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Abstract. Recently proposed algebraic attacks [2, 6] and fast algebraic
attacks [1, 5] have provided the best analyses against some deployed
LFSR-based ciphers. The process complexity is exponential in the de-
gree of the equations. Fast algebraic attacks were introduced [5] as a
way of reducing run-time complexity by reducing the degree of the sys-
tem of equations. Previous reports on fast algebraic attacks [1, 5] have
underestimated the complexity of substituting the keystream into the
system of equations, which in some cases dominates the attack. We also
show how the Fast Fourier Transform (FFT) [4] can be applied to de-
crease the complexity of the substitution step. Finally, it is shown that
all functions of degree d satisfy a common, function-independent linear
combination that may be used in the pre-computation step of the fast
algebraic attack. An explicit factorization of the corresponding charac-
teristic polynomial yields the fastest known method for performing the
pre-computation step.

1 Introduction

Many popular stream ciphers are based on linear feedback shift registers (LF-
SRs) [11]. Such ciphers include E0 [3], LILI-128 [12] and Toyocrypt(see [10]).
They consist of a memory register called the state that is updated (changed)
every time a keystream output is produced, and an additional device, called the
nonlinear combiner. The nonlinear combiner computes a keystream output as
a function of the current LFSR state.1 The sequence of states produced by an
LFSR depends on the initial state of LFSR, which is always presumed to be se-
cret. Since recovering this initial state allows prediction of unknown keystream,
we follow the convention of [5] and call it K as if it was actually the key. Most
practical stream ciphers initialize this state from the real key and a nonce. The
advantages of LFSRs are many. LFSRs can be constructed very efficiently in
hardware and some recent designs are also very efficient in software. LFSRs can
1 Some LFSR-based stream ciphers have a non-linear filter that maintains some bits of

memory, but research has shown that such ciphers can be analyzed in the same way
as ciphers without memory. Some designs use multiple LFSRs, but again these are
usually equivalent to a single LFSR. Some modern stream ciphers use units larger
than bits, but this discussion applies equally to such ciphers, so we will talk only in
terms of bits.



be chosen such that the produced sequence has a high period and good statistical
properties.

While there are many approaches to the cryptanalysis of LFSR-based stream
ciphers, this paper is concerned primarily with the recently proposed algebraic
attacks [2, 6] and fast algebraic attacks [1, 5]. Such attacks have provided the
best analyses against some theoretical and deployed ciphers.

An algebraic attack consists of three steps. The first step is to find a system
of algebraic equations that relate the bits of the initial state K and bits of the
keystream Z = {zt}. Some methods [2, 6] have been proposed for finding “lo-
calized” equations (where the keystream bits are in a small range zt, . . . , zt+θ).
This first step is a pre-computation: the attacker must compute these equations
before attacking a key-stream. Furthermore, the computation need only be per-
formed once, and the attacker can use the same equations for attacking multiple
key-streams. The second and third steps are performed after the attacker has
observed some keystream. In the second step, the observed keystream bits are
substituted into the algebraic equations (from the first step) to obtain a system
of algebraic equations in the bits of K. The third step is to solve these algebraic
equations to determine K. This will be possible if the equations are of low degree
in the bits of K, and a sufficient number of equations can be obtained from the
observed keystream.

The process complexity of the third step is exponential in the degree of the
equations. Fast algebraic attacks were introduced by Courtois at Crypto 2003 [5]
as a way of reducing run-time complexity by reducing the degree of the system
of equations. This method requires an additional pre-computation step; this step
determines a linear combination of equations in the initial system that cancels
out terms of high degree (provided the algebraic equations are of a special form).
This yields a second system of equations relating K and the keystream Z that
contains only terms of low degree. In the second step, the appropriate keystream
values are now substituted into this second system to obtain a new system of
algebraic equations in the bits of K. Solving the new system (in the third step)
is easier than solving the old system because the new system contains only terms
of low degree.

Courtois [5] proposes using a method based on the Berlekamp-Massey algo-
rithm [8] for determining the linear combination obtained in the additional pre-
computation step. The normal Berlekamp-Massey algorithm has a complexity of
D2, while an asymptotically-fast implementation has a complexity of C ·D(log D)
for some large constant C. It is unclear which method would be best for the size
of D considered in these attacks. Armknecht [1] provides a method for improving
the complexity when the cipher consists of multiple LFSRs.

Contributions of this paper. The first contribution is to note that previous
reports on fast algebraic attacks (such as [1, 5]) appear to have underestimated
the complexity of substituting the keystream into the second system of equa-



tions.2 The complexity was originally underestimated as only O(DE) [5], where
D is the size of the linear combination and E is the size of the second system
of equations. Table 1 lists the values of O(DE) for previously published attacks
from [1, 5]. However, simple substitution would require a complexity of DE2/2
(see Section 2.3), and no other method was suggested for reducing the complex-
ity. It is true that E bitwise operations of the substitution can be performed
in parallel, reducing the time complexity to DE2/2, but in cases where E is
large, the process complexity should still be considered DE2/2 in the absence of
specialized hardware. In many cases DE2/2 actually exceeds the complexity of
solving the system of equations, as shown in Table 1.3 The second contribution
of this paper is to show how the Fast Fourier Transform (FFT) [4] can be applied
to decrease the complexity of the substitution step to 2ED log2 D. The resulting
complexities of the FFT approach are also listed in Table 1.

Cipher D E Data Substitution Solving Total Process

req Claimed (wrong) Simple FFT System Complexity

E0 223 218 224 241 259 247 249 249

LILI-128 221 212 260 233 244 239 239 240

Toyocrypt 218 27 218 223 231 230 220 230

Table 1. Comparison of substitution complexities for published fast algebraic attacks.

The final contribution of this paper is to provide an efficient method for
determining the linear combination obtained in the additional pre-computation
step of the fast algebraic attack. First, we make the observation that all functions
of degree d satisfy a common function-independent linear combination of length
D =

∑d
i=0

(
n
d

)
that is defined exclusively by the LFSR. Then we provide a direct

method for computing this linear combination (based on the work of Key [7]).
This method requires c · D(n(log n)2 + (log2 D)3) operations for small constant
c. This is a significant improvement on the complexities of previous methods.

This paper is organized as follows: Section 2 describes fast algebraic attacks.
In Section 3 we discuss the complexity of substitution step for fast algebraic
attacks. Section 4 reviews the Fast Fourier Transform and Section 5 describes
how the FFT can speed up the substitution step. Section 6 contains some ob-
servations on the pre-computation step. Section 7 concludes the paper.

2 We are aware (via private communication) of other proposed algebraic attacks in
which the substitution complexities were initially ignored. In one case, the complexity
of simple substitution was almost the square of the complexity of solving the system.

3 The attack on LILI-128 requires only every (239 − 1)-st bit from a keystream of
length 260. The process complexity of selecting these bits is ignored in the literature,
and could be an area for useful discussion.



Cipher D Courtois [5]: based Armknecht [1] Direction Computation

on Berlekamp-Massey c · D(n(log n)2 + (log2 D)3)

C · D(log D) D2 Parallel Method

E0 223 C · 228 246 243 237

LILI-128 221 C · 226 242 - 235

Toyocrypt 218 C · 223 236 - 232

Table 2. The complexities of the pre-computation step for published attacks, where

C represents a large constant and c represents a small constant.

2 Fast Algebraic Attacks

The length of the LFSR is n-bits; that is the internal state of the LFSR is
Kt ∈ GF (2)n. A state Kt+1 is derived from the previous state Kt by applying
an (invertible) linear mapping L : GF (2)n → GF (2)n, with Kt+1 = L(Kt). The
function L can be represented by an n×n matrix over GF (2), which is called the
state update matrix. Notice that we can write Kt = Lt(K). Each keystream bit
is generated by first updating the LFSR state (by applying L) and then applying
a Boolean function to the bits of the LFSR state. For the purposes of this paper,
everything about the cipher is presumed to be known to the attacker, except the
initial state of the LFSR and any subsequent state derived from it.

Linearization: Recall that the first two steps of the attack result in a system
of nonlinear algebraic equations in a small number of unknown variables (these
variables being the bits of the initial state). The most successful algebraic attacks
(to date), have been based on linearization. The basis of this technique is to
“linearize” a system of nonlinear algebraic equations by assigning a new unknown
variable to each monomial term that appears in the system. The same monomial
term appearing in distinct equations is assigned the same new unknown variable.
The system of equations then changes from a system of non-linear equations
(with few unknown variables) into a system of linear equations (with a large
number of unknown variables). If the number of linear equations exceeds the
number of new unknown variables, then an attacker can solve the system to
obtain the new unknown variables of the linear system (which will in turn reveal
the unknown variables of the non-linear system). The advantage of linearization
is that the attacker can use the large body of knowledge about the solution of
linear systems.

2.1 The Monomial State

This section introduces some notation that is useful for describing linearization.
For a given value of the state Kt and for a given degree d, we shall let Md(t) (the
monomial state) denote the GF (2) column vector with each component being a
corresponding monomial of degree d or less. The number of such monomials is



D =
∑d

i=0

(
n
i

) ≈ (
n
d

)
, so Md(t) contains D components. The initial monomial

state Md corresponds to the initial state K.

Example 1. If n = 4 (that is, Kt = (k3, k2, k1, k0)) and d = 2, then there are
D = 11 monomials of degree 2:

Md(t) = (m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10)T

= (1, k0, k1, k2, k3, k0k1, k0k2, k0k3, k1k2, k1k3, k2k3)T ,

where “T” denotes the transpose of the matrix to make a column vector. For
Kt = (0, 1, 1, 1), the values of the monomial components of Md(t) are:

Md(t) = (1, k0 = 1, k1 = 1, k2 = 1, . . . , k1k2 = 1, k1k3 = 0, k2k3 = 0)T

= (1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0)T .

The ordering of the monomial components is arbitrary; for consistency we will
enumerate using lower subscripts first, as shown. ��
Expressing Functions of the LFSR State. We can express any Boolean
function of the LFSR state as a product of the matrix Md(t) with a row vector.

Example 2. Consider a Boolean function of the state f(Kt) = k2 + k1k3 (using
the LFSR state from Example 1). This function can be expressed:

f(Kt) = k2 + k1k3

= 0 × 1 + 0 × k0 + 0 × k1 + 1 × k2 + 0 × k3 + 0 × k0k1

+ 0 × k0k2 + 0 × k0k3 + 0 × k1k2 + 1 × k1k3 + 0 × k2k3

= (0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0) · Md(t) = f · Md(t), (1)

where the addition and multiplication operations are performed in GF (2). We
have now expressed the Boolean function f(Kt) as the product of the matrix
Md(t) with a row vector

f = (f0, . . . , fD−1) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0)

that selects the values of the specific monomials required to evaluate f(Kt). ��
The row vector f depends only on the function f , and is independent of the
LFSR feedback polynomial, the value of the initial state, and the index t.

The Monomial State Rewriting Matrix. The mapping from one LFSR state
to the next LFSR state can be expressed as a matrix product Kt+1 = L ·Kt. It
is also possible to determine the mapping from one monomial state to the next
monomial state as a matrix product Md(t + 1) = Rd · Md(t).

Example 3. Consider a 4-bit LFSR as in Example 1 with monomial state
Md(t) = (1, k0, k1, k2, k3, k0k1, k0k2, k0k3, k1k2, k1k3, k2k3)T . If the LFSR has is
of the form st+4 = st+1 + st, then the next state Kt+1 has a corresponding next
monomial state Md(t + 1) = (m′

0,m
′
1,m

′
2,m

′
3,m

′
4,m

′
5,m

′
6,m

′
7,m

′
8,m

′
9,m

′
10)

T



which is related to the original monomial state as follows (only some relation-
ships have been shown in order to save space):

m′
0 = 1 = 1 = m0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) · Md(t),

m′
1 = k′

0 = k1 = m2 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) · Md(t),
m′

4 = k′
3 = k0 + k1 = m1 + m2 = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) · Md(t),

m′
10 = k′

2k
′
3 = k3(k0 + k1) = m7 + m9 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0) · Md(t).

Each component of the next monomial state is a linear function of the original
monomial state. These linear functions for m′

0, . . . ,m
′
D−1 can be combined into

a matrix Rd (the “rewriting matrix”) such that Md(t + 1) = Rd · Md(t).

Rd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

��
Notice that the matrix Rd depends only on the LFSR and the degree d. This
example generalizes: for every LFSR and degree d there is a “monomial state
rewriting matrix” Rd such that Md(t + 1) = Rd · Md(t). Moreover, for every
t, the monomial state after t clocks of the LFSR can be expressed as a GF (2)
matrix operation

Md(t) = Rt
d · Md, (2)

where Md is the initial monomial state. Combining equations (1) and (2), we
get another expression for f(Kt):

f(Kt) = f(Rt
d · Md) = (f(t) · Rt

d) · Md = f(t) · Md, (3)

where the vector f(t) def= f · Rt
d depends solely on the function f , the monomial

state update matrix Rd and the number of clocks t (all of which are known to
the attacker). For example, the vectors f(t), t ∈ {0, 1, 2} corresponding to the
function f in Example 2 are:

f(0) = f · R0
d = f · I = (0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0),

f(1) = f · R1
d = f(0) · Rd = (0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0),

f(2) = f · R2
d = f(1) · Rd = (0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1).



2.2 Algebraic Attacks

We always assume that the monomial state is unknown; it is the goal of algebraic
attacks to determine the initial monomial state Md (and thereby determine the
initial LFSR state).

Step 1. The first step in an algebraic attack is to find a Boolean function h such
that the equation

h(Kt, zt, . . . , zt+θ) = 0, (4)

is true for all clocks (or indices) t. The degree of h with respect to the bits
of Kt we shall denote by d. Various methods have been proposed for finding
such equations (see [2, 6]). These equations typically have small values for θ. For
simplicity we shall hereafter combine the keystream bit values zt, . . . , zt+θ into
a keystream vector zt.

For the linearization approach, it is convenient to obtain an expression for
h(Kt, zt) in terms of keystream bits and bits of the initial monomial state Md.

1. Express h(Kt, zt) as the inner product of Md(t) and a keystream-dependent
vector h(zt):

h(Kt, zt) = h(zt) · Md(t). (5)

2. Now, Equation (2) can be substituted into Equation (5);

h(Kt, zt) = h(zt) · (Rt
d · Md) = (h(zt) · Rt

d) · Md = h(t) · Md,

where h(t) def= h(zt) · Rt
d.

3. Equation (4) is thereby transformed to the form:

h(t) · Md = 0. (6)

The components of h(t) = (h0(t), . . . , hD−1(t)) depend on: (a) the function h;
(b) the monomial state rewriting matrix Rd associated with the monomials of
degree of degree d or less; (c) the number of clocks t; and (d) the small keystream
vector zt. An attacker has access to all of this information, so the attacker is able
to compute all of the components of h(t). This means that the only unknowns
in Equation (6) are the components of the initial monomial state Md.

Step 2. The second step of an algebraic attack consists of substituting the
observed keystream vector zt into the components of the vectors h(zt) and then
computing the vector h(t) = h(zt) · Rt

d. The vectors h(t) are evaluated for
many indices t. Each of the evaluated vectors h(t) provides the attacker with
a linear equation in the D unknown bits of the initial monomial state Md.
Since there are D unknowns, around D linear equations will be required to
obtain a solvable system. An initial choice of D equations may contain linearly
dependent equations, so more than D equations may be required in order to get a
completely solvable system. It is thought that not many more than D equations



will be required in practice (see remark at the end of section 5.1 of [5]), so we
will assume D equations are sufficient.

Step 3. The third step recovers Md by solving the resulting system of linear
equations. The system can be solved by Gaussian elimination or more efficient
methods [13]. The complexity of solving such a system of equations is estimated
to be O(Dω), where ω (known as the Gaussian coefficient) is estimated to be
ω = 2.7. In general, D will be about

(
n
d

)
= O(nd).

Complexities. The complexities of an algebraic attack are as follows:

– The complexity of finding the equation h(Kt, zt) depends on many factors
and is beyond the scope of this paper.

– The amount of keystream required for the second step (the data complexity)
is D = O(nd).

– The complexity of the second step (substituting the keystream into the equa-
tions) is O(D2) = O(n2d), assuming that the functions h(Kt, zt) are rela-
tively simple functions of the keystream; and

– the complexity of solving the system in the third step is O(n2.7d).

Note 1. The complexity is exponential in the degree d. Hence, a low degree d is
required for an efficient attack. Therefore, an attacker using an algebraic attack
will always try to find a system of low degree equations.

2.3 Fast Algebraic Attacks

Courtois [5] proposed “fast algebraic attacks”, as a method for decreasing the
degree of a given system of equations. For fast algebraic attacks, we presume
that the function h can be written in the form

h(Kt, zt, . . . , zt+θ) = u(Kt) + v(Kt, zt) = 0, (7)

where u is of degree d in the bits of Kt, v is of degree e < d in the bits of Kt

and only v depends on the keystream. Since the functions u and v are of two
distinct degrees (in the bits of Kt), it is simplest to consider them as depending
on distinct monomial states Md and Me, with corresponding monomial state
rewriting matrices Rd and Re. There are D =

∑d
i=0

(
n
i

) ≈ (
n
d

)
monomials of

degree d or less, and E =
∑e

i=0

(
n
i

) ≈ (
n
e

)
monomials of degree e or less .

A fast algebraic attack gains an advantage over the normal algebraic attacks
by including an additional pre-computation step in which the attacker deter-
mines linear combinations of equation (7) that will cancel out the high-degree
monomials of degree e + 1, e + 2, . . . , d that occur in u(Kt), but not in v(Kt, zt).

As in equation (3), u(Kt) and v(Kt, zt) are written as vector inner-products:

– u(Kt) = u · Md(t) = u(t) · Md, where u(t) = (u · Rt
d) is a vector with D

components (all of which are independent of the keystream); and
– v(Kt, zt) = v(zt) · Md(t) = v(t) · Me, where v(t) = v(zt) · Rt

e)) is a vector
with E components (some of which are dependent on the keystream).



Equation (7) is then transformed to:

u(t) · Md + v(t) · Me = 0. (8)

In the fast algebraic attack pre-computation step, the attacker finds (D + 1)
coefficients b0, . . . , bD ∈ {0, 1}, such that

∑D
i=0 bi · u(t + i) = 0, ∀t. (9)

Equations (8) and (9) can be combined:

∑D
i=0 bi · (u(t + i) · Md + v(t + i) · Me) =

(∑D
i=0 bi · v(t + i)

)
· Me .

Thus, we obtain a linear expression in Me:

v′(t) · Me = 0, where (10)

v′(t) =
∑D

i=0 bi · v(t + i). (11)

The second step of a fast algebraic attack is to evaluate many vectors v′(t + i),
by substituting observed keystream vectors zt+i into the vectors v(t+i) in equa-
tion (11). Each of the evaluated vectors v′(t) provides the attacker with a linear
equation in the E unknown bits of the initial monomial state Me. Equation (10)
involves fewer unknowns than the initial equation (7); this means that the fast
algebraic attack requires fewer equations in order to solve for the unknowns.
Reducing the number of unknowns and equations significantly improves the third
step of the attack as solving the system of E equations (10) takes significantly
less time than solving the system of D equations of (6). The complexity of the
third step is now O(Eω).

Courtois [5] and Armknecht [1] have proposed efficient methods for finding
the coefficients of equation (9). The details are not relevant to this paper, but
the complexities are provided in Table 2 for the purposes of comparison with
the method proposed in Section 6 of this paper.

Data Complexity. Evaluating the vector v′(t) (for each equation (10)) requires
substituting the bits from the D keystream vectors zt+i, 0 ≤ i ≤ D. Obtaining
E equations (10) can be achieved using the set of keystream vectors {zt+i, 0 ≤
i ≤ D, 1 ≤ t ≤ E} = {zt, 1 ≤ t ≤ D + E}. These keystream vectors can be
obtained from the keystream bits zt+i, 1 ≤ t ≤ D +E + θ. Hence, the attack can
be performed using as few as (D + E + θ) = O(D) keystream bits.

3 Substitution Complexity of Fast Algebraic attacks

Normal algebraic attacks and fast algebraic attacks differ in the complexity of
substituting the keystream into the equations in Step 2. The vector h(t) is a
function of a small number of keystream bits zt+i, 0 ≤ i ≤ θ, but the vector
v′(t) is a function of a large number of keystream bits zt+i, 0 ≤ i ≤ D + θ.



As discussed in the introduction , a misunderstanding resulted the attacks [1, 5]
failing to account for this difference.

The näıve approach to substituting the keystream is to compute the vectors
v(t) first and then substitute these vectors into the equations (11) individually.4

Computing a single component of the vector v′(t) =
∑D

i=0 biv(t + i) for a single
value of t will require complexity D/2, since (on average) half of the coefficients
bi are expected to be zero. There are E components in each vector v′(t), so the
complexity of substituting the keystream to obtain a single vector v′(t) using
equation (11) is E × (D/2) = ED/2. That is, obtaining a single equation (11)
has complexity is ED/2. Since E equations are required in order to solve the
system, the total cost of simple substitution will be E × (ED/2) = E2D/2.
Table 3 lists the complexity of simple substitution for the fast algebraic attacks
in the literature. Note that simple substitution is significantly more complex than
solving the linear system of equations in these cases.

Cipher n d, e D E Claimed Subs Simple Subs Solving Linear Dominant

O(ED) E2D/2 System (Eω) Term

E0 27 4, 3 223 218 241 259 249 259

LILI-128 89 4, 2 221 212 233 244 239 244

Toyocrypt 27 3, 1 218 27 223 231 220 231

Table 3. Comparing the claimed complexities of substitution, the complexities of

simple substitution and the complexity of solving the linear system.

4 The Discrete Fourier Transform

Real Spectral Analysis: First, we’ll consider a quick tangential topic. A com-
mon tool in analyzing a real-valued function a(x) (such as a sound wave) eval-
uated on a real domain x ∈ [0, P ] is to represents the function a(x) as a sum
of simple periodic functions (cosine and sine curves) where the function a(x) is
specified by the amplitudes of these periodic functions:

a(x) = A0 +
∑∞

φ=1 Aφ · cos
(

2πφ

P
· x

)
+

∑∞
φ=1 A∗

φ · sin
(

2πφ

P
· x

)
.

with amplitudes Aφ and A∗
φ assigned for each frequency φ. The sequences {Aφ}

and {A∗
φ} are the Fourier series for a(x), and evaluating the amplitudes is called

a spectral analysis.

Discrete Spectral Analysis: Suppose a(t) is a function defined at discrete
values t = {1, 2, 3, . . . , P}, and the values of a(t) lie in a field F . Such discrete
4 We ignore the cost of computing v(t) as this cost is independent of the cost of

determining v′(t) from the values of v(t).



functions are equivalent to sequences written a = {a(t)}. Discrete spectral anal-
ysis of a, like real spectral analysis, represents a using simple periodic sequences
with period P . These periodic sequences are of the form Λφ = {Λφ(t) = λφ·t},
where 0 ≤ φ ≤ (P − 1), and λ is an element of multiplicative order P in some
field G; these functions are analogous to the sine and cosine curves.

In some cases, F has elements of multiplicative order P , and λ can be an
element of F ; that is, G = F . In other cases, λ must be chosen in an a larger
field G that is an extension field of F . In either case, the field G is a vector space
over F ; that is, elements of G are of the form x =

∑p
i=1 xiνi for some basis

{ν1, . . . , νp}, p ≥ 1. Elements x ∈ F are mapped to elements x = xI ∈ G where
I is the identity element of G. Thus, the sequence a of elements of F is mapped
to the sequence a with elements of G. A discrete spectral analysis determines
a sequence of P “amplitudes” A = {Aφ ∈ G, 0 ≤ φ ≤ (P − 1)}, such that the
sequence a, can be expressed as:

a(t) =
∑P−1

φ=0 Aφ · Λφ(t). (12)

In this way, each sequence value a(t) is represented as a linear combination of
sum of P periodic sequences Λφ, 0 ≤ φ ≤ (P − 1). It is well known that the
sequence of amplitudes A can be computed directly from the sequence a as:

Aφ =
1
P

· ∑P
t=1 a(t) · Λφ(−t). (13)

The calculation of A from a as in (13) is called the Discrete Fourier Transform
(DFT), while the calculation of a from A is the Inverse DFT. The most efficient
method for performing the DFT, known as the Fast Fourier Transform (FFT) [4],
requires a total of P log2 P operations in the field G. There is also an Inverse
FFT that uses the same amount of computation to invert the DFT.

Convolutions and the DFT. The convolution of two discrete sequences a and
b of period P is another sequences y of period P with y(t) =

∑P
i=1 a(t) · b(i −

t(mod P )), ∀t. These are sequences of elements from the field F . It is common
to write y(t) = (a∗b)(t). Computing the convolution according to first principles
would take P 2 multiplication and addition operations in the field F . However,
the Convolution Property provides us with an alternative method.

Convolution Property y(t) = (a ∗ b)(t), ∀t if and only if Yφ = Aφ · Bφ, ∀φ.

The convolution can be computed by applying the FFT to a and b to form A
and B, forming {Yφ = Aφ · Bφ}; and finally applying the inverse FFT to Y
in order to form y. The total complexity is 3(P log2 P ) + P = P (3 log2 P + 1)
operations in the field G. In the cases where G = F , the FFT method is faster
by a factor of P/(3 log2 P +1). In other cases, computations in G cost more than
computations in F and the advantage is less. This “trick” has been applied in
many areas such as the fast multiplication of larger numbers and polynomials
(the product of two polynomials is the convolution of the two corresponding
sequences of coefficients). We shall use this trick in the next two sections.



5 Applying the FFT to the Substitution Step

The calculation in equation (11) is performed component-wise, so we will begin
by focussing on the sequence of values for only one of the monomial components
vµ(t) of the vectors v(t) = (v0(t), . . . , vE−1(t)), 0 ≤ µ ≤ (E − 1), and the
corresponding components v′

µ(t) of the vectors v′(t). Assume that the attacker
has observed a sufficient amount of keystream, evaluated the values of vµ(t) in
equation (8) for 1 ≤ t ≤ (D + E), and determined the values b0, b1, . . . , bD, The
attacker now needs fast way to determine the values v′

µ(t) =
∑D

i=0 bi · vµ(t + i),
1 ≤ t ≤ E, (see equation (11)) from the values vµ(t).

The inefficiency of using simple substitution is indicated by two things:

– Equations (11) often re-use the same values of vµ(t) when computing v′
µ(t),

1 ≤ t ≤ E.
– Equations (11) all use the same linear combination;

This problem appears similar to computing (β∗vµ)(t) = v′
µ(t) for an appropriate

sequence β. Indeed, if β is defined as β(t) = 0, 1 ≤ t ≤ P−D−1, and β(t) = bP−t,
P −D ≤ t ≤ P , then (β ∗ vµ)(t) = v′

µ(t) for 1 ≤ t ≤ P −D, Thus, the FFT may
be combined with the Convolution Property for computing v′

µ(t). The sequences
vµ and β are defined on the field F = GF (2), so G will be a field of the form
GF (2p). We choose p to be the smallest value such that 2p > (D+E), and define
P = 2p − 1. This choice seems best because it uses the smallest number of bits
to represent elements of G.

Basic DFT-based Substitution Algorithm

1. Map the sequences β and vµ in F to sequences β and vµ in G.
2. Apply the DFT to obtain the sequence of amplitudes B from β.
3. Apply the DFT to obtain the sequence of amplitudes V from vµ.
4. Compute Qφ = Bφ · Vφ, 0 ≤ φ ≤ (P − 1).
5. Apply the inverse DFT to obtain q from Q. Note q(t) = (β ∗ vµ)(t).
6. Extract v′

µ(t) from q(t), 1 ≤ t ≤ E; v′
µ(t) = 1 if q(t) = I, else v′

µ(t) = 0.

Complexity. This may seem like a strange way to compute v′
µ(t), but the

algorithm is very efficient when the FFT is used to compute the DFTs:

– The values Bφ are computed via the FFT using P (log2 P ) field operations
(operations in the field G). For given values b0, b1, . . . , bD, the same sequence
β is used for each monomial component and for each attacked keystream.
The attacker should pre-compute and store B to save time.

– The values Vφ are computed via the FFT using P (log2 P ) field operations.
– The values Qφ = Vφ ·Bφ are computing using (D + E) field multiplications.
– The sequence q can be obtained from {Qφ} by applying the standard Inverse

FFT; this requires in time P (log2 P ) field operations.

The pre-computation of B requires P (log2 P ) field operations. The run-time
total complexity for computing the value of v′

µ(t) from the values vµ(t) is ap-
proximately 2P log2 P field operations. These field operations are more complex



than GF (2) (logical) operations. To a good approximation, each field opera-
tion is equal in complexity to log2 P logical operations (much of this can be
parallelized). Thus, for our calculations, the run-time complexity of the above
algorithm is equivalent to around 2P (log2 P )2 logical operations.

Improvement 1. The above algorithm computes all (D + E) values of q, but
only E of these values are ever used. An efficient alternative is to divide the
linear combination into δ segments of length D′ = D/δ and perform the FFTs
on these segments using a smaller field GF (2p′

) where 2p′ − 1 = P ′ ≥ E + D′.
If we define appropriate sequences β[j], 1 ≤ j ≤ δ, then we may write:

v′
µ(t) =

δ−1∑
j=0

D′∑
i=0

bD′j+i · vµ(t + D′j + i) =
δ−1∑
j=0

(β[j] ∗ vµ[j])(t).

with sub-sequences {vµ[j](t) = vµ(t+D′j)}. Now, q(t) =
∑δ−1

j=0(β[j]∗vµ[j])(t) if

and only if Qφ =
∑δ−1

j=0 B[j]φ ·V [j]φ. Thus, computing q(t) = v′
µ(t) requires: pre-

computing the FFTs of β[j] computing the FFTS of vµ[j]; computing Qφ; and
applying the inverse FFT to Q to obtain q and thus v′

µ(t). The FFTs and Inverse
FFT dominate the complexity, requiring (δ + 1)P ′(log P ′)2 logical operations at
run-time, where P ′ ≈ D

δ +E. The basic algorithm above uses δ = 1. The optimal
choice for δ (providing the lowest complexity) depends on D and E.

Improvement 2. The DFT-based substitution algorithm computes the values
of v′

µ(t), 1 ≤ t ≤ E, for only one component of the vectors v′(t), 1 ≤ t ≤ E.
There are a total of E monomial components v′

µ(t), 0 ≤ µ ≤ E for each
such vector; thus if each component is computed separately, then the total
complexity of computing all components of every vector v′(t) would be ap-
proximately E(δ + 1)P ′(log P ′) field operations, or E(δ + 1)P ′(logP ′)2 logical
operations. Fortunately, p′ monomial components can be packed into each com-
putation. For a set {µ1, . . . , µp} of monomial indices we define a sequence v ∈ G:
v(t) = (vµ′

p
(t), vµp′−1

(t), . . . , vµ1(t)). Then

v′(t) = (β ∗ v)(t) = (v′µ′
p
(t), v′

µp′−1
(t), . . . , v′µ1

(t)),

provides p′ values v′
µi

(t) for the price of one, dividing the total complexity by p′.

Improved DFT-based Substitution Algorithm
Inputs: vµi

(t), 1 ≤ t ≤ (D + E), 1 ≤ i ≤ p′; B[j], 0 ≤ j ≤ δ.
Outputs: vµi

(t), 1 ≤ t ≤ E, 1 ≤ i ≤ p′.

1. Form v(t) = (vµ′
p
(t), vµp′−1

(t), . . . , vµ1(t)), 1 ≤ t ≤ (D + E).
2. Form sub-sequences v[j] = {v(D′j + 1), . . . , v(D′j + P ′)}, 0 ≤ j ≤ δ.
3. Apply DFT to obtain V [j] from v[j], 0 ≤ j ≤ δ.
4. Compute Qφ =

∑δ−1
j=0 B[j]φ · V [j]φ, 0 ≤ φ ≤ (P − 1).

5. Apply inverse DFT to obtain q from Q .
6. Set v′(t) = q(t), 1 ≤ t ≤ E.
7. Output v′(t) = (v′

µ′
p
(t), v′

µp−1
(t), . . . , v′µ1

(t)), 1 ≤ t ≤ E.



The run-time complexity, after applying these two improvements, is

(δ + 1)EP ′(log P ′)2 × E
log P ′ = (δ + 1)EP ′(log P ′).

Table 4 shows the complexities of the FFT method for substitution for the
current fast algebraic attacks in literature. In the case of E0, the improvement
has been significant, and the substitution step no-longer dominates the run-time
complexity. The improvement in the substitution complexity is less noticeable
required for LILI-128, and insignificant for Toyocrypt. The substitution step still
comprises a significant portion of the complexity for these attacks.

In all cases, the first improvement did not affect the complexity significantly;
the largest improvement was by a factor of 4. Interestingly, the optimal value of
δ was δ ≈ D/E, for which D′ = E and P ′ ≈ 2E. The corresponding complexity
is around D/E · E · 2E · (log2 E + 1) ≈ 2DE(log2 E)

Cipher D E Substitution Solving Total

Simple FFT (δ + 1)EP ′(log P ′) System

E2D/2 Basic (δ = 1) Optimal Choice

E0 223 218 259.2 248 246.8 (δ = 24) 249 249

LILI-128 221 212 244.2 239.4 237.8 (δ = 28) 239 240

Toyocrypt 218 27 231.4 231.2 229.2 (δ = 210) 220 229

Table 4. Comparing the complexities of substitution using the FFT method against

the complexities of simple substitution.

6 Improving the Pre-Computation Step

A square matrix satisfies its characteristic polynomial. That is, if p(d)(x) =∑D
i=0 pix

i is the characteristic polynomial of Rd, then

p(d)(Rd) =
D∑

i=0

pi · Ri
d = 0, (14)

where 0 represents the all-zero matrix. Suppose the coefficients b0, . . . , bD of
Equation (9) are assigned the values of the coefficients p0, . . . , pD of the charac-
teristic polynomial of Rd. Then, for any function u(Kt) of degree d,

D∑
i=0

bi · u(t + i) =
D∑

i=0

pi ·
(
u · Rt+i

d

)
= u · Rt

d ·
(

D∑
i=0

pi · Ri
d

)
= u · Rt

d · 0 = 0.

The characteristic polynomial of Rd depends on the LFSR and the degree d, and
is otherwise independent of the function u(Kt). Thus, the coefficients p0, . . . , pD



(of the characteristic polynomial of Rd) can be substituted for the coefficients
b0, . . . , bD in equations (9) and (11) for all functions u(Kt) of degree d.

Most functions u of degree d have a minimal polynomial of degree D =∑d
i=0

(
n
d

)
(see [9, Fact 6.55]); the minimal polynomial for these functions will

be p(d)(x). However, there are functions the minimal polynomial is a smaller
factor of p(d)(x). For example, in the attack on E0 [1], p(d)(x) has length D =
11, 017, 633; while the minimal polynomial of the Boolean function used in the
attack is of slightly smaller length D′ = 8, 822, 188. Using p(d)(x) in the attack
on E0 (instead of using the minimal polynomial) would increase the complexity
by a small amount. An advantage of the methods proposed in [1, 5] is that those
method will find the minimal polynomial for a specified Boolean function, even
if the minimal polynomial is smaller than p(d)(x).

It is not difficult to show that the polynomial p(e)(x) divides p(d)(x) This
suggests that the linear combination

∑D
i=0 pi · v(t + i) may also be zero, thus

resulting in a trivial equation 0 ·Me = 0 that provides no information about the
initial monomial state. The probability of this cancellation occurring is small;
the vectors v(t+i) = v(zt+i)·Rt+i

d , in the sum
∑D−E

i=0 p′i ·v(t+i) = v′(t) depend
on the keystream. Nonetheless, this suggests that a better approach would be
to cancel only those components corresponding to monomials of degree greater
than e using the polynomial

p(d/e)(x) def= p(d)(x)/p(e)(x) =
∑D−E

i=0 p′i · xi.

The linear combination
∑D−E

i=0 p′ · u(t + i) cancels components corresponding
to monomials of degree in the range [e + 1, d]. but will not cancel components
corresponding to monomials of degree e or less. Hence, u′(t) =

∑D−E
i=0 p′ ·u(t+i)

can be considered as an E-dimensional vector u′(t) = u′ ·Rt
e for some vector u′.

Equation 10 would then become

(u′(t) + v′(t)) · Re = 0. (15)

The probability that u′(t) = v′(t) will depend on the probability that u′ = v(z)
for a random z. Unless v(z) is constant, this probability u′ + v(z) = 0 will
be less than 1/2. After substitution of many such vectors, the probability that
u′(t) + v′(t)=0 will be very small and Equation (15) is highly unlikely to be
trivial.

6.1 Direct Computation of the Linear Combination

Suppose an LFSR state Kt of length n is updated according to state update
matrix L, and the characteristic polynomial of L is primitive.5 The following
theorem, while not explicitly stated by Key [7], is a fairly obvious consequence
of Key’s ideas, so no proof is given. This result provides a direct method for
computing p(d)(x).
5 This approach can be extended to cases where the characteristic polynomial is not

primitive; for example, when the keystream is a function of more than one LFSR.
See Key [7] for more details.



Theorem 1. (Largely due to Key [7]) If γ ∈ GF (2n) is a root of the char-
acteristic polynomial of the LFSR state update matrix, then the characteristic
polynomial of Rd is p(d)(x) =

∏
ψ:w(ψ)≤d

(
x − γψ

)
, where ψ ∈ GF (2n) and w(ψ)

denotes the Hamming weight of ψ (that is, the number of 1’s in the radix-2 rep-
resentation of the integer ψ). ��
Factoring p(d)(x) into GF (2) polynomials yψ(x). Computing the entire prod-
uct

∏
ψ:w(ψ)≤d

(
x − γψ

)
while in GF (2n) would be costly. Fortunately, the fac-

tors in GF (2n) can be easily grouped into GF (2) polynomials of degree n
or less. We define an equivalence relation “ .=” where ψ′ .= ψ if and only if
ψ′ ≡ 2jψ(mod 2n − 1), for some value j. Since the set {ψ′ .= ψ} is closed under
multiplication by 2, the polynomial yψ(x) =

∏
ψ′ .=ψ(x − γψ′

), has coefficients
that are either 0 or the identity element I. That is, the product yψ(x) can be
represented as a GF (2) polynomial. Thus, p(d)(x) can compute in two phases:

1. Compute the GF (2) polynomials yψ(x) for all ψ of weight d or less.
2. Multiply the GF (2) polynomials yψ(x) to form p(d)(x).

Computing yψ(x). The FFT over GF (2n) may be used to compute the poly-
nomials yψ(x). First, apply the FFT to the sequences corresponding to (x−γψ′

)
for ψ′ .= ψ to obtain sequences Γ (ψ′), ψ′ .= ψ. Second, form sequence Ω with
Ωφ =

∏
ψ′ .=ψ Γ

(ψ′)
φ . Finally, apply the inverse FFT to Ω to obtain yψ(x). The

first step is the most costly; it requires n(log n)2 logical operations for each factor.
There are D factors, so the total combined cost is Dn(log n)2 logical operations.

Multiplying yψ(x) to form p(d)(x). The second phase has polynomials with
coefficients in GF (2) and uses FFT’s in extension fields of GF (2). Multiplying
two GF (2) polynomials in to get a product of degree less than J = 2j can be
performed (via the FFT) using J(1 + 3 log2 J) = 2j(1 + 3j) operations in the
extension field GF (2j); this is equal to 2j(1 + 3j)j logical operations.6 Use the
FFT to first multiply pairs of polynomials of degree n to get polynomials of
degree 2n. Then multiply pairs of polynomials of degree 2n to get polynomials
of degree 4n and so forth until p(d)(x) is formed. The total complexity is

log2 D∑
j=log2 n

D

2j
· 2j(1 + 3j)j = D

log2 D∑
j=log2 n

(3j2 + j) ≈ D(log2 D)3.

The combined complexity for the two phases is D[n(log n)2 + (log2 D)3]. In Ta-
ble 2, the complexity of this method is compared against the previous methods.

7 Conclusion

We have shown that some published “fast algebraic attacks” on stream ciphers
underestimate the process complexity of one of the steps, and we provide correct
6 The attacker can “pack” multiple GF (2) polynomials into a single GF (2j) sequence

and thereby compute the convolution of multiple pairs GF (2) polynomials using the
same amount of computation. This reduces complexity by a relatively small factor.



complexity estimates for these cases. We then show an improved method, us-
ing Fast Fourier Transforms, for substituting keystream bits into the system of
equations needing to be solved. We also made some observations about the linear
combination used in the pre-computation step of the fast algebraic attack. In par-
ticular, we found the fastest known method for performing the pre-computation.
The fast algebraic attack remains an extremely powerful technique for analyzing
LFSR-based stream ciphers.
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