
Efficient Tree-Based Revocation in Groups of
Low-State Devices

Michael T. Goodrich1, Jonathan Z. Sun1, and Roberto Tamassia2

Abstract. We study the problem of broadcasting confidential informa-
tion to a collection of n devices while providing the ability to revoke
an arbitrary subset of those devices (and tolerating collusion among the
revoked devices). In this paper, we restrict our attention to low-memory
devices, that is, devices that can store at most O(log n) keys. We consider
solutions for both zero-state and low-state cases, where such devices are
organized in a tree structure T . We allow the group controller to encrypt
broadcasts to any subtree of T , even if the tree is based on an multi-way
organizational chart or a severely unbalanced multicast tree.

1 Introduction

In the group broadcast problem, we have a group S of n devices and a group
controller (GC) that periodically broadcasts messages to all the devices over
an insecure channel [8]. Such broadcast messages are encrypted so that only
valid devices can decrypt them. For example, the messages could be important
instructions from headquarters being sent to PDAs carried by employees in a
large corporation. We would like to provide for revocation, that is, for an arbi-
trary subset R ⊂ S, we would like to prevent any device in R from decrypting
the messages.

We are interested in schemes that work efficiently with low-memory devices,
that is, devices that can store at most O(log n) secret keys. Such a scenario
models the likely situation where the devices are small and the secure firmware
dedicated to storing keys is smaller still. We refer to this as the log-key restriction.
We consider two variants of this model.

– A static or zero-state version: the O(log n) keys on each device cannot be
changed once the device is deployed. For example, memory for the devices
could be written into secure firmware at deployment.

– The dynamic or low-state version: any of the O(log n) keys on each device
can be updated in response to broadcast messages. For example, such de-
vices might have a small tamper-resistant secure cache in which to store and
update secret keys.

1 Dept. of Computer Science, Univ. of California, Irvine, CA 92697-3425. {goodrich,
zhengsun}Caics.uci.edu. This work was supported in part by NSF Grants CCR-
0312760, CCR-0311720, CCR-0225642, and CCR-0098068.

2 Dept. of Computer Science, Brown Univ., Providence, RI 02912. rtCacs.brown.edu.
This work was supported in part by NSF Grants CCR-0311510, CCR-0098068, and
IIS-0324846 and by a research gift from Sun Microsystems.

Organizing Devices Using Trees. The schemes we consider organize the set
of n devices in a tree structure, associating each device with a different leaf in
the tree. In fact, we consider three possible kinds of trees that the devices can
conceptually be organized into.

1. A balanced d-ary tree. In this case, the devices are associated with the leaves
of a balanced tree where each internal node has a constant d number of
children; hence, each is at depth O(log n). This tree is usually chosen purely
for the sake of efficiency, and, in fact, has been the only tree considered in
previous related work we are familiar with. For example, it forms the basis of
the Logical Key Hierarchy (LKH) scheme [26, 28], the One-way Function Tree
(OFT) scheme [21], the Subset-Difference Revocation (SDR) scheme [16],
and the Layered Subset Difference (LSD) scheme [10].

2. An organizational chart. In this case, the devices are associated with the
leaves of a tree that represents an organizational chart, such as that of a
corporation or university. For example, internal nodes could correspond to
campuses, colleges, and departments. The height of this tree is assumed
to be O(log n) but the number of children of an internal is not assumed
to be bounded by a constant. Thus, the straightforward conversion of this
tree into an equivalent bounded-degree tree may cause the height to become
Ω(log2 n).

3. A multicast tree. In this case, the devices are associated with the nodes of
a multicast tree rooted at the group controller. The logical structure of this
tree could be determined in an ad hoc manner so that no bound is assumed
on either the tree height or the degree of internal nodes. Thus, this tree
may be quite imbalanced and could in fact have height that is exponentially
greater than the number of keys each device can hold.

In using trees, particularly in the latter two cases, we feel it is important to
provide the capability to the group controller of encrypting a message so that it
may be decrypted only by the devices associated with nodes in a certain subtree.
For instance, a sporting event might be broadcast to just a single region, or a
directive from headquarters might be intended just for a single division. We call
such a broadcast a subtree broadcast, which can also be modeled by multiple
GCs, each assigned to a different subtree. We continue in this case to assume
the network transmits a message to the entire group, even the revoked devices,
but it should only be readable by the (unrevoked) devices in the specified subtree
when the message is sent in a subtree broadcast. The motivation for organizing
devices into trees and allowing for subtree broadcasts is derived from the way
many organizations are naturally structured. For example, the ICS Company
may have several departments divided into groups, and groups may in turn have
divisions located in different cities.

After a secure broadcast system is set up, we need to have the ability to
revoke devices to avoid revealing messages beyond the current members. (We
also consider the complexities of adding new devices, but the need for revocation
is better motivated, since additions will typically be done in large blocks.) Thus,
we are interested in the following complexity measures for a set of n devices.

– Broadcast cost : the number of messages the group controller (GC) must send
in order to reach a subtree containing r revoked devices.

– Revocation cost : the number of messages the GC must send in order to revoke
a device. Note that this cost is zero in the zero-state case.

– Insertion cost : the number of messages the GC must send in order to add a
device. Note that this cost parameter does not apply to the zero-state case.

Related Work. Broadcast/multicast encryption was first formally studied by
Fiat and Naor [8], for the model where all the device keys are dynamic. Their al-
gorithms satisfy the log-key restriction, however, only if no more than a constant
number of revoked devices collude, which is probably not a realistic assumption.
Several subsequent approaches have therefore strengthened the collusion resis-
tance for broadcast encryption, and have done so using approaches where the
group is represented by a fixed-degree tree with the group controller (GC) being
the root and devices (users) being associated with leaves [3–7, 11, 13–15, 23, 24,
26, 28].

Of particular note is the logical key hierarchy (LKH) scheme proposed by
Wallner et al. [26] and by Wong and Lam [28], which achieves O(1) broadcast
cost and O(log n) revocation cost under the log-key restriction (for the dynamic
case). The main idea of the LKH scheme is to associate devices with the leaves
of a complete binary tree, assign unique secret keys to each node in this tree,
and store at each device x the keys stored in the path from x’s leaf to the
root. Some improvements of this scheme within the same asymptotic bounds are
given by Canetti et al. [4, 5]. Using Boolean function minimization techniques,
Chang et al. [6] deal with cumulative multi-user revocations and reduces the
space complexity of the GC, i.e., the number of keys stored at the GC, from
O(n) to O(log n). Wong et al. [27] generalize the results from binary trees to
key graphs. In addition, Sherman and McGrew [21] improve the constant factors
of the LKH scheme using a technique they call one-way function trees (OFT),
to reduce the size of revocation messages. Naor and Pinkas [17] and Kumar et
al. [12] also study multi-user revocations withstanding coalitions of colluding
users, and Pinkas [18] studies how to restore an off-line user who has missed a
sequence of t group modifications with O(log t) message size. Also of note is work
of Rodeh et al. [19], who describe how to use AVL trees to keep the LKH tree
balanced. Thus, the broadcast encryption problem is well-studied for the case
of fully-dynamic keys and devices organized in a complete or balanced k-ary
tree (noticing that a k-ary tree can transform to binary with constant times of
height increasing). We are not familiar with any previous work that deals with
unbalanced trees whose structure must be maintained for the sake of subtree
broadcasts, however.

There has also been some interesting recent work on broadcast encryption
for zero-state devices (the static case). To begin, we note that several researchers
have observed (e.g., see [10]) that the LKH approach can be used in the zero-
state model under the log-key restriction to achieve O(r log(n/r)) broadcast
cost. (We will review the LKH approach in more detail in the next section.)
Naor, Naor, and Lotspiech [16] introduce an alternative approach to LKH, which

they call the subset-difference revocation (SDR) approach. They show that if
devices are allowed to store O(log2 n) static keys, then the group controller
can send out secure broadcasts using O(r) messages, i.e., the broadcast cost
of their approach is O(r). Halevy and Shamir [10] improve the performance of
the SDR scheme, using an approach they call layered subset difference (LSD).
They show how to reduce the number of keys per device to be O(log1+ε n)
while keeping the broadcast cost O(r). They also show how to further extend
their approach to reduce the number of keys per device to be O(log n log log n)
while increasing the broadcast cost to be O(r log log n). These latter results are
obtained using a super-logarithmic number of device keys; hence, they violate
the log-key restriction.

Our Results. We provide several new techniques for broadcast encryption
under the log-key restriction. We study both the static (zero-state) and dynamic
(low-state) versions of this model, and present efficient broadcast encryption
schemes for devices organized in tree structures. We study new solutions for
balanced trees, organizational charts, and multicast trees. We show in Table 1
the best bounds on the broadcast, insertion and revocation cost for each of the
possible combinations of state and tree structure we consider, under the log-key
restriction.

Balanced Tree Org. Chart Multicast Tree

static broadcast cost O(r) O(r) O(r log n)
(zero-state) (new) (new) (new)

dynamic broadcast cost O(1) O(1) O(log n)
(low state) revocation cost O(log n) O(log n) O(log n)

insertion cost O(log n) O(log n) O(log n)
LKH [19, 26, 28] (new) (new)

Table 1. Best bounds for broadcast encryption among n devices under the log-key
restriction, where each device can store only O(log n) keys.

So, for example, we are able to match the log-key bound of the static LKH
scheme while also achieving the O(r) broadcast encryption complexity of the
SDR scheme. Indeed, our scheme for this case, which we call the stratified subset
difference (SSD) scheme, is the first scheme we are aware of for zero-state de-
vices that simultaneously achieves both of these bounds. Moreover, we are able
to match the best bounds for balanced trees, even for unbalanced high-degree
organizational charts, which would not be possible using the natural conversion
to a binary tree. Instead, we use biased trees [1] to do this conversion. But this
approach is nevertheless limited, under the log-key restriction, to cases where the
organizational chart has logarithmic height. Thus, for multicast trees, which can
be very unbalanced (we even allow for height that is O(n)), we must take a dif-
ferent approach. In particular, in these cases, we extend the linking and cutting
dynamic trees of Sleator and Tarjan [22] to the context of broadcast encryption,

showing how to do subtree broadcasts in this novel context. This implies some
surprisingly efficient performance bounds for broadcast encryption in multicast
trees, for in severely unbalanced multicast trees the number of ancestors of the
leaf associated with some device can be exponentially greater than the number
of keys that device is allowed to store.

2 Preliminaries

The LKH Scheme for a Single Group. Let us briefly review the LKH
scheme [26, 28], which is well known for key management in single groups. The
LKH scheme organizes a group of n devices as a complete binary tree with the
GC represented by the root and each user (that is, device) by a leaf, with a key
stored at each node. Each device, as a leaf, knows the path from the root to
itself and all the keys on this path. The GC, as the root, knows the whole tree
and all the keys. (See Figure 1.)

To revoke a device x, the GC updates every key on the path from itself to
x so that: (a) x cannot receive any updated key; and (b) any device other than
x can receive an updated key if and only if it knows the old value of that key.
The key updating is bottom-up, from the parent of x to the root. To distribute
the new key at a node v, if v is the parent of x, then the GC encrypts the new
key with the current key of the sibling of x; otherwise, GC encrypts the new
key with the current keys of the two children of v, respectively. This procedure
guarantees (a) and (b). The total number of messages is O(log n). Broadcasting
to a subtree simply involves encrypting a message using the key for the root of
that subtree; hence, the broadcast cost is O(1).

In the static case, no updating is allowed. So, the GC must encrypt a broad-
cast using the root of every maximal subtree containing no revoked devices.
Thus, in the static case, LKH has broadcast cost O(r log(n/r)). (Recall that r is
the number of revoked devices.) In both the static and dynamic case, however,
the number of keys per device remains O(log n).

x

keys to update
paths for key
distribution

Group controller

Internal node

Device

Fig. 1. The LKH scheme for key management in single groups.

Subset Difference Revocation (SDR). The subset difference revocation
(SDR) approach of Naor, Naor, and Lotspiech [16] is also based on associat-
ing all the devices with the leaves of a complete binary tree T . Define a subtree
B as the union of all the paths from the root to leaves associated with revoked
devices. Some internal nodes in B have one child and some two. Mark each in-
ternal node v in B with two children as a “cut vertex” and imagine that we cut
out from T the edges from v to its two children. This would leave us with O(r)
rooted subtrees, each containing some number of valid devices and one revoked
leaf (which may have previously been an internal node). Each such subtree is
therefore uniquely identified by its root, v, and its descendent node w that is
revoked. The GC associates a secret key with each node v, and defines a label
Lv(w), for each node in the subtree, Tv, of T rooted at v. Lv(v) is v’s secret
key, and for any internal node u in Tv, with left child x and right child y, we
define Lv(x) = f(Lv(u)) and Lv(y) = g(Lv(u)) , where f and g are collision-
resistant one-way hash functions that maintain the size of input strings. (Here
we use the abstract model of f and g; Naor, Naor, and Lotspiech use in [16] a
pseudo-random generator G that triples the size of input, and take the left 1/3
and right 1/3 of the output to be the values of f and g.) Each leaf z in Tv stores
the values of all the Lv labels of the nodes that are siblings of the path from z
to v (that is, not on the path itself, but are siblings of a node on the path). The
key used to encode a subtree rooted at v with a revoked node w inside is Lv(w).
Note that no descendent of w knows this value and no node outside of Tv can
compute this value, which is what makes this a secure scheme. However, this
scheme requires each device to hold O(log2 n) keys, which violates the log-key
restriction.

3 Improved Zero-State Broadcast Encryption

To improve the storage requirements for stateless broadcast encryption, so as to
satisfy the log-key restriction, we take a data structuring approach. We begin
with the basic approach of the subset difference (SDR) method. Without loss of
generality, we assume that we are given a complete binary tree T with n leaves
such that each leaf of T is associated with a different user. For any node v in
T , let Tv denote the subtree rooted at v. In addition, for any node v and a
descendent w of v, we let Tv,w denote tree Tu − Tw, that is, all the nodes that
are descendents of v but not w. Given a set of revoked users, we can use the
same approach as SDR to partition T into at most 2r − 1 subtrees Tv,w, such
that union of all these trees represent the complete set of unrevoked users.

A Linear-Work Solution. As a warm-up for our efficient broadcast encryption
scheme, we first describe a scheme that uses O(log n) keys per device and O(r)
messages per broadcast, but requires O(n) work per device to decrypt messages
(we will then show how to improve the device work bound keeping the other two
asymptotic bounds unchanged).

The main idea is that the GC needs a way of encoding a message so that
every leaf node in Tv,w can decrypt this message, but not other user (or group

of users) can decrypt it. We note as an additional space saving technique, we
can name each node in T according to a level-numbering scheme (e.g., see [9]),
so that the full structure of any tree Tv,w can be completely inferred using just
the names of v and w. Moreover, any leaf x in Tv,w can determine its relative
position in Tv,w immediately from its own name, x, and the names of v and w.

Let us focus on a specific subtree Tv, for a node v in T . We define a set of
leftist labels, Lv(x), and rightist labels, Rv(x), for each node of Tv. In particular,
let us number the nodes in Tv two ways—first according to a left preorder num-
bering (which visits left children before right children) and second according to
a right preorder numbering (which visits right children before left children) [9].
For a non-root node b in Tv, let al denote the predecessor of b in the left pre-
order numbering of the nodes in Tv. We define Lv(b) to be f(Lv(al)), where f is
a collision-resistant one-way hash function. Likewise, we let ar denote the prede-
cessor of b in the right preorder numbering of the nodes in Tv. We define Rv(b) to
be g(Rv(ar)), where g is a (different) collision-resistant one-way hash function.
We initialize these two hash chains by setting Lv(v) and Rv(v) to random seeds
known only to the GC.

For each leaf node b in Tv, let cl and cr respectively denote the successors
of b (if they exist) in the left and right preorder numberings of the nodes in Tv.
The keys we store at b for Tv are Lv(cl) and Rv(cr). (Note that we specifically
do not store Lv(b) nor Rv(b) at b.) For the complete key distribution, we store
these two keys for each subtree Tv containing b (there are log n such subtrees).
Given this key distribution, to encrypt a message for the nodes in Tv,w, a GC
encrypts the message twice—once using Lv(w) and once using Rv(w).

Decryption. Let us next consider how a leaf node b in Tv,w can decrypt a message
sent to this subtree from the GC. Since w is not an ancestor of b, there are two
possibilities: either w comes after b in the left preorder numbering of Tv or w
comes after b in the right preorder numbering. Since b can determine the complete
structure of Tv and b’s relative position with w in this subtree from the names of
v, b, and w, it can implicitly represent Tv,w and know which of these two cases
apply. So suppose the first case applies (as the second case is symmetric with the
first). In this case, b starts with the label Lv(cl) it stores, where cl is b’s successor
in the left preorder numbering of Tv. It then continues a left preorder traversal of
Tv (which it can perform implicitly if memory is tight) until it reaches w. With
each new node b encounters in this traversal, b makes another application of the
one-way function f , computing the Lv labels of each visited node. Thus, when b
visits w in this traversal, it will have computed Lv(w) and can then decrypt the
message. This computation takes at most |Tv,w| hash function computations.

Security. Let us next consider the security of this scheme. First, observe that
any node outside of Tv has no information that can be used to help decode a
message for the nodes in some tree Tv,w, since Lv(v) and Rv(v) are chosen as
random seeds and nodes outside of Tv receive no function of Lv(v) or Rv(v).
So the security risk that remains is that leaf descendents of w might be able
to decrypt a message sent to the nodes in Tv,w. Let Dw denote the set of leaf

descendents of w. For each node b in Dw, with successors cl and cr in the two
preorder numberings, we store Lv(cl) and Rv(cr) at b. But none of these values
for the nodes in Dw are useful for computing Lv(w) or Rv(w), without inverting
a one-way function, since, in any preorder traversal, all the ancestors of a node
are visited before the node is visited.

Thus, we have a key distribution strategy for the zero-state case that uses
O(log n) keys per device and O(r) messages per broadcast, albeit with work at
each device that could be O(n). In the remainder of this section, we describe
how we can reduce this work bound while keeping the other asymptotic bounds
unchanged.

The Stratified Subset Difference (SSD) Method. Given a constant k, we
can decrease the work per device to be O(n1/k), while increasing the space and
message bounds by at most a factor of k, which should be a good trade-off in
most applications. For example, when n is less than one trillion, n1/8 is less than
log n. The method involves a stratified version of the scheme described above,
giving rise to a scheme we call the stratified subset difference (SSD) method.

We begin by marking each node at a depth that is a multiple of �(log n)/k�
as “red;” the other nodes are colored “blue.” (See Figure 2.) Imagine further
that we partition the tree T along the red nodes, subdividing T into maximal
trees whose root and leaves are red and whose internal nodes are blue. Call each
such tree a blue tree (even though its root and leaves are red). We then apply
the method described above in each blue tree, as follows. For each leaf b in T ,
let b1, · · · , bk be the red ancestors of b, in top-down order. For i = 1, · · · k, let Ti

be the blue tree rooted at bi and note that bi+1 is a leaf of Ti.
We store at node b labels Lbi

(cl) and Rbi
(cr) (i = 1, · · · k in T), where cl and

cr are the left and right preorder successors of bi+1 in Ti, respectively. Storing
these labels increases the space per device by a factor of k.

Ti

b

T

(log n) / k

bi

bi+1

Fig. 2. Illustration of the stratified subset difference (SSD) scheme.

To encrypt a message, the GC first performs the subdivision of T into the
subtrees Tv,w as before. Then, the GC further partitions each tree Tv,w at the
red levels, and encodes the broadcast message, using the previously described
scheme, for each blue subtree rooted at a node on the path from v to w. This
increases the broadcast size by at most a factor of k, but now the work needed
by each device is reduced to computing the L or R labels in a blue tree, which
has size at most n1/k. Thus, the work per device is reduced to O(n1/k) in this
SSD scheme.

Theorem 1. Given a balanced tree T with n devices, for zero-state broadcast
encryption, the stratified subset difference (SSD) scheme for T uses O(log n)
keys per device and has O(r) broadcast cost, where r is the number of revoked
devices in the subtree receiving the broadcast. The work per device can be made
to be O(n1/k) for any fixed constant k.

Moreover, as we have noted, the security of this scheme is as strong as that
for SDR and LKH, i.e., it is resilient to collusions of any set of revoked devices.

4 A Biased Tree Scheme for an Organizational Chart

We recall that in the organizational chart structure for n devices, we have a
hierarchical partition of the devices induced by a tree T of k = O(log n) height
but with unbounded branches at each internal node. Namely, the leaves of T are
associated with the devices and an internal node v of T represents the group
(set) of devices associated with the leaves of the subtree rooted at v. Thus,
sibling nodes of T are associated with disjoint groups and each device belongs
to a unique sequence of O(log n) groups whose nodes are on the path from the
device’s leaf to the root of T . Without loss of generality, we assume that an
internal node of T has either all internal children (subgroups) or all external
children (devices), and its group is called an interior group or exterior group
accordingly. We consider four types of update operations: insertion and deletion
(revocation) of a device or of an empty group. After each modification, we want
to maintain both forward and backward security.

Biased Trees. Biased trees, introduced by Bent et al. [1], are trees balanced by
the weights of leaves (typically set as access frequencies). There are two versions
of biased trees: locally biased and globally biased. We denote by p(x), l(x) and
r(x) the parent, left child and right child of a node x of a tree, and we use these
denotations cumulatively. E.g., lpp(x) is the left child of the grandparent of x.
The following definitions are taken from [1].

A biased search tree is a full binary search tree such that each node x has a
weight w(x) and a rank s(x). The weight of a leaf is initially assigned, and the
weight of an internal node is the sum of the weights of its children. The rank
s(x) of a node x is a positive integer such that

1. s(x) = �log w(x)� if x is a leaf.

2. s(x) ≤ s(p(x)) − 1 if x is a leaf.
3. s(x) ≤ s(p(x)) and s(x) ≤ s(pp(x)) − 1.

A locally biased search tree has the following additional property:

Local bias. For any x with s(x) ≤ s(p(x)) − 2,
1. if x = lp(x), then either rp(x) or lrp(x) is a leaf with rank s(x) − 1; if

x = rp(x), then either lp(x) or rlp(x) is a leaf with rank s(x) − 1; and
2. if x = lp(x), p(x) = rpp(x) and s(p(x)) = s(pp(x)), then either lpp(x)

or rlpp(x) is a leaf with rank s(x) − 1; if x = rp(x), p(x) = lpp(x) and
s(p(x)) = s(pp(x)), then either rpp(x) or lrpp(x) is a leaf with rank
s(x) − 1.

A globally biased search tree has the following additional property:

Global bias. For any x with s(x) ≤ s(p(x)) − 2, both of the two neighboring
leaves of x, i.e., the right-most leaf on the left and the left-most leaf on the
right, have rank at least s(x) − 1.

Group Hierarchies and Biased Trees. Given an organizational chart T
that represents a group hierarchy, we have to convert T to a binary tree before
applying any encryption scheme for key management. Without loss of generality,
we convert T to a binary tree BT that preserves the original group hierarchy.
Each internal node of T , representing a group Gi, becomes a special internal
node in BT that still represents Gi and accommodates a GC. Additional internal
nodes are added between Gi and its children in T (i.e., subgroups or devices)
for the purpose of binarization. As result,node Gi plus all its children in T and
the paths between them in BT form a binary subtree Bi in BT with Gi being
the root and each of its children in T being a leaf. Note that, without special
care, BT is likely to have super-logarithm height and balancing such a tree using
standard techniques would destroy the group hierarchy.

Given a group hierarchy tree T , we assign a unit weight to each leaf and
calculate the weights of other nodes in T accordingly, i.e., the weight of each
internal node x is the number of devices in the subtree of T rooted at x. We
replace each node x with a biased binary tree having the children of x as its
leaves (using the weights of these nodes for the biasing). Thus, each subtree Bi

representing a group Gi rooted at a node x in T can be initialized into a biased
tree without affecting the structure of group hierarchy. Since w(Gi) for each Gi

is an invariant, i.e., the weights of the root and leaves in every Bi are invariant,
the initialization is well defined and can be done in each Bi independently. That
is, combining all the biased Bi’s into BT will not change the structure of the
original hierarchy represented by T . (See Figure 3)

Key assignment. After initializing the biased Bi’s, we still assign a key to
each node of BT as in the LKH, and inform the keys to devices and GC’s by the
following security properties:

1. each device x knows all but only the keys on the path from G0 to itself.
2. the GC of each Gi knows all but only the keys of Gi’s descendants in BT

and those on the path from G0 to Gi.

3

G2 3
4

2

4

3

2

3

G1

6
G0

5

Hierarchy Controller

2

Group
2 1 Internal node

Devicex

Fig. 3. Binary tree BT consisting of biased trees B0, B1 and B2. The ranks of the
nodes in B0 and B1 are shown.

Broadcast and multicast. Using the above security properties and appro-
priate signature or authentication mechanism [2, 4, 20, 25], the GC of each Gi

can send a message securely with one key encryption to Gi or any subgroup or
super-group of Gi, without any ambiguity.

Key update and tree rebalance. As in the LKH scheme, keys should be
updated after each insertion or deletion (revocation) of a device or group so
that the security properties 1 and 2 are maintained. Moreover, we should also
rebalance BT to preserve the bias properties in each Bi. Assume that we can
insert a leaf, delete a leaf, or update the weight of a leaf in Bi (by insert(x),
delete(x) and reweight(x), respectively) while preserving both the security and
bias properties. Then inserting or deleting a device x ∈ Gk ⊂ Gk−1 ⊂ · · · ⊂ G0

can be done in three steps:

1. insert or delete a leaf in the exterior tree Bk;
2. update the weights w(Gk), w(Gk−1), · · · , w(G1) in the interior trees Bk−1,

Bk−2, · · · , B0 accordingly; and
3. update the keys on the path from x to G0 bottom-up, as in the LKH scheme.

To insert or delete a group Gk+1 ⊂ Gk ⊂ · · · ⊂ G0 is a similar process except
starting with an insertion or deletion in an interior Bk. Therefore insert, delete
and reweight in each Bi suffice all our hierarchy modifications in BT . Such
operations preserving the bias properties were already given and analyzed in
[1], we now describe how to modify them to preserve the security properties,
too.

Recall that the biased tree operations, including insert, delete and reweight,
recursively call an operation tilt as the only subroutine to rebalance the biased
tree structure [1]. Operation tilt performs a single rotation associated with rank
modification. Since a node loses descendants during a rotation if it is rotated
down and losing descendants is the only chance of key leaks in the LKH scheme.
To maintain the security properties 1 and 2 after any rotation in Bi, it is neces-
sary and sufficient to update the key at the node rotated down. Observing that

updating a single key and distributing the result of a rotation are both easy in
our scheme, we can replace the tilt in [1] with our secure-tilt which preserves the
security properties 1 and 2.We give a detailed description of secure-tilt-left in
Figure 4. Operation secure-tilt-right is analogous. Using secure-tilt as the sub-
routine in biased tree operations, the scheme is as secure as LKH.

Algorithm secure-tilt-left(x)

if s(l(x)) = s(x) = s(r(x)) then
s(x) ← s(x) + 1

else if s(l(x)) < s(x) and s(r(x)) = s(x) then
let x, l(x), r(x), lr(x), rr(x) be A, B, C, D, E.
p(C) ← p(A), l(C) ← A and r(A) ← D. {left rotation at x}
update key(A)
distribute key(A) and key(C) to their descendants
x ← C

end if
return x

Fig. 4. The algorithm for operation secure-tilt-left(x).

Efficiency of The Scheme. The insert, delete and reweight operations in
biased trees are implemented as follows: join and split are the two basic biased
tree operations. join(x, y) has global and local versions, which will merge two
global or local biased trees with roots x and y and return the root of the resulting
tree, and both versions work by recursively calling secure-tilt. split(T, x) will split
T into two biased trees T1 and T2, each containing all the leaves of T with their
binary search keys less than x and greater than x, respectively. split calls local-
join as a subroutine and is applicable to both local and global biased trees.

Other operations are based on join and split: operation insert(x) splits T by
x and then joins T1, x and T2 together; operation delete(x) splits T by x and
then joins T1 and T2 back ignoring x; and operation reweight(x) splits T by x,
updates the weight of x, and then joins T1, x and T2 back into T .

The correctness and efficiency of our hierarchy modifications in BT follow
those of biased tree operations. Notice that our secure-tilt takes constant message
size as well as the constant-time tilt in [1], all time bounds in [1] also hold as
bounds of message size in our scheme.

This gives us the following.

Theorem 2. Given an organizational chart tree T with height k and n devices,
under the log-key restriction, the dynamic biased binary tree scheme for T has
has O(1) broadcast cost and O(k + log n) revocation and insertion cost.

Proof. We show how to access a device x ∈ Gk ⊂ Gk−1 ⊂ · · · ⊂ G0 from G0.
The analysis of other operations is similar. Since the root of Bi is a leaf of Bi−1,

and each biased tree Bi, i = 0, 1, · · · , k, has the ideal access time, the time to
access x from G0 is

O

(⌈
log

w(G0)

w(G1)

⌉
+ · · · +

⌈
log

w(Gk−1)

w(Gk)

⌉
+

⌈
log

w(Gk)

w(x)

⌉)
= O(log n + k). ��

Thus, we satisfy the log-key restriction for any organizational chart with
k = O(log n) height. We also note that applying our SSD approach to a static
application of the techniques developed in this section results in a scheme using
O(log n) keys per device and O(r) messages per broadcast for an organization
chart with height O(log n).

5 A Dynamic Tree Scheme for a Multicast Tree

Let us next consider the multicast tree structure, which, for the sake of broadcast
encryption, is similar to the organizational chart, except that the height of a
multicast tree can be much larger than logarithmic (we even allow for linear
height). For a multicast tree T with n devices and m groups, we give a scheme
with O(log m) broadcast cost and O(log n) update cost, irrespectively of the
depth of T .

Dynamic Trees. Dynamic trees were first studied by Sleator and Tarjan [22]
and used for various tree queries and network flow problems. The key idea is
to partition a highly unbalanced tree into paths and associate a biased tree
structure, which is in some sense balanced, to each path. Thus any node in the
tree can be accessed and any update to the tree can be done in O(log n) time
through the associated structure, regardless the depth of node or the height of
tree. The dynamic tree used in our scheme is specified by taking the partition by
weight (size) approach and not having cost on each edge. The following definition
refers to this specification.

A dynamic tree T is a weighted binary search tree where the weight wT (x) is
initially assigned if x is a leaf, or wT (x) = wT (l(x))+wT (r(x)) if x is an internal
node. The edges of T are partitioned into solid and dashed edges so that each
node links with its heavier child by a solid edge and with the lighter child by a
dashed edge. Thus T is partitioned into solid paths Pj ’s linked by dashed edges.
We denote by h(Pj) the deepest node in Pj and t(Pj) the upper-most one1. Then
the edge between any t(Pj) and its parent must be dashed, and vice versa. For
O(log n) operations, each solid path Pj is further organized as a global biased
tree, denoted by B(Pj), so that the nodes from h(Pj) to t(Pj) become leaves
of B(Pj) from left to right, and the weight of a leaf x in B(Pj) is assigned as
wB(Pj)(x) = wT (y) where y is the dashed child of x in T . Then T consists of
these B(Pj)’s by linking the root of each B(Pj) with the parent of t(Pj), unless
t(Pj) is the root of T . (See Figure 5.) To show that such structure of T is well
defined, let the root of B(Pj) be x and the parent of t(Pj) be y ∈ Pj−1, then we
have that wB(Pj)(x) = wT (t(Pj)) = wB(Pj−1)(y). Thus, x can replace t(Pj) as a
child of y.
1 h(Pj) must be a leaf of T by the “partition by weight” approach.

Fig. 5. Partition of tree BT and the accessing path to x.

Group Hierarchies and Dynamic Trees. We convert a multicast tree T to a
binary tree BT that preserves the group hierarchy in T as same as in the biased
tree scheme. Instead of using a biased tree, we simply use a complete binary tree
for each Bi, then assign a unit weight wT (x) = 1 to each device and partition
BT into a dynamic tree as above. A key is assigned to each node of each B(Pj).
Since the root of B(Pj) becomes child of a leaf of B(Pj−1), each device becomes a
descendant of a unique string of biased trees of paths B(Pj), B(Pj−1), · · · , B(P0).
The way a device is accessed is not through the real path in BT but through the
path in the string of B(Pj)’s. (See Figure 5.)

Broadcast and Multicast. Broadcast in a group Gi becomes a little more
complicate because, although device x is a descendant of Gi in T , Gi may not
be on the accessing path from G0 to x. However, if Gi ∈ Pj , then the accessing
path to any descendant of Gi must pass a node in the prefix of Pj from h(Pj)
to Gi. So, to broadcast in Gi, it is sufficient to encrypt the message by the keys
in B(Pj) that cover this prefix of Pi. In the full version, we show that, with the
dynamic tree scheme, it takes O(log |Pj |) encryptions to broadcast a message in
any group Gi ∈ Pj , either in worst case or in average.

Key Updates. We follow the dynamic tree operations in [22] to modify the
hierarchy, and update the keys in the accessing path of the updated item as in
the LKH scheme. Dynamic tree operations dynamically change the solid path
partition to guarantee the O(log n) running time, and such change is carried out
by the biased tree operations among B(Pj)’s. Therefore, operation secure-tilt
preserves the security properties along any accessing path. The dynamic tree
operations we use are as follows:

– splice(Pj): extend Pj by converting the edge from t(Pj) to its parent solid,
and the edge between sibling(t(Pi)) and its parent dashed.

– slice(Pj): Let (x, y) be the upper most edge in Pj such that y is not the
heavier child of x, if there exist such edges in Pj . Then cut Pj by converting
(x, y) into dashed and (x, sibling(y)) into solid.

– expose(x): make the path from x to G0 (the real path in BT) into a single
solid path by a series of splices.

– conceal(Pj): convert every edge in Pj who does not link to a heavier child of
parent into dashed by a series of slices.

– link(x, y): combine two dynamic trees by making y the parent of x, where x
is the root of the first tree and y is a node in the second.

– cut(x): divide a dynamic tree into two by deleting the edge between x and
p(x).

Inserting or deleting a device or a group corresponds to a link or cut operation,
respectively. Such dynamic tree operation take O(log n) time and can be reduced
to a series of join and split operation on biased trees. The algorithmic template
for a dynamic tree operation is the expose-and-conceal strategy, described as
follows:

1. perform expose(x) on a node x;
2. if the above expose operation violates the “partition by weight” property,

restore the property by executing conceal(Pj) on the appropriate path Pj .

Since all the dynamic tree operations reduce to a series of biased tree opera-
tions, operation secure-tilt is still the only subroutine that adjusts the partition
of T (Pj)’s. Notice that the structure BT is never adjusted, but the accessing
path to each device x are adjusted through operations. From [22], we know that,
with partition by weight and representing the solid paths as global biased trees,
any dynamic tree operation takes O(log n) time. Since a hierarchy modification
consists of a dynamic tree operation plus updating the keys in an access path,
which is also of length O(log n), the efficiency of key updating for hierarchy
modifications follows.

Theorem 3. Given a multicast tree T with n devices, under the log-key re-
striction, structured in m groups, the dynamic tree scheme for T has O(log m)
broadcast cost and O(log n) revocation and insertion cost.

A zero-state version can also be developed, which uses the biased trees and
broadcast scheme to send messages to the unrevoked leaves in a multicast tree
T using O(r log n) broadcasts for devices storing O(log n) keys each, where r is
the number of revoked devices.

References

1. S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased search trees. SIAM J. Comput.,
14(3):545–568, Aug. 1985.

2. D. Boneh, G. Durfee, and M. Franklin. Lower bounds for multicast message au-
thentication. In Proc. EUROCRYPT 2001, LNCS 2045, pages 437–452, May 2001.

3. B. Briscoe. Marks: Zero side effect multicast key management using arbitrarily
revealed key sequences. In Proc. of First International Workshop on Networked
Group Communication(NCGC’99), 1999.

4. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast
security: A taxonomy and some efficient constructions. In Proc. INFOCOM ’99,
volume 2, pages 708–716, New York, Mar. 1999.

5. R. Canetti, T. Malkin, and K. Nissim. Efficient communication — storage tradeoffs
for multicast encryption. In Advances in cryptology (EUROCRYPT’99), LNCS
1592, pages 459–474, 1999.

6. I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key management
for secure Internet multicast using boolean function minimization techniques. In
Proc. IEEE INFOCOM, volume 2, pages 689–698, 1999.

7. G. D. Crescenzo and O. Kornievskaia. Efficient kerberized multicast in a practical
distributed setting. In 4th International Conference Information Security (ISC’01),
LNCS 2200, pages 27–45, Oct. 2001.

8. A. Fiat and M. Naor. Broadcast encryption. In Advances in Cryptology -
CRYPTO’93, pages 480–491. LNCS 773, 1994.

9. M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis and
Internet Examples. John Wiley & Sons, New York, NY, 2002.

10. D. Halevy and A. Shamir. The LSD broadcast encryption scheme. In Advances in
Cryptology (CRYPTO 2002), volume 2442 of LNCS, pages 47–60. Springer-Verlag,
2002.

11. E. Jung, A. X. Liu, and M. G. Gouda. Key bundles and parcels: Secure com-
munication in many groups. In Proceedings of the 5th International Workshop on
Networked Group Communications (NGC-03), LNCS 2816, pages 119–130, Mu-
nich, Germany, September 2003.

12. R. Kumar, R. Rajagopalan, and A. Sahai. Goding constructions for blacklit-
ing problems without computational assumptions. In Advances in cryptology
(CRYPTO’99), LNCS 1666, pages 609–623, 1999.

13. D. A. McGrew and T. Sherman. Key establishment in large dynamic groups using
one-way function trees. Technical Report 0755, TIS Labs at Network Associates
Inc., Glenwood, MD, May 1998.

14. D. Micciancio and S. Panjwani. Optimal communication complexity of generic
multicast key distribution. In EUROCRYPT 2004, pages 153–170, 2004.

15. M. J. Mihajevic. Key management schemes for stateless receivers based on time
varying heterogeneous logical key hierarchy. In ASIACRYPT 2003, LNCS 2894,
pages 137–154, 2003.

16. D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless
receivers. In CRYPTO’01, volume 2139 of LNCS, pages 41–62. Springer-Verlag,
2001.

17. M. Naor and B. Pinkas. Efficient trace and revoke schemes. In Proc. Financial
Crypto 2000, Feb. 2000.

18. B. Pinkas. Efficient state updates for key management. In Proc. ACM Workshop
on Security and Privacy in Digital Rights Management, 2001.

19. O. Rodeh, K. P. Birman, and D. Dolev. Using AVL trees for fault tolerant group
key management. International Journal on Information Security, pages 84–99,
2001.

20. B. Schneier. Applied Cryptography, 2nd Ed. John Wiley - Sons, 1996.
21. A. T. Sherman and D. A. McGrew. Key establishment in large dynamic groups

using one-way function trees. IEEE Trans. Software Engineering, 29(5):444–458,
2003.

22. D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Computer
and System Sciences, 26:362–391, 1983.

23. J. Snoeyink, S. Suri, and G. Varghese. A lower bound for multicast key distribution.
In IEEE INFOCOM 2001, volume 1, pages 422–431, 2001.

24. R. Tamassia and N. Triandopoulos. Computational bounds on hierarchical data
processing with applications to information security. Technical report, Center for
Geometric Computing, Brown University, 2004.

25. H. F. Tipton and M. Krause, editors. Information Security Management Handbook,
4th Ed. Auerbach, 1999.

26. D. M. Wallner, E. G. Harder, and R. C. Agee. Key management for multicast:
issues and architecture. In internet draft draft-waller-key-arch-01.txt, Sep. 1998.

27. C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key
graphs. In Proc. ACM SIGCOMM’98, volume 28, pages 68–79, 1998.

28. C. K. Wong and S. S. Lam. Digital signatures for flows and multicasts. IEEE/ACM
Transactions on Networking, 7:502–513, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

