
ρ = (ρ1, . . . , ρφ(n)) :W → U and ψ = (ψ1, . . . , ψn) : U →W are inverse isomor-

phisms. Furthermore, the differences T \W and Aφ(n) \ U should be algebraic
varieties of dimension ≤ (d− 1), which implies that W (resp. U) is ‘almost the
whole’ of T (resp. Aφ(n)).

The public key cryptosystem CEILIDH [22] is based on the algebraic torus T6,
which achieves a compression factor of three over the extension field representa-
tion. Rationality whilst useful, is not essential, since Van Dijk and Woodruff [28]
showed that one can obtain key-agreement, signature and encryption schemes
with bandwidth compressed by this factor asymptotically with the number of
keys/signatures/messages, without relying on the conjecture stated above. In-
deed, their result applies to any torus Tn, which helps explain the recent and
increasing interest in torus-based cryptography.

3 Algorithm Philosophy

The algorithm as presented in Sections 4 and 5 is based on an idea first proposed
by Gaudry [10], in reference to the DLP on general abelian varieties. While
Gaudry’s method is in principle an index calculus algorithm, the ingredients are
very algebraic: for instance one need not rely on unique factorisation to obtain
a notion of ‘smoothness’, as in finite field discrete logarithm algorithms.

As an introduction, in this section we consider Gaudry’s idea in the context
of computing discrete logarithms in F×qm , and show how it is related to classical
index calculus.

3.1 Classical method

Let Fqm = Fq[t]/(f(t)) for some monic irreducible degree m polynomial and let
the basis be {1, t, . . . , tm−1}. Let g be a generator of F×qm and let h ∈ 〈g〉 be
an element we are to compute the logarithm of w.r.t. g. Suppose also, for this
example, that we are able to deal with a factor base of size q.

Classically, one would first reduce the problem to considering only monic
polynomials, i.e., one considers the quotient F×qm/F×q , and defines a factor base

F = {t+ a : a ∈ Fq}.



Then for random j, k ∈ Z/((qm − 1)/(q− 1))Z one computes r = gjhk and tests
whether r/lc(r) decomposes over F , with lc(r) the leading coefficient of r. This
occurs with probability approximately 1/(m− 1)! for large q since the set of all
products of m − 1 elements of F generates roughly qm−1/(m − 1)! elements of
F×qm/F×q .

Computing more than q such relations allows one to compute loggh mod
(qm − 1)/(q − 1) as usual with a linear algebra elimination (and one applies the
norm NFqm/Fq

to g and h and solves the corresponding DLP in F×q to recover
the remaining modular information).

3.2 Gaudry’s method

Two essential points taken for granted in the above description are that there
exist efficient procedures to compute:

– whether a given r decomposes over F ; this happens precisely when r ∈ Fq[t]
splits over Fq or equivalently when gcd(tq − t, r/lc(r)) = r/lc(r),

– the actual decomposition of r, i.e., to compute the roots of r ∈ Fq[t] in Fq.

One may equivalently consider the following problem: determine whether the
system of equations obtained by equating powers of t in the equality

m−1
∏

i=1

(t+ ai) = r/lc(r) = r0 + r1t+ · · ·+ rm−2t
m−2 + tm−1, (1)

has a solution (a1, . . . , am−1) ∈ Fm−1q and if so, to compute one such solution. Of
course, in this trivial example the roots ai can be read off from the factorisation
of r/lc(r). However, one obtains a non-trivial example if the group operation
on the left is more sophisticated than polynomial multiplication, such as elliptic
curve point addition, which was Gaudry’s original motivation for developing the
algorithm. In this case the decomposition of a group element over the factor base
can become more sophisticated, but the principle remains the same.

The central benefit of this perspective is that it can be applied in the absence
of unique factorisation, since with a suitable choice of factor base, or more accu-
rately a decomposition base, one can simply induce relations algebraically. For
example, approaching the above problem from this slightly different perspective
gives an algorithm for working directly in F×qm , which is perhaps more natural

than the stated quotient, F×qm/F×q . Define a decomposition base

F = {1 + at : a ∈ Fq},

and again associate to the equality

m
∏

i=1

(1 + ait) ≡ r ≡ r0 + r1t+ · · ·+ rm−1t
m−1 (mod f(t)), (2)

the algebraic system obtained by equating powers of t.



Note that in (2) one must multiply m elements of F in order to obtain
a probability of 1/m! for obtaining a relation, rather than the m − 1 elements
(and probability 1/(m−1)!) of (1). The reason these probabilities differ is simply
that the algebraic groups F×qm/F×q and F×qm over Fq are m−1 and m-dimensional
respectively.

Ignoring for the moment that F essentially consists of degree one polynomi-
als, and assuming that we want to solve this system without factoring r/lc(r), we
are faced with finding a solution to a non-linear system, which would ordinarily
require a Gröbner basis computation to solve. However writing out the left hand
side in the polynomial basis {1, . . . , tm−1} gives

m
∏

i=1

(1 + ait) = 1 + σ1t+ · · ·+ σmt
m

≡ 1 + σ1t+ · · ·+ σm−1t
m−1 + σm(tm − f(t)) (mod f(t)),

with σi the i-th elementary symmetric polynomial in the ai. Equating powers
of t then gives a linear system of equations in the σi for i = 1, . . . ,m. Given
a solution (σ1, . . . , σm) to this system of equations, r will decompose over F
precisely when the polynomial

p(x) := xm − σ1x
m−1 + σ2x

m−2 − · · ·+ (−1)mσm

splits over Fq. Thus exploiting the symmetry in the construction of the algebraic
system makes solving it much simpler. Although in this contrived example, solv-
ing the system directly and solving it using its symmetry are essentially the
same, in general the latter makes infeasible computations feasible.

Following from this example, a simple observation is that for an algebraic
group over Fq whose representation is m-dimensional, then using a decompo-
sition base F of q elements, one must multiply m elements of F to obtain a
constant probability of decomposition 1/m!. Therefore, we conclude that the
more efficient the representation of the group is, the higher the probability of
obtaining a relation, and thus the corresponding index calculus algorithm will
be more efficient.

In the following two sections, we apply this idea to rational representations
of algebraic tori, and show that the above probability of 1/m! can be reduced
significantly to 1/(m/2)! when m is divisible by 2 and to 1/(m/3)! when m is
divisible by 6.

4 An Index Calculus Algorithm for T2(Fqm) ⊂ F×
q2m

For q any odd prime power, we describe an algorithm to compute discrete loga-
rithms in T2(Fqm).

4.1 Setup

With regard to the extension Fq2m/Fqm , by Lemma 1 we know that

#T2(Fqm) = Φ2(q
m) = qm + 1,



and hence we presume the DLP we consider is in the subgroup of this order.
By applying the reduction of the DLP via norms as in Section 2, it is clear that
the hard part actually is T2m(Fq) ( T2(Fqm). Since in this section we use the
properties of T2 rather than T2m, we only consider T2(Fqm), or more accurately
(ResFqm/Fq

T2)(Fq), where here Res denotes the Weil restriction of scalars (see
also [22]).

Let Fqm ∼= Fq[t]/(f(t)) with f(t) ∈ Fq[t] an irreducible monic polynonmial
of degree m and take the polynomial basis {1, t, . . . , tm−1}. Assuming that q is
an odd prime power, we let Fq2m = Fqm [γ]/(γ2 − δ) with basis {1, γ}, for some
non-square δ ∈ Fqm \ Fq. Then using Definition 1, we see that

T2(Fqm) = {(x, y) ∈ Fqm × Fqm : x2 − δy2 = 1}.

This representation uses two elements of Fqm to represent each point. The torus
T2 is one-dimensional, rational, and has the following equivalent affine represen-
tation:

T2(Fqm) =

{

z − γ

z + γ
: z ∈ Fqm

}

∪ {O}, (3)

where O is the point at infinity.
Here a point g = g0 + g1γ ∈ T2(Fqm) in the Fq2m representation has a

corresponding representation as given above by the rational function z = −(1 +
g0)/g1 if g1 6= 0, whilst the elements −1 and 1 map to z = 0 and z = O
respectively. The representation (3) thus gives a compression factor of two for
the elements of Fq2m that lie in T2(Fqm). Furthermore since T2(Fqm) has qm +1
elements, this compression is optimal (since for this example, including the point
at infinity, we really have a map from T2(Fqm)→ P1(Fqm)).

4.2 Decomposition base

As with any index calculus algorithm, we need to define a factor base, or in the
case of Gaudry’s algorithm, a decomposition base. Let

F =

{

a− γ

a+ γ
: a ∈ Fq

}

⊂ T2(Fqm),

which contains q elements, since the map, given above, is a birational isomor-
phism from T2 to A1. Note that if δ ∈ Fq, then F would lie in the subvariety
T2(Fq) and would not aid in our attack, which is why we ensured that δ ∈ Fqm\Fq
during the setup.

4.3 Relation finding

Writing the group operation additively, let P be a generator, and let Q ∈ 〈P 〉
be a point we wish to find the discrete logarithm of with respect to P . For a
given R = [j]P + [k]Q, we test whether it decomposes as a sum of m points in
the decomposition base:

P1 + · · ·+ Pm = R, (4)



with P1, . . . , Pm ∈ F . From the representation we have chosen for T2 we may
equivalently write this as

m
∏

i=1

(

ai − γ

ai + γ

)

=
r − γ

r + γ
,

where the ai are unknown elements in Fq, and r ∈ Fqm is the affine representation
of R. Note that the left hand side is symmetric in the ai. Upon expanding the
product for both the numerator and denominator, we obtain two polynomials of
degreem in γ whose coefficients are just plus or minus the elementary symmetric
polynomials σi(a1, . . . , am) of the ai:

σm − σm−1γ + · · ·+ (−1)mγm

σm + σm−1γ + · · ·+ γm
=
r − γ

r + γ
.

Therefore, when we reduce modulo the defining polynomial of γ, we obtain an
equation of the form

b0(σ1, . . . , σm)− b1(σ1, . . . , σm)γ

b0(σ1, . . . , σm) + b1(σ1, . . . , σm)γ
=
r − γ

r + γ
,

where b0, b1 are linear in the σi and have coefficients in Fqm . More explicitly,
since γ2 = δ ∈ Fqm , these polynomials are given by

b0 =

bm/2c
∑

k=0

σm−2kδ
k and b1 =

b(m−1)/2c
∑

k=0

σm−2k−1δ
k ,

where we define σ0 = 1.
In order to obtain a simple set of algebraic equations amongst the σi, we first

reduce the left hand side to the affine representation (3) and obtain the equation

b0(σ1, . . . , σm)− b1(σ1, . . . , σm)r = 0.

Since the unknowns σi are elements of Fq, we express the above equation on the
polynomial basis of Fqm to obtain m linear equations over Fq in the m unknowns
σi ∈ Fq. This gives an m×m matrix M over Fq such that

– the (m− 2k)-th column contains the coefficients of δk,
– the (m− 2k − 1)-th column contains the coefficients of −rδk.

Furthermore, let V be the m× 1 vector containing the coefficients of rδ(m−1)/2

when m is odd or −δm/2 when m is even, then Σ = (σ1, . . . , σm)T is a solution
of the linear system of equations

MΣ = V .

If there is a solution Σ, to see whether this corresponds to a solution of (4) we
test whether the polynomial

p(x) := xm − σ1x
m−1 + σ2x

m−2 − · · ·+ (−1)mσm

splits over Fq by computing g(x) := gcd(xq − x, p(x)). If g(x) = p(x), then the
roots a1, . . . , am will be the affine representation of the elements of the factor
base which sum to R and we have found a relation.



4.4 Complexity analysis and experiments

The number of elements of T2(Fqm) generated by all sums of m points in F is
roughly qm/m!, assuming no repeated summands and that most points admit a
unique factorisation over the factor base. Hence the probability of obtaining a
relation is approximately 1/m!. Therefore in order to obtain q relations we must
perform roughly m!q such decompositions. Each decomposition consists of the
following steps:

– computing the matrix M and vector V takes O(m3) operations in Fq, using
a naive multiplication routine,

– solving for Σ also requires O(m3) operations in Fq,
– computing the polynomial g(x) requires O(m2 log q) operations in Fq,
– if the polynomial p(x) splits over Fq, then we have to find the roots a1, . . . , am

which requires O(m2 logm(log q + logm)) operations in Fq.

Note that the last step only has to be executed O(q) times. The overall com-
plexity to find O(q) relations is therefore

O(m! · q · (m3 +m2 log q)) .

operations in Fq.
Since in each row of the final relations matrix there will be O(m) non-zero

elements, we conclude that finding a kernel vector using sparse matrix tech-
niques [13] requires O(mq2) operations in Z/(qm + 1)Z or about O(m3q2) oper-
ations in Fq. This proves the following theorem.

Theorem 1. The expected running time of the T2-algorithm to compute DLOGs

in T2(Fqm) is
O(m! · q · (m3 +m2 log q) +m3q2)

operations in Fq.

Note that whenm > 1 and the q2 term dominates, by reducing the size of the
decomposition base, the complexity may be reduced to O(q2−2/m) for q → ∞
using the results of Thériault [26], and a refinement reported independently by
Gaudry and Thomé [11] and Nagao [20].

The expected running time of the T2-algorithm is minimal when the relation
stage and the linear algebra stage take comparable time, i.e. when m! · q · (m3 +
m2 log q) ' m3q2 or m! ' q. The complexity of the algorithm then becomes
O(m3q2), which can be rewritten as

O(m3q2) = O
(

exp(3 logm+ 2 log q)
)

= O
(

exp(2(log q)1/2(log q)1/2)
)

= O
(

exp(2(m logm)1/2(log q)1/2)
)

= O
(

Lqm(1/2, c)
)

with c ∈ R>0. Note that for the second and third equality we have used that
m! ' q, and thus by taking logarithms log q ' m logm.



To assess the practicality of the T2 algorithm, we ran several experiments
using a simple Magma implementation, the results of which are given in Ta-
ble 1. This table should be read as follows: the size of the torus cardinality,
i.e., log2(q

m), is constant across each row; for a given qm, the table contains for
m = 1, . . . , 15, the log2 of the expected running times in seconds for the entire
algorithm, i.e. both relation collection stage and linear algebra. For instance, for
qm ∼= 2300 andm = 15, the total time would be approximately 251 seconds on one
AMD 1700+ using our Magma implementation. For the fields where the torus
is less than 160 bits in size, we use the full torus otherwise we use a subgroup of
160 bits to estimate the Pollard ρ costs.

Note that Table 1 does not take into account memory constraints imposed
by the linear algebra step; since the number of relations is approximately q, we
conclude that the algorithm is currently only practical for q ≤ 223. Assuming
that 245 seconds, which is about 1.1 × 106 years, is feasible and assuming it is
possible to find a kernel vector of a sparse matrix of dimension 223, Table 1
contains, in bold, the combinations of q and m which can be handled using our
Magma implementation.

Table 1. log2 of expected running times (s) of the T2-algorithm and Pollard-Rho in a
subgroup of size 2160

m
log2 |Fq2m | log2 |T2(Fqm)| ρ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

200 100 34 88 40 52 36 26 20 16 17 18 21 23 26 31 33 37
300 150 59 138 66 87 62 48 38 31 26 25 26 28 31 34 37 40
400 200 65 188 92 121 88 68 55 46 39 34 32 33 35 38 41 44
500 250 66 238 117 155 114 89 73 61 52 45 40 38 40 42 44 47
600 300 66 289 142 189 139 110 90 76 65 57 51 45 44 46 48 51
700 350 66 339 168 223 165 130 107 91 78 69 61 55 50 50 52 54
800 400 66 389 193 256 190 150 124 105 91 80 71 64 58 56 55 58
900 450 68 439 219 290 215 171 141 120 104 92 82 74 67 62 61 62
1000 500 69 489 244 324 241 191 158 134 117 103 92 83 76 69 66 67

4.5 Comparison with other methods

In this section we compare the T2-algorithm with the Pollard-Rho and index
calculus algorithms.

Pollard-Rho in the full torus Using the Pohlig-Hellman reduction, the over-
all running time is determined by executing the Pollard-Rho algorithm in the
subgroup of T2(q

m) of largest prime order l. Since #T2(q
m) = qm + 1, we have

to analyse the size of the largest prime factor l. Note that the factorisation of



xm + 1 over Z[x] is given by

xm + 1 =
x2m − 1

xm − 1
=

∏

d|2m Φd(x)
∏

d|m Φd(x)
=

∏

d|2m,d-m

Φd(x) ,

which implies that the maximum size of the prime l is O(qφ(2m)), since the
degree of Φ2m(x) is φ(2m). The overall worst case complexity of this method is
therefore O(qφ(2m)/2) operations in Fq2m or O(m2 · qφ(2m)/2) operations in Fq.

From a complexity theoretic point of view, we therefore conclude that for
m! ≤ q, our algorithm is as fast as Pollard-Rho whenever m ≥ 5, since then
φ(2m)/2 > 2. As a consequence, we note that the T2 algorithm does not lead to
an improvement over existing attacks on LUC [25], XTR [16] or CEILIDH [22]
over Fp. Furthermore, also the security of MNT curves [19] defined over Fp,
where p is a large prime remains unaffected.

Pollard-Rho in a subgroup of prime order ' 2160 In cryptographic appli-
cations however, one would work in a subgroup of T2(Fqm) of prime order l with
l ' 2160. To this end, we measured the average time taken for one multiplication
for the various fields in Magma, and multiplied this time by the expected 280

operations required by the Pollard-Rho algorithm. The results can be found in
the third column of Table 1. The column for m = 15 is especially interesting
since this determines the security of the T30 cryptosystem introduced in [27]. In
this case, the T2 is always faster than Pollard-Rho, and the matrices occurring
in the linear algebra step would be feasible up to 700-bit fields.

Adleman/Demarrais in F×
q2m The alternative approach would be to embed

T2(Fqm) into F×q2m and to apply a subexponential algorithm, which for allm and q

can attain a complexity of Lq2m(1/2, c) as shown by Adleman and Demarrais [1].
Clearly, using the T2 algorithm this is only possible for certain combinations of
m and q, e.g. for q ' m!, which is also indicated by Table 1. Of course, when
q = pn for p a prime, then we can choose a different m̄ with m̄|n ·m such that
m̄! ' pnm/m̄. We do not know how the Adleman-DeMarrais algorithms performs.

Remark 1. The linearity of the decomposition method in fact holds for any torus
Tpr . However the savings are optimal for T2r , since pr/φ(pr) is maximal in this
case. When one considers Tn for which n is divisible by more than one distinct
prime factor, the rational parametrisation becomes non-linear, and hence so does
the corresponding decomposition, as we see in the following section.

5 An Index Calculus Algorithm for T6(Fqm) ⊂ F×
q6m

In this section we detail our algorithm to compute discrete logarithms in T6(Fqm).
The main difference with the T2-algorithm is the non-linearity of the equations
involved in the decomposition step.



5.1 Setup

Again, let Fqm ∼= Fq[t]/(f(t)), with f(t) an irreducible polynomial of degree
m and where we use the polynomial basis {1, t, t2, . . . , tm−1}. Since T6 is two-
dimensional and rational, it is an easy exercise to construct a birational map
from T6 to A2 for a given representation of Fq6m . For the following exposition
we make use of the the CEILIDH field representation and maps, as described
in [22].

Let qm ≡ 2 or 5 mod 9, and for (r, q) = 1 let ζr denote a primitive r-th root
of unity in Fqm . Define x = ζ3 and let y = ζ9 + ζ−19 , then clearly x2 + x+ 1 = 0
and y3 − 3y + 1 = 0. Let Fq3m = Fqm(y) and Fq6m = Fq3m(x), then the bases
we use are {1, y, y2 − 2} for the degree three extension and {1, x} for the degree
two extension.

Let V (f) be the zero set of f(α1, α2) = 1−α21−α
2
2 +α1α2 in A2(Fqm), then

we have the following inverse birational maps:

– ψ : A2(Fqm) \ V (f)
∼
−−→ T6(Fqm) \ {1, x2}, defined by

ψ(α1, α2) =
1 + α1y + α2(y

2 − 2) + (1− α21 − α
2
2 + α1α2)x

1 + α1y + α2(y2 − 2) + (1− α21 − α
2
2 + α1α2)x2

, (5)

– ρ : T6(Fqm) \ {1, x2}
∼
−−→ A2(Fqm) \ V (f), which is defined as follows: for

β = β1 + β2x, with β1, β2 ∈ Fq3m , let (1 + β1)/β2 = u1 + u2y + u3(y
2 − 2),

then ρ(β) = (u2/u1, u3/u1).

5.2 Decomposition base

In this case the decomposition base consists of ψ(at, 0), where a runs through
all elements of Fq and t generates the polynomial basis, i.e.

F =

{

1 + (at)y + (1− (at)2)x

1 + (at)y + (1− (at)2)x2
: a ∈ Fp

}

which clearly contains q elements, for much the same reason as given in Section
4. The reason for considering ψ(at, 0) instead of ψ(a, 0) is that the minimal
polynomials of x and y are defined over Fq. Note that this implies that ψ(a, 0) ∈
T6(Fq) for a ∈ Fq and so does not generate a fixed proportion of T6(Fqm), as is
needed.

5.3 Relation finding

Since (ResFqm/Fq
T6)(Fq) is 2m-dimensional, we need to solve

P1 + · · ·+ P2m = R , (6)



with P1, . . . , P2m ∈ F . Assuming that R is expressed in its canonical form, i.e.
R = ψ(r1, r2), we get

2m
∏

i=1

(

1 + (ait)y + (1− (ait)
2)x

1 + (ait)y + (1− (ait)2)x2

)

=
1 + r1y + r2(y

2 − 2) + (1− r21 − r
2
2 + r1r2)x

1 + r1y + r2(y2 − 2) + (1− r21 − r
2
2 + r1r2)x2

.

After expanding the product of the numerators and denominators, the left hand
side becomes the fairly general expression

b0 + b1y + b2(y
2 − 2) +

(

c0 + c1y + c2(y
2 − 2)

)

x

b0 + b1y + b2(y2 − 2) + (c0 + c1y + c2(y2 − 2))x2
(7)

with bi, ci polynomials over Fqm of degree 4m in a1, . . . , a2m. In general, these
polynomials are rather huge and thus difficult to work with.

Example 1. For m = 5, the number of terms in the bi (resp. ci) is given by
B = [35956, 30988, 25073] (resp. C = [35946, 31034, 24944]) for finite fields of
large characteristic.

However, note that these polynomials are by construction symmetric in the
a1, . . . , a2m so we can rewrite the bi and ci in terms of the 2m elementary sym-
metric polynomials σj(a1, . . . , a2m) for j = 1, . . . , 2m. This has quite a dra-
matic effect on the complexity of these polynomials, i.e., the degree is now only
quadratic and the number of terms is much lower, since the maximum number
of terms in a quadratic polynomial in 2m variables is 4m+

(

2m
2

)

+ 1.

Example 2. For m = 5, when we rewrite the equations using the symmetric
functions σi, the number of terms of the polynomials bi and ci reduces to B =
[16, 19, 18] and C = [20, 16, 16].

Note that the polynomials bi and ci only have to be computed once and can be
reused for each random point R.

To generate the system of non-linear equations, we use the embedding of
T6(Fqm) into T2(Fq3m) and consider the Weil restriction of the following equality:

b0 + b1y + b2(y
2 − 2)

c0 + c1y + c2(y2 − 2)
=

1 + r1y + r2(y
2 − 2)

1− r21 − r
2
2 + r1r2

.

The above equation leads to 3 non-linear equations over Fqm or equivalently,
to 3m non-linear equations over Fq in the 2m unknowns σ1, . . . , σ2m. Note that
amongst the 3m equations, there will be at least m dependent equations, caused
by the fact that we only considered the embedding in T2 and not strictly in T6.

The efficiency with which one can find the solutions of this system of non-
linear equations depends on many factors such as the multiplicities of the zeros
or the number of solutions at infinity. For each random R, the resulting system
of equations has the same structure, since only the value of some coefficients



changes, but for finite fields of large enough characteristic, not the degrees nor the
numbers of terms. To determine the properties of these systems of equations we
computed the Gröbner basis w.r.t. the lexicographic ordering using the Magma
implementation of the F4-algorithm [7] and concluded the following:

– The ideal generated by the system non-linear equations is zero-dimensional,
which implies that there is only a finite number of candidates for the σi.

– After homogenizing the system of equations, we concluded that there is only
a finite number of solutions at infinity. This property is quite important,
since we can then use an algorithm by Lazard [14] with proven complexity.

– The Gröbner basis w.r.t. the lexicographic ordering satisfies the so called
Shape Lemma, i.e. the basis has the following structure:

σ1 − g1(σ2m), σ2 − g2(σ2m), . . . , σ2m−1 − g2m−1(σ2m), g2m(σ2m) ,

where gi(σ2m) is a univariate polynomial in σ2m for each i. By reducing
modulo g2m we can assume that deg(gi) < deg(g2m) and by Bezout’s theo-
rem we have deg(g2m) ≤ 22m, since the non-linear equations are quadratic.
However, our experiments show that in all cases we have deg(g2m) = 3m.

– The polynomial g2m(σ2m) is squarefree, which implies that the ideal is in
fact a radical ideal.

To test if a random point decomposes over the factor base, we first find the
roots of g2m(σ2m) in Fq, and then substitute these in the gi to find the values
of the σi for i = 1, . . . , 2m − 1. For each such 2m-tuple, we then test if the
polynomial

p(x) := x2m − σ1x
2m−1 + σ2x

2m−2 − · · ·+ (−1)2mσ2m

splits completely over Fq. If it does, then the roots ai for i = 1, . . . , 2m lead to
a possible relation of the form (6).

5.4 Complexity analysis and experiments

The probability of obtaining a relation is now 1/(2m)! and since the factor base
again consists of q elements, we need to perform (2m)!q decompositions. Each
decomposition consists of the following steps:

– Since the polynomials bi and ci only need to be computed once, generating
the system of non-linear equations requires O(1) multiplications of multi-
variate polynomials with O(m2) terms with an Fqm -element. Using a naive
multiplication routine, the overall time to generate one such system is there-
fore O(m4) operations in Fq.

– Computing the Gröbner basis using the F5-algorithm algorithm [8] requires
O(
(

4m
2m

)ω
) operations in Fq, with ω the complexity of matrix multiplication,

i.e. ω = 3 using a naive algorithm. Using the fact that
(

2n

n

)

∼=

√

π

2
(2n)−1/222n ∈ O(22n)

we obtain a complexity of O(212m) operations in Fq.



– Since deg(g2m) = 3m, computing gcd(g2m(z), zq − z) requires O(32m log q)
operations in Fq. On average, the polynomial will have one root in Fq, so
finding the actual roots takes negligible time.

– Testing if the polynomial p(x) has roots in Fq requires O(m2 log q) operations
in Fq. Since this only happens with probability 1/(2m)!, when it does split,
finding the actual roots is negligible.

The overall time complexity to generate sufficient relations therefore amounts to

O
(

(2m)! · q · (212m + 32m log q)
)

operations in Fq.
Finding an element in the kernel of a matrix of dimension q with 2m non-

zero elements per row requires O(mq2) operations in Z/(Φ6(q
m)Z), which finally

justifies the following complexity estimate:

Run Time Heuristic 1 The expected running time of the T6-algorithm to com-

pute DLOGs in T6(Fqm) is

O((2m)! · q · (212m + 32m log q) +m3q2)

operations in Fq.

Again, the results of [26, 11, 20] imply that the complexity can be reduced to
O(q2−1/m) as q →∞, since in this case the dimension is 2m.

The expected running time of the T6-algorithm is minimal precisely when the
relation collection stage takes about the same time as the linear algebra stage,
i.e. when (2m)! · 212m ' q. Note that for such q and m, the term 32m log q is
negligible compared to 212m. The overall running time then again becomes

O(m3q2) = O
(

exp(3 logm+ 2 log q)
)

= O
(

exp(2(log q)1/2(log q)1/2)
)

= O
(

exp(2(2m log 2m+ 12m)1/2(log q)1/2)
)

= O
(

Lqm(1/2, c)
)

with c ∈ R>0. Note that for the second and third equality we have used log q '
2m logm+ 12m log 2.

The practicality of the T6-algorithm clearly depends on the efficiency of the
Gröbner basis computation. Note that for smallm, the complexity of the Gröbner
basis computation is greatly overestimated by the O(212m) operations in Fq.

Due to the use of the symmetric polynomials, the input polynomials are only
quadratic instead of degree 4m. As one can see from Table 2, this makes the
algorithm quite practical. The table should be interpreted as for Table 1, i.e.,
the torus size is constant across each row and for a given size qm, the table
contains for m = 1, . . . , 5, the log2 of the expected running times in seconds
for the entire algorithm. Taking into account the memory restrictions on the
matrix, i.e., the dimension should be limited by 223, the timings given in bold
are feasible with the current Magma implementation.



Table 2. log2 of expected running times (s) of the T6-algorithm and Pollard-Rho in a
subgroup of size 2160

m
log2 |Fp6m | log2 |T6(Fpm)| ρ 1 2 3 4 5

200 67 18 25 18 14 20 29
300 100 34 42 36 21 24 32
400 134 52 59 54 32 29 36
500 167 66 75 71 44 33 39
600 200 66 93 88 55 40 42
700 234 66 109 105 67 48 46
800 267 66 127 122 78 57 51
900 300 68 144 139 90 65 56
1000 334 69 161 156 101 74 60

Remark 2. Note that the column for m = 5 provides an upper bound for the
hardness of the DLP in T30(Fq), since this can be embedded in T6(Fq5). This
group was recently proposed [27] and also in [15] for cryptographic use where
keys of length 960 bits were recommended, i.e., with q of length 32 bits. The
above table shows that even with a Magma implementation it would be feasible
to compute discrete logarithms in T30(Fp) with p a prime of around 20 bits.
The embedding in T2(Fp15) is about 210 times less efficient as can be seen from
the column for m = 15 in Table 1. In light of this attack, the security offered
by the DLP in finite fields of the form Fq30 should be completely reassessed.
Note that by simply comparing the complexities given in Theorem 1 and the
above run time heuristic, it is a priori not clear that the T6-algorithm is in fact
faster than the corresponding T2-algorithm. This phenomenon is caused by the
overestimating the complexity of the Gröbner basis computation.

5.5 Comparison with other methods

In this section we compare the T6-algorithm with the Pollard-Rho and index
calculus algorithms.

Pollard-Rho in the full torus Since the size of T6(Fqm) is given by Φ6(q
m) '

q2m, we conclude that the Pollard-Rho algorithm takes, in the worst case, O(qm)
operations in T6(Fqm) or O(m2qm) operations in Fq. If we assume that q is
large enough such that the term q2 determines the overall running time, i.e.,
(2m)!212m ≤ q, then the T6-algorithm will be at least as fast as Pollard-Rho
whenever m ≥ 3. Again we note that the T6 algorithm does not lead to an
improvement over the existing attacks on LUC [25], XTR [16], CEILIDH [22]
or MNT curves [19] as long as these systems are defined over Fp. However, the
security of XTR over extension fields, as proposed in [17] or of the recent proposal
that works in T30(Fp) [27], needs to be reassessed as shown below.



Pollard-Rho in a subgroup of prime order ' 2160 As for the T2-algorithm,
the third column of Table 2 contains the expected running time of the Pollard-
Rho algorithm in a subgroup of T6(Fqm) of prime order l with l ' 2160. In
this case, the column for m = 5 gives an upper bound of the security of the
T30 cryptosystem introduced in [27]. As is clear from Table 2, for m = 5, our
algorithm is always faster than Pollard-Rho, and the matrices occurring in the
linear algebra step would be feasible up to 700-bit fields.

Adleman/Demarrais in F×q6m Using the embedding of T6(Fqm) into F×q6m one

can apply the subexponential algorithm of Adleman-Demarrais [1] which runs,
for all m and q, in time Lq6m(1/2, c). Using the T6 algorithm, it is possible to
obtain a complexity of Lqm(1/2, c′), but only when m and q grow according to
a specific relation such as (2m)!212m ' q. Again, when q = pn with p a prime,
we could choose a different m̄ with m̄|n ·m such that (2m̄)!212m̄ ' pmn/m̄.

However, as was the case for the T2-algorithm, the importance of Table 2 is
that it contains the first practical upper bounds for the hardness of the DLP in
extension fields F×q6m , since there are no numerical experiments available based
on the existing subexponential algorithms.

6 Conclusion and Future Work

In this paper we have presented an index calculus algorithm, following ideas
of Gaudry, to compute discrete logarithms on rational algebraic tori. Our algo-
rithm works directly in the torus and depends fundamentally on the compression
mechanisms previously used in a constructive context for systems such as LUC,
XTR and CEILIDH.

We have also provided upper bounds for the difficulty of solving discrete
logarithms on the tori T2(Fqm) and T6(Fqm) for various q and m in the crypto-
graphic range. These upper bounds indicate that if the techniques in this paper
can be made fully practical and optimized, then they may weaken the security
of practical systems based on T30.

In the near future we wish to investigate the approach by Diem [4], who
allows a larger decomposition base when necessary. The disadvantage of this
approach is that it destroys the symmetric nature of the polynomials defining the
decomposition of a random element over the factor base, which makes Gröbner
basis techniques virtually impossible.

It is clear that the Magma implementations described in this paper are not
optimised and many possible improvements exist. Two factors mainly determine
the running time of the algorithm: first of all, the probability that a random
element decomposes over the factor base and secondly, the time it takes to solve
a system of non-linear equations over a finite field. The first factor could be
influenced by designing some form of sieving, if at all possible, whereas the
second factor could be improved by exploiting the fact that many very similar
Gröbner bases have to be computed.



In addition the method needs to be compared in practice to the method of
Adleman and DeMarrais.
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