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Abstract. We introduce a compact and efficient representation of ele-
ments of the algebraic torus. This allows us to design a new discrete-
log based public-key system achieving the optimal communication rate,
partially answering the conjecture in [4]. For n the product of distinct
primes, we construct efficient ElGamal signature and encryption schemes
in a subgroup of Fy» in which the number of bits exchanged is only a
¢(n)/n fraction of that required in traditional schemes, while the se-
curity offered remains the same. We also present a Diffie-Hellman key
exchange protocol averaging only ¢(n)log, ¢ bits of communication per
key. For the cryptographically important cases of n = 30 and n = 210,
we transmit a 4/5 and a 24/35 fraction, respectively, of the number of
bits required in XTR [14] and recent CEILIDH [24] cryptosystems.

1 Introduction

In classical Diffie-Hellman key exchange there are two fixed system parameters
- a large prime ¢ and a generator g of the multiplicative group F' of the field
F,. In [10], the idea of working in finite extension fields instead of prime fields
was proposed, but no computational or communication advantages were implied.
In [26] Schnorr proposed working in a relatively small subgroup of Fy of prime
order, improving the computational complexity of classical DH, but requiring
the same amount of communication.

In [4] it is shown how to combine these two ideas so that the number of bits
exchanged in DH key exchange is reduced by a factor of 3. Specifically, it is shown
that elements of an order r subgroup G of F ;G can be efficiently represented
using 2log, ¢ bits if 7 divides ¢?> — ¢ + 1, which is one third of the 6log, g bits
required for elements of F q*G. Since the smallest field containing G is F(;%, one
can show [13] that with respect to attacks known today, the security of working
in G is the same as that of working in Fg for r large enough. In [14, 15] the
XTR public key system was developed using the method of [4] together with an
efficient arithmetic to achieve both computational and communication savings.
These papers also show how to reduce communication in ElGamal encryption
and signature schemes in F(;%.

* Supported by an NDSEG fellowship.



In [4] it was conjectured that one can extend this technique to any n by
working in the subgroup of Fy. of order &,(q), where @, (x) denotes the nth
cyclotomic polynomial. Since the degree of @, () is ¢(n), where ¢ is the Euler
function, one could transmit a ¢(n)/n fraction of the number of bits needed in
classical DH, while achieving the same level of security. For n the product of the
first k primes, ¢(n)/n — 0 as k — oo, so the savings get better and better. In
[3, 24], evidence that the techniques of [4] cannot generalize to arbitrary n was
presented, and in [3, 24], some specific versions of the conjecture in [4] made
in [3] were shown to be false. Also in [24, 25, 23] it is shown that the group
of order @,,(¢q) is isomorphic to the well-studied algebraic torus T),(Fy) [30] and
that a positive answer to the conjecture in [4] is possible if one can construct
an efficient rational parameterization of T),(F;). However, such a construction
is only known when n is a prime power or the product of two prime powers,
although it is conjectured to exist for all n [24, 30]. In [24] a construction is
given for n = 6, which is the basis for the CEILIDH public-key cryptosystem.
CEILIDH achieves the same communication as XTR with a few computational
differences.

In this paper we finally break the “n < 6 barrier” by constructing, for every
n, efficient ElGamal encryption and signature schemes in F., which require
transmitting at most a ¢(n)/n fraction of the bits required in their classical
counterparts. Further, we present an asymptotical variant of DH key exchange
in which the average number of bits exchanged per key approaches ¢(n)log, q.
The key property that we use is the fact that T,,(Fy) is stably rational (see [30],
section 5.1). Specifically, our enabling technique is the construction of efficiently
computable bijections # and §~! with

0 Tn(Fy) x (Xd|n, u(n/d):—lF;d) = Xdn, p(n/d)y=1Fya;

where x denotes direct product, and p is the Mobius function®. This allows
us to bypass the torus conjecture of [24], by relaxing the problem of efficiently
representing a single symbol of T}, (F,), to the problem of efficiently representing
a sequence of symbols in T, (Fy;). Our bijections enable us to compactly represent
m elements of Ty, (Fy) with (mé(n) + 3 4, u(n/a)——1 @) log g bits, which for large
enough m, is roughly ¢(n)log g bits per element. We stress that while our key
exchange protocol achieves the optimal n/¢$(n) reduction factor asymptotically,
our encryption and signature schemes achieve this even for the encrypting or
signing of a single message.

Note that the domain and range of # need not be isomorphic. Indeed, letting
(4 denote the cyclic group of order d, if n = 2 and ¢ = 3, then the domain
of # is isomorphic to G4 x G2, while the range is isomorphic to Gg. We show,
however, that # can be decomposed into isomorphisms plus a map requiring a
table lookup. We show how to choose ¢ so that constructing and querying this
table is extremely efficient.

3 For an integer n, u(n) = 1 if n = 1, u(n) = 0 if n has a repeated factor, and
w(n) = (=1)* if n is a product of k distinct primes (see [11], section 16.3).



Our choice of g and r for fixed n will also affect the security of our scheme.
We give an efficient heuristic for choosing ¢ and r for the practical cases of
n = 30 and n = 210, where we achieve a communication reduction by factors
of 15/4 and 35/8, respectively. Further, for any n, we give an efficient algorithm
for choosing g and r with a theoretical guarantee on its performance. This latter
algorithm is primarily of theoretical interest, showing how to optimally choose
q and r when n tends to infinity for a sufficiently large security requirement.

While our main focus and contribution is on the communication complexity,
we also calculate the amount of computation necessary to evaluate 6 and 6!
for general n, and we attempt to minimize the number of modular exponentia-
tions. We show that our representation enjoys some of the same computational
advantages of CEILIDH over XTR, including the ability to multiply elements
of T,,(F,) directly. This allows us to come close to the non-hybrid version of
ElGamal encryption in [24]. Indeed, in addition to constructing a hybrid ElGa-
mal encryption scheme, we construct a scheme in which to encrypt m messages,
we form m ElGamal encryptions in T),(F;) plus one additional encryption us-
ing a symmetric cipher. Unfortunately, the computational complexity of our
scheme is not that practical, whereas XTR for instance, permits very efficient
computations if just exponentiation is required. For n = 30, we hand-optimize
the computation of # and #~'. Our analysis for general n shows that all of our
protocols and algorithms are (theoretically) efficient in n and the sizes of g and 7.

Outline: Section 2 discusses the algebraic and number-theoretic tools we use. In
section 3 we construct the bijections # and §~'. Section 4 shows how to choose
system parameters to guarantee security and efficiency, giving both a practi-
cal algorithm for n = 30 and n = 210, and a theoretical algorithm for general
n. In section 5 we discuss our cryptographic applications. Section 6 treats the
computational complexity of our bijections, and we conclude in section 7.

2 Preliminaries

2.1 Cyclotomic Polynomials and Algebraic Tori

We first state a few facts about the cyclotomic polynomials. See [19] for more
background.

Definition 1. Let n be a positive integer and let (,, = e2™"/™. The nth cyclotomic

polynomial @, (x) is defined by:

ou)= [ @-cb

1<k<n, gcd(k,n)=1

It is easy to see that the degree of &, (z) is ¢(n), where ¢ is the Euler-totient
function. We also have:
2" —1= H@d(a:),
d|n



and using the Mobius function g,

&, (x) = H(:vd —1)r/d),

d|n

It can be shown that the cyclotomic polynomials are irreducible polynomials
over Q with integer coefficients. For ¢ a prime power, let F;; denote the finite
field with ¢ elements. For integers n > 0 we define the algebraic torus* T, (F,):

Tn(Fq) = {Oé c F;n | a@n(q) — 1}

2.2 Number Theory
The following is the celebrated prime number theorem (see [11], chapter 22):

Theorem 1. For large enough n, the number of primes less than or equal to n
is 1 o (mh)-

We also need the fact that for any n > 6, ¢(n) > n/(6Inlnn), and for n the prod-
uct of the first &k distinct primes, ¢(n) = O(n/loglogn). We use the following
density theorem in our analysis:

Theorem 2. (Chebotarev [5, 16]) For any integer n and any a € Z}, the
density of primes p (among the set of all primes) with p=a mod n is 1/¢(n).

3 The Bijection

Let g be a prime power, n a positive integer, I/, the multiplicative group of
the field of order ¢", and T,,(F,) the ¢(n)-dimensional algebraic torus over F.
For an integer k, let [k] = {1,2,...,k}. The goal of this section is to construct
efficiently computable bijections # and #~!, where

0:T,(F,) x (><d|n, p(n/d)=—1 F;d) = Xdjn, p(njd)=1 Fya-

1

Our strategy is to first find efficient bijections v and v~, where

v F;n - Xd|an(Fq).

Note that in general F. and Xg),T4(F};) need not be isomorphic. Let G, de-
note the cyclic group of order m. We first need a few lemmas. The following is
an immediate consequence of the structure theorem of abelian groups, but for
completeness and to exhibit the efficient isomorphisms, we include it:

Lemma 1. Suppose n =1y -19- -1 for pairwise relatively prime positive inte-
gers r1,...,7Tx. Then there exist efficiently computable isomorphisms p : G, —
Xie[k]Gn- and o : Xie[k]Gm — Gn.

4 Technically, T (Fy) just refers to the Fy points of the algebraic torus rather than
the torus itself (see [24, 30]).



Proof. For i € [k], put d; = n/r;. Since the r; are pairwise relatively prime,
ged(dy, da, ... ,di) = 1, so there exist integers e; for which Eie[k] e;d; = 1. For
o € G, define p(a) = (a¥);e. Since (a®)" = 1, p maps elements of G,
to elements in the product group X;ecxGr,. For (ai)icpr) € XierGr;, define
o((ai)ieny) = [Licp @' s where multiplication occurs in G,,.

The claim is that p and o are inverse isomorphisms between G, and X;c[x) G, -
For a € Gy, we have o(p()) = o((a?));ep = [Licp ati¢t = q. Similarly, for

ei\ __ ejd;
(Oéi)ie[k] € Xiclk] G,, we have P(U((ai)ie[k])) = p(Hie[k] Q; )= (Hje[k] Oéjj )ie[k]-
Now, r; | d; if j # 4, so in this case a;jd" = 1. Also, a5 = a;_

for an integer k, so o'

Zj:;i ejd; — allfkri

= ;. Hence, p(o((i)iepr))) = (ai)ie[r), which shows
p and o are inverses. Observe that p(ay - az) = ((o1 - a2)%)iep = (a‘fi)ie[k] :
(a5 )iein) = plar)-p(az), and similarly o ((e)ieqw - (@] )ier) = [iep (@i af)e =
[Licp (@) TLiep (@9 = o(()iepr)) - o((a})ier)), which shows that the maps
are isomorphisms. Computing p and o just requires multiplication and exponen-
tiation, which can be made efficient by repeated squaring.

n

Let U = U(n, q) be the smallest positive integer for which ged(®4(q), Pe(q), £ Jl) =
1 for all d # e with d | n and e | n.

Lemma 2. For d | n, let yq = ged(Pq(q), an_l). Then Fj = Gy x (XqnGy,)-

Furthermore, the isomorphisms are efficiently computable.

Proof. By lemma 1 it suffices to show (1) ¢" — 1 = U]y, va, (2) for all d,
ged(U,yq) = 1, and (3) for all d # e, ged(yd, ye) = 1.

Using the fact that ¢" —1 =], ®a(q), the following establishes (1):

" —1 _ " -1 _ " — 1) _
7 = et | I oato) 5 | = TLeed (0. 7 ) =TT

d|n

where the second equality follows from the definition of U. For (2), observe that

(U ) = e (U 0u(a), o ) e (0,250 ) =1

since if prime p | U, by minimality of U there exist d # e for which p |
ged(Pa(q), De(q)), so if p | L5, then p | ged(Pa(q), Pe(q), L), a contra-
diction. To see (3), note that ged(yd, ye) = ged(Pa(q), Pe(q), L[;l) =1 by the
definition of U.

We use the following bijections with complexity proportional to U, which we
later show to be negligible for an appropriate choice of q.

Lemma 3. For d | n, let zqg = ged(Pa(q),U). There exist bijections between
Gu and xg4,G, requiring O(logU + logn + loglogq) time to evaluate and
O(Un'*<¢logq) space for any € > 0.



Proof. Using the definition of U,

H |sz| = Hng(q)d(Q)v U) = ged H@d(q)v Ul = ng(qn -1 U) =U,
d| d| d|

so there exists a bijection between the two groups. Choose a generator g of
Gy and generators gq of G,,. For each i € [U], make a table entry mapping
g' to a unique tuple (g;d)dm. Since the sum of the divisors of n is less than
O(n'™¢) for any € > 0 ([11], section 18.3), the table consumes O(Un!*<logq)
space. We sort the entries in both directions so that both bijections are efficient.
Evaluations of either bijection can then be performed with a binary search in
O(logU + logn + loglog g) time.

We need another auxiliary map:

Lemma 4. Letyq and zq be as in the previous two lemmas. Then, xd‘an(Fq) ~
(Xd\nGyd) X (xd‘nsz). Furthermore, the isomorphisms are efficiently com-
putable.

Proof. It suffices to show for any d | n, Tg(F,) =2 Gy, X G,, and that this isomor-
phism is efficiently computable. Note that yqzq = ged(Pa(q), L[;l) ged(Pa(q),U) =
D4(q) since ged(U, q"%) = 1 by the definition of U. By the same observation,

ged(ya, z4) = 1. Lemma 1 establishes the claim.

The following is immediate from the previous 3 lemmas:

Lemma 5. Assuming the maps of lemma 8 are efficient, there exist efficiently
computable bijections y and v, where y : Fjn — X qinTa(Fy).
We now have the bijection claimed at the beginning:

Theorem 3. Assuming the maps of lemma 8 are efficient, there exist efficiently
computable bijections 6 and 0=, where 0 : T,,(F,) x (xdm p(n/d)=—1 F;d) —

Xdln, p(n/dy=1 Fa-

Proof. Lemma 5 gives efficient bijections between T,,(F,) X (xd‘m #(n/d):,qu*d)
and T, (Fy,) % (xd‘m w(n/d)=—1 (><e|dTe(Fq))), and also between X g,,, #(n/d)le;d

and X gjn, u(n/d)=1 (><€|dTe(Fq)). By permuting coordinates, the theorem will fol-
low if we show the multiset equality

{n}u L] {est.e|d} = || A{est.eld)

dln, p(n/d)=—1 dln, p(n/d)=1

From section 2, @, (z) H#(n/d):—l(xd -1) = H#(n/d)zl(:vd — 1) in the polyno-
mial ring Q[z]. Decomposing this equation into irreducible polynomials, we have
P (@) [1njay=—1 [Leja Pe(@) = 11,0 a)=1 [ 1¢jq Pe (@), and since Q[z] is a unique
factorization domain, the irreducible polynomials on the left must be the same
as those on the right. This gives the desired multiset equality.



4 Parameter Selection

The two constraints on choosing ¢ and r for fixed n are security and efficiency
constraints, the latter measured by the size U(n, q) of the tables needed in our
bijections. We first discuss the role of security in parameter selection:

4.1 Security measures

Our schemes derive their security from the same assumptions of XTR and
CEILIDH. That is, if there is a successful attack against one of our crypto-
graphic primitives, then there is a successful attack against the corresponding
primitive in the underlying group we use, which we assume is impossible. Let
(g) C Fy. be a multiplicative group of order » with generator g. The security of
our applications relies on the hardness of both the Computational Diffie-Hellman
problem (CDH) and the Decisional Diffie-Hellman problem (DDH) in (g). The
former is the problem of computing ¢g*¥ given g* and ¢¥ and the latter is that
of distinguishing triples of the form (g2, g, g**) from (g%, g°, g¢) for random a, b,
and c. The hardness of both of these problems implies the hardness of the dis-
crete logarithm problem (DL) in (g): find « given g*. Due to the Pohlig-Hellman
algorithm [21], the DL problem in (g) can be reduced to the DL problem in all
prime order subgroups of (g), so we might as well assume that r is prime.

There are two known approaches to solving the DL problem in (g) [1, 7, 9, 13,
20, 27, 28], one which attacks the full multiplicative group of Fyn itself using the
Discrete Logarithm variant of the Number Field Sieve, and one which concen-
trates directly on the subgroup (g) using Pollard’s Birthday Paradox based rho
method [22]. Let s be the smallest divisor of n for which (g) can be embedded in
Fj.. The heuristic expected running time of the first attack is L[g®,1/3,1.923],
where L[n,v,u] = exp((u+o0(1))(Inn)?(InInn)! ). If ¢ is small, e.g. ¢ = 2, then
the constant 1.923 can be replaced with 1.53. The second attack, due to Pollard,
takes O(y/7) operations in (g).

Hence we see that the difficulty of solving the DL problem in (g) depends
on both the size of the minimal surrounding subfield and on the size of its
prime order r. If Fy» is itself the minimal surrounding subfield, as is the case
if we choose 1 | @,,(¢q) with r > n, then for sufficiently large r the DL, CDH,
and DDH problems in (g) are widely believed to be just as hard as solving
their classical counterparts w.r.t. an element of prime order =~ r in the prime
field of cardinality ~ ¢™ [14]. As mentioned in [14], when nlog, ¢ ~ 1024 and
log, r & 160, solving the DL problem in {g) is generally believed to be harder
than factoring an 1024-bit RSA modulus provided ¢ is not too small.

4.2 Practical algorithm for n = 30 and n = 210

Based on our security discussion, it is shown in [4] that, assuming an RSA key
length between 1024 and 2048 bits gives adequate security, for n = 30 we should
choose ¢ to be a prime between 35 and 70 bits long, and for n = 210 we should
choose ¢ to be a prime between 5 and 10 bits long. Note that for the next value



of n for which we achieve a communication savings, n = 2310 =2-3-5-7-11, the
field size will have to be at least 2310 bits, so any setting of ¢ already exceeds
the 2048 bits needed for adequate security.

In [13] it is shown how to quickly find a ¢ and an r meeting these requirements
for fixed m. The algorithm is heuristic, and involves choosing random ¢ of a
certain size and checking if @,(q) contains a sufficiently large prime factor r
by trial division with the primes up to roughly 10°. On a 166MHz processor,
for n = 30 it was shown that it takes 12 seconds to find an r of size between
214 and 251 bits for ¢ of size 32 bits. Note that for n = 30 we actually need
r to be slightly smaller, as claimed in the previous paragraph. This way we
can achieve the largest efficiency gain for a fixed security guarantee. Using the
algorithm of [13], fixing the size of r to be approximately 161 bits and searching
for an appropriate g took three hours instead of the 12 seconds needed previously.
However, there are three reasons we do not consider this to be problematic. First,
CPU speeds are easily ten times as fast these days. Second, we don’t need to fix
the size of r to be exactly 161 bits; we just need to find an r of approximately
this size. And third, finding the system parameters is a one-time cost and can
be done offline, or even by a trusted third party.

From the efficiency analysis in the next section and lemma 6, one can show
that the table size U(n,q) resulting from choosing ¢ at random subject to the
above constraints is likely to be small with good probability. Hence, this heuristic
algorithm is likely to find a ¢ and an r so that both security and efficiency
constraints are met in a reasonable amount of time.

4.3 Theoretical algorithm for general n with probabilistic
guarantees

In this section we use properties of the density of primes to design a parame-
ter selection algorithm and rigorously analyze its performance. Unfortunately,
since the factorization of @,,(¢) for random primes g does not seem to be well-
understood, we are forced to choose ¢ > r, which with respect to attacks known
today, doesn’t allow for choosing the optimal ¢ and r for n = 30 and n = 210
if we just want 2048 bit RSA security. A straightforward calculation shows that
for n = 30, the following algorithm gives us the largest efficiency gain for a fixed
security guarantee if and only if ¢ is at least 558 bits. Hence, we should view
the algorithm as theoretical in nature, and apply the heuristic of the previous
section for small n.

Let k be a positive integer tending to infinity and let n be the product of the
first £ primes. We want to choose ¢ so that:

1. nlogq is sufficiently large.
2. There exists a large prime factor r of @,(q).
3. U=U(n,q) is small.

We say an integer is squarefree if it contains no repeated factors. The selection
algorithm is as follows:



Parameter Selection Algorithm PSA(n = p;1 -+ - pg, @, R):

1. Let S be the subset of the first k primes p for which p — 1 is squarefree, and
put T = {p1,...,pr} \ S.
2. Find an R-bit prime r for which » = 1 mod n, and find a z € Z} of order n.
3. Find a @-bit prime g = z + kr > n, for some integer k, such that:
(a) Forall p e S, ¢?9»(@ 1 mod p*, where Op(g) denotes the order of ¢
in Zj.
(b) Forallpe T, O,(q) =p—1.
4. Find a generator g of the subgroup of order r of F.. Output r, g, and g.

We first claim that if the PSA algorithm terminates, then r and ¢ meet the
aforementioned properties. By setting @ large enough, the first property holds.
We have @,,(q) = P, (2 + kr) = &, (2) + sr for some integer s, and since O,.(z) =
n, ,(z) + sr = 0 mod r. Hence by choosing R sufficiently large, the second
property holds. To show U = U(n, q) is small, we need the following lemma:

Lemma 6. Let p be a prime and q an integer such that p f q. Then p | U if and
only if pO,(q) | n. In case of the latter, p' | U if and only if p* | (¢?%»(@ —1).

Proof. By minimality of U, p | U if and only if there exist divisors d < e of n
for which p | ged(Pa(q), Pc(q)). Fix two such divisors d and e, let f = ged(d, e),
and suppose f < d. Since f < d, p| P4(q) | (¢ —1)/(¢F —1) =1+ ¢ + > +
~o 4 ¢WITDT Since p | ged(Pa(q), Pe(q)) | ged(g? — 1,¢° = 1) = ¢/ — 1, we
have ¢/ =1 mod p, so d/f =0 mod p, or p | d/f. Similarly, p | e/f. But then
p | ged(d/f,e/f), contradicting our choice of f. Hence, d = f which means d | e
and p | e/d | n.

Suppose there is another divisor ¢ < d of n for which p | @.(¢). Then by the
above, ¢ | d and p | (d/c), and since p | (e/d), p? | e | n, contradicting the fact
that n is squarefree. This means that (d, e) is the unique pair of divisors for which
p | ged(@a(q), Pe(q)). Since p | ¢" — 1, Op(q) | n, and since ged(O,(q),p) = 1,
pO,(q) | n. Put d = O,(q) and e = pO,(q). Then d is the smallest positive
integer for which ¢ = 1, so p | D4(q). Also, D.(q) = (¢¢ — 1)/(¢% — 1) =
144+ 4q¢/4 D4 =¢/d mod p=0 mod p. Hence if p | gcd(P4(q), Pe(q)),
then d = O,(¢) and e = pO,(q). Conversely, if pO,(g) | n, then p | U for these
d,e.

We have shown p | U if and only if pO,(q) | n. The above shows that if
p' | U, then p' | (o, (a) - Ppo,q)(@) | (qP9»(@ — 1), and conversely if

P’ (g?9r @ — 1) | (¢" = 1), then p' | ged(Pa(q), Pe(q)) | U-

Remark 1. Note that p? | (¢?9»(@ — 1), since on the one hand we have p |
(¢»(@ —1), and on the other hand we have (¢" —1)/(¢%»@ —1) = 1+ ¢°»(@ 4
@20 @ .. 4 =10 = 1 £ 14 ...+ 1 =0 mod p. Hence if p | U, then
(qPPP(D — 1) | (¢" — 1), so it follows that p? | U.



The following lemma provides tight asymptotic bounds on U = U(n, q):

Lemma 7. If the PSA algorithm terminates, U = O(n?°), where C ~ .374 is
Artin’s constant.

Proof. By the previous lemma, if p | U, then p | n, so p € {p1,...,pr}. Now if
p € T, p— 1 is not squarefree, so Op,(q) f n by step 3b, so p f U. On the other
hand, if p € S, p— 1 is a product of distinct primes in {p1,...,pr}, so Op(q) | n
and hence p | U. Combining this with the remark above, step 3a of the PSA
algorithm, and the previous lemma, we conclude that U is exactly the square of
the product of primes in S and that the PSA algorithm chooses ¢ so that U is
minimal.

To obtain the bound on U it suffices to show that the density of primes p
for which p — 1 is squarefree is C, where C is Artin’s constant [8]. The bound
will then hold for large enough k. For a prime p, p — 1 is not squarefree if and
only if p = 1 mod ¢? for a prime ¢. By the inclusion-exclusion principle, the
multiplicativity of ¢(-), and theorem 2, the density of primes p for which p — 1
is squarefree is:

1 1
-2 >+ > g =l (“W)Z

primes p primes p,q primes p

By theorem 1, for sufficiently large k, px =~ klogk and k ~ 1 glok 7> Where the
appr0x1mat10n is up to low order terms. Hence, U < pk ~ (klogk)?‘F ~
(log n)2cm ~ n?C.

Finally, we show the PSA algorithm terminates quickly in expectation:

logn
loglogn

ing S and T in step 1 can therefore be done by trial division in O(log?n)
time. We can perform step 2 by choosing a random R-bit number r, efficiently
checking if r is prime, and checking if » = 1 mod n. This requires an expected

o(n)R = O (loglogn) samples r. To find z, we choose a random a € Z}, set

Efficiency Analysis: By theorem 1, k = and pr =~ logn. Determin-

8= a%, and check that 3¢ # 1 mod r for all proper divisors d of n. In ex-
pectation, after O(log R) trials one such a will be a generator of Z*, for which
setting z = 3 = s gives z with O,.(z) = n. Conversely, if for all proper divisors
d of n we have 3¢ # 1 mod r, then O,.(3) = n. Since the number of proper divi-
sors of n is O(n®) for any € > 0 ([11], section 18.1), the check in step 2 is efficient.

For step 3, for each p € T', we can find an element a,, € Z; with Oy(a,) =p—1
by simply trying each of the p — 1 = O(logn) elements of Z, until we succeed.
We then choose a random integer k for which ¢ = z + kr is a Q-bit number and
efficiently check if ¢ is prime. If so, then for each p € S, we can compute O,(q) in
O(logn) time, then check if ¢?P»(@) £ 1 mod p® by repeated squaring. For each



p € T we check if ¢ = a, mod p.

The claim is that the number of random samples k needed in step 3 is only
O(Qn'~%). Using the fact that the density of primes amongst integers of the

form z+ kr is O ( ), an integer k for which z 4 kr is prime can be found

1
log(z+kr)
with O(Q) samples in expectation. By independence, the density of primes ¢

which are a, mod p for every p € T'is [[ cr @ =1 (107%118%”), where C is

Artin’s constant. Fix any p € S. By theorem 2, for all but a negligible fraction
of primes ¢, ¢ = ¢* mod p3 for g a generator of Z;3. Since g is a generator,

¢?°»(@ = 1 mod p* if and only if 7 is a multiple of p%(: 2), and there are only

pO,(q) < p(p — 1) such multiples. By theorem 2, it is equally likely that ¢ = ¢°
for any i € [¢(p®)], so the density of primes ¢ for which ¢?%»(@) = 1 mod p® is at
least 1 — 1/p. By independence, the density of ¢ for which q"°r(@ #£ 1 mod p?

for all p € S is at least HpES(l —1/p) = Hpes =0 (m). Applying in-

dependence one last time, we conclude that ¢ can be found with an expected
O(Qn'~%) samples k.

Finally, step 4 can be implemented by choosing a random g € Fj, and making
sure that (¢" —1)/r # 1. The number of generators of Fy., is ¢(¢" — 1) which is

lognqﬁ), so the expected number of samples g needed is O(logn +log Q).

5 Cryptographic Applications

Let n be the product of the first k primes, and let 7, ¢, and g be public param-
eters generated as in section 4. Define 0= (n) = 3", ,,(n/a)=—1 d and o (n) =
> din, u(njay=1d> and observe that ¢(n) + o~ (n) = ot (n). From section 3,
we have an efficiently computable bijection 6 and its inverse 61, with 6 :

T (Fy) x (Xd|n, p(n/d)=—1 F;d) = Xdn, p(n/d)=1 Fja-

From the proof of theorem 3, we see that there are a number of choices
for # depending on which coordinate permutation is chosen. While this choice
does not affect the communication of our protocols or the size of our encryp-
tions/signatures, it can affect the computational costs. In section 6 we choose a
specific permutation and analyze the computational requirements for n = 30.

We will think of 6 and 6~ as efficiently computatble maps between T}, (F,) x

Fy ™ and FY ) by fixing polynomial representations of Fya with d | n. An ele-

ment of FY ™ is then just a list of o~ (n) g-ary coefficients with respect to these
polynomials, and can be treated as an element of X g, ju(n/d)=—1 F;d. Let 14,14+
“(n)

1,...,iqg+d—1 denote the coordinates of an element x € F, corresponding
to the coefficients of x with respect to the irreducible polynomial for Fya. Our
map may not be well-defined because we may have (x;,, ;i 41, .., Tij+d—1) = 0.

(n)

However, if y € Fy ") is chosen randomly, the probability that some coordinate



of y is zero is less than 0~ (n)/q = O(n®/q) for any € > 0, which is negligible.
The same is true of a randomly chosen element of F, ™), Hence, if we apply 6
and 0~ to random (21, 23) € Tp(F,) x FY ™ and y € Fg+("), 6(x1,z2) and
0~ 1(y) are well-defined with overwhelming probability.

It is possible to modify 6 and 6! if one wants more than a probabilistic
guarantee. Define d™ (n) = 32,1, /a=—1 L and d¥(n) =37, /0= 1. We
can efficiently extend 6 to the well-defined map 6,

6:Tu(F,) x FZ ™ - (xd‘m )= F;d> x {0,1}4 (™,

where for each (z,y) € T,,(F,) x Fy ™) and for each d | n with p(n/d) = —1,
if (Yiyy---»Yig+d—1) = 0, we replace y;,+q4—1 with 1, obtaining a new string v/,
and define 0(z,y) = 6(x,y’) o b, where for all j € [d~(n)], b; = 1 if and only
if (Yiys-.. Yisea_1) = O for the jth divisor d. Note that §°, the inverse of 8
restricted to the image of 9~, is also well-defined. Similarly, letting 3 denote 0!,
we can extend 3 to a well-defined map 3 : an+(") — T (F,) x Fy ) %
{0,1}4°(™ and construct B

The next sections describe our cryptographic applications. For simplicity,
in our security analyses we assume 6 and #~! are actually bijections between
T.(F,) x Fj ™ and Fg+ (") although it should be understood that our pro-
tocols can be slightly modified so that 6 or 3 can be used without affecting
the security. The only application where this is not immediately obvious is the
non-hybrid ElGamal encryption, but step 3 of that protocol can be modified to
additionally encrypt the “extra bits” from § using, say, the same key used in
step 3.

5.1 Diffie-Hellman Key Agreement

For Alice and Bob to agree on a sequence of m secret keys K, they engage in
the following protocol:

1. Alice and Bob choose random Sp and T in X gjpn, u(n/d)=—1 F;d, respectively,
and treat them as elements of ng(").
2. For ¢ =1 to m,
(a) Alice selects a random integer x; with 1 < z; < r, sets A; = ¢*¢, com-
putes 6(4;,5;-1) = (a;,S:) € Ff(") X ng(n) and transmits a; to Bob.
b) Bob selects a random integer y; with 1 < y; < r, sets B; = ¢g¥*, computes
( ger y yi <, g¥", comp
0(B;,Ti—1) = (b;, T}) € Ff(") X F;i(n) and transmits b; to Alice.
3. Alice sends S, to Bob and Bob sends T, to Alice.
4. Fort =m to 1,
(a) Alice computes 071 (b;, T;) = (B;, T;—1), and sets K; = B{'" = g®i¥i.
(b) Bob computes 07 (a;, S;) = (A4;,Si—1), and sets K; = AY" = g®ii.



The number of bits sent from Alice to Bob (and from Bob to Alice) is about
(m¢(n)+o0~(n))log g, so the rate approaches the optimal ¢(n) log ¢ bits per key
as m gets large. This beats all known schemes for n > 30. In particular, for
n = 30, our scheme requires only 8logq bits per shared key while generalizing
the scheme in section 4.11 of [14] to n = 30 gives a scheme requiring 10 log g bits
per key exchange. The scheme in [24] would also achieve our rate, but needs an
unproven conjecture concerning the rationality of Tso(Fy).

Observe that (A1, Sy) and (B, Tp) are random, and since 6 is a bijection, the
last 0~ (n) coordinates of #( A1, Sp) are of a random element in x g, #(n/d)le;d.
Hence the probability that some coordinate of Sy is zero is even less than that

for a random element in F, +(d), which is negligible. One can then verify that
every application of # or #~! is on a random element. It follows from the fore-
going discussion and the union bound that the probability of either Alice or
Bob ever attempting to apply € or #~! on an element outside of the domain is
negligible. For deterministic guarantees, one can replace 6 and §~! with 6 and
0, negligibly changing the rate to ¢(n)logq + O(n€) for any € > 0. Given the
overwhelming probability guarantees for § and #~!, this does not seem necessary.

Security: An eavesdropper obtains ai,...,am, b1, .., bm, Sm, and T,. Since
6 and 0! are efficient bijections, this is equivalent to obtaining Ai,..., A,,,
Bi,...,Bmn, S, and Tj. Since Sy and T are random, determining a shared secret
K; is equivalent to solving the CDH problem in (g}, given Ay, ..., Ay, B1, ..., By.

5.2 ElGamal Signature Schemes

Suppose the message M to be signed is at least 0~ (n)log ¢ — log r bits long. If
this is not the case, one can wait until there are m > 1 messages M; to be signed
for which ), |M;| > 0~ (n)log g — logr, then define M to be the concatenation
Mjo---0 M, and sign M. For a random a, 1 < a < r — 1, let a be Alice’s
private key and A = g her public key. Let h: {0,1}* — Z, be a cryptographic
hash function. We have the following generalized ElGamal signature scheme (see
p.458 of [18] for background):

Signature Generation (M):
1. Alice selects a random secret integer k, 1 < k < r, and computes d = g*.
2. Alice then computes e = k= (h(M) — ah(d)) mod r.
3. Alice expresses M oe as (R, S) € ng(") x {0,1}*, computes 0(d,R) = T,
and outputs (S,T) as her signature.

Signature Verification (M, S, T):

1. Bob computes §~1(T') = (d, R) and constructs M and e from R and S.

2. Bob accepts the signature if and only if AM@de = gh(M),

The communication of this scheme is at the optimal |M|+ logr + ¢(n)log ¢ for
ElGamal signature schemes, even for one message (as long as M is large enough).



This beats the |M| + logr + (n/3) log ¢ communication of the scheme in [4, 17]
when n > 30, in particular for the practical values n = 30 and n = 210. Our
communication is the same as that in [24], but we do not rely on any conjectures.

Note that our map 6 may fail since M need not be random. One can avoid
this by excluding the negligibly few M for which 6 is not defined (as in RSA
or the schemes of [24]), or one can replace # with 6, as defined above, and
communicate an additional O(n) bits of overhead. Alternatively Alice can use
a pseudorandom generator to randomize M and communicate the small seed
used to Bob, requiring even less communication than the already asymptotically
negligible O(n¢) bits.

We note that a simple modification of our protocol, making it similar in spirit
to our key exchange protocol, can allow Alice to sign each M; individually, al-
lowing for incremental verification.

Security: In this scheme the verifier obtains (S, T'), which is equivalent to ob-
taining M, d, and e. Thus, the security of this scheme reduces to the security of
the generalized ElGamal signature scheme in (g).

5.3 ElGamal Encryption

We present two flavors of ElGamal encryption. The first is a hybrid scheme with
shorter encryptions than the one in [14], while the second is essentially a non-
hybrid analogue of ElGamal in T,,(Fy). In the second, to encrypt a sequence of
m messages, m+ 1 encryptions are created and m of them are performed directly
in T, (Fy). The first scheme achieves optimal communication, while the second
is asymptotically optimal.

Hybrid ElGamal For random b, 1 < b <r — 1, let b be Bob’s private key and

B = g® his public key. Suppose Alice wants to encrypt the message M € F; )
with Bob’s public key. Let E be an agreed upon symmetric encryption scheme

(n)

with domain Fy/ ™ We have the following protocol:

Encryption (M):

1. Alice selects a random secret integer k, 1 < k < r, and computes d = g*.

2. From B Alice computes e = B*¥ = gb*.

3. From e Alice derives a key @ for F and computes the encryption of M,
E(M), under key Q. Alice writes E(M) as (R, S) € F{ ™ x {0,1}*.

4. Alice computes 6(d, R) = T and outputs her encryption (S,T).

Decryption (S, T):

1. Bob computes §71(T") = (d, R).

2. From d and b Bob computes e = g°*.

3. From e Bob derives @ and decrypts E(M) = (R, S) to obtain and output
M.



The communication of this scheme is at the optimal |E(M)| + ¢(n)logq bits
for hybrid ElGamal encryption. As in our protocol for signature schemes, we
achieve this rate even for a single message. This beats the |E(M)|+ (n/3)logg
bit scheme in [14] for n > 30.

It is unlikely that 6 or 6! is applied to an element with any zero coordinates
since d is random and E(M) is likely to “look random” in practice, so §(d, R) is

likely to be a random element of Fy ) for which it is extremely unlikely that
any coordinates are zero. An exact analysis, though, depends on one’s choice
of E. As in our protocol for signature schemes, one can randomize E(M) to
decrease the error probability or replace 6 with 6 for a deterministic guarantee
at the cost of a few bits of communication.

Security: An adversary learns (S,T), which is equivalent to learning d and
E(M). Assuming the CDH problem is hard in (g), the security of this scheme
is just that of the symmetric scheme FE, assuming the key @) to E is chosen
reasonably from e. To derive @ from e, one can extract bits that are hard to
compute by an eavesdropper, see [2].

Almost Non-Hybrid ElGamal In the following, Alice will encrypt a sequence
of m messages My, ..., M,,, each in Ff("). She will form m + 1 encryptions, m
of which are encryptions in T}, (Fy), and one requiring the use of an agreed upon
symmetric encryption scheme F.

In the encryption phase of our scheme we will apply 6! to (M; o R) for some

R € ng("). For semantic security, for all ¢ it must hold that 6=(M; o R) €
(g) x FJ ™ which in general may be strictly contained in T,(F,) x Ff ™.
For this we adopt the technique in section 3.7 of [25]. Namely, by reserving a
few bits of each M; to be “redundancy bits”, if (g) has small enough index in
T, (q), then for any R we need only try a few random settings of these bits until
0=1(M;oR) € (9)x FJ ™ = (c,d) € (¢9)x F{ ™, which we can test by checking
if ¢" = 1. In the following protocol description we ignore this issue and assume
whenever 01 is applied, its image is in (g) x Fy ),

For random b1,b2, 1 < by,b2 < r — 1, let by,b2 be Bob’s private keys and
By = ¢, By = ¢ be his public keys. We have the following scheme:

Encryption (M):

1. Alice chooses a random Ry € F, (),

2. For i =1 tom,
(a) Alice computes 0= (M; o Ri_1) = (ci, R;) € (g) x FZ ™.
(b) Alice chooses a random secret integer k;,1 < k; < r, and forms the

encryption (d;, e;) = (¢*, ¢;Bf).

3. Alice uses the hybrid ElGamal encryption scheme with symmetric cipher
E and public key Bs to encrypt R,, as (T),,S) with T,, € F; ™ and
S e {0,1}*.



4. Fort =m to 1,
(a) Alice computes 6(d;, T;) = (z;, W;) € Ff(") X ng(n).
(b) Alice computes 0(e;, W;) = (y;, Ti—1) € Ff(") X F,fi(n).
5. Alice outputs z1,...,Tm, Y1, --,Ym, Lo, S as her encryption of My,..., M,,.

Decryption (21, .., Zms Y1y -« Ym, L0, 5):

1. For i =1 to m,
(a) Bob computes 07 1(y; o T;_1) = (es, W;).
(b) Bob computes 0~ (x; o W;) = (d;, T;).
(c) Bob computes ¢; = e;/d*.
2. Bob uses T, and S, together with bs, in the decryption procedure of the
hybrid ElGamal scheme to recover R,,.
3. For i = m to 1, Bob computes 6(c¢;, R;) = M; o R;_;.
4. Bob outputs My, ..., M,,.

The communication of this scheme is 2m¢(n)logq + |E(Ry)| + ¢(n)log g bits.
Hence, as m grows, the rate of this scheme approaches 2¢(n)loggq, which is
optimal for ElGamal type encryption.

Note that the M;’s need not be random, and consequently 9*1(Mi,Ri_1)
may not be well-defined. Choosing random Ry will increase the chances that
0=Y(M;, R;_1) is always defined. Alternatively, one can use the ideas of section
5.2 to randomize M;, or one can use 3 instead of #~1. Again, since E(R,,) =
(S,T),) needn’t be random even if E is semantically secure, one may want to
use 6 in place of 8. This adds a negligible amount to the communication, and as
stated earlier, encrypting the extra bits of B can be done in step 3.

Security: An adversary learns x1, ..., Zm, Y1, - - - Ym, 10,5, which is equivalent
to learning E'(Ry,),d1, ... ,dm,€1,...,em, where E’ is the semantically secure
hybrid encryption scheme. Assuming DDH is hard in (g), (d;, e;) is a semantically
secure encryption E”(¢;) of ¢; for all i. The security of the scheme then follows
from the fact that the keypairs (b1, B1) and (bs, B2) of E’, E” are independent.

6 Computational Complexity

In this section we present efficient algorithms for computing 6 and ', analyze
their complexity, and suggest an alternative way of improving computational
costs with slightly more communication. Each of these is described in turn.

6.1 Algorithm

Before describing § and = !, we need some notation:

— For d | n, let Uy be the smallest integer for which ged(®.(q), P¢(q), %) =1
for all e £ f with e | d and f | d.



~ For e | d | n, we define yge = ged(Pe(q), %) and 24 = ged(Pe(q), Ua).

Generalizing section 3, we can find wq and wq,¢ s.t. d—wd—i—ze‘d :; Wq,e =
1. Further, we can find uq4 . and vq. for which Ud(c) de + . (q) =1.
— Let pe(d) : {d:e|d|n,un/d) =-1}y = {d:e|d|n, u(n/d) —+1} for

e | n, e £ n, be a bijective mapping and define p,(n) = n.
A naive implementation of 8 consists of the following steps:

1. We first use an isomorphism

Tn(Fq) X Xu(n/d):_qud — Tn(Fq) X Xu(n/d):—lGUd X G(qd—l)/Ud'

[N)

. By using a table lookup we map X, (n/d)=—1GU; — Xu(n/d)=—1 Xe|d Gzq..
and we use an isomorphism X, /a)=—1G(qi—1) /0, — X pu(n/d)=—1 xe‘ded .-
By the structure theorem of Abelian groups there is an isomorphism G
Gy,. — Te(F,) for each d|n with p(n/d) = —1 and e | d.

3. By using a permutation we obtain a mapping

Zde

Tn(Fq) X ><u(n/d):—l xe\d Te(Fq> — ><u(n/d):-&—l ><e|d Te(Fq)-

4. By the structure theorem of Abelian groups there is, for each d|n with
p(n/d) = +1 and e | d, an isomorphism T, (Fy) — G, . x Gy, .. By using a
table lookup we map X ,,(n/d)=+1 Xeld Gzy. — Xpu(n/d)=+1Gu, and we use
an isomorphism X, a)=+1 Xejd Gya. — Xpu(n/a)=+1G(qi—1)/U,-

5. In the last step we use an isomorphism

Xun/d)=+1GUs X Ggi—1)ju, = Xp(n/d)=+1Fqe-

Each of the isomorphisms are defined by taking simultaneous exponentiations.
An improved implementation combines different isomorphisms in a single simul-
taneous exponentiation. Each table lookup followed by an exponentiation can
be implemented as a single table lookup. This reduces the number of exponen-
tiations and multiplications.

Computation of Q(CL’, (xd)d\n,,u(n/d)zfl) for (-Td)d\n,,u(n/d)zfl S Xd|n,#(n/d):—1F;d
and x € T,,(Fy):

1. For d | n, u(n/d)
(a) Compute :c( 1)/Ud

a table look up.
d

(b) Compute (Zpe(d),e _ (Z;J:ie,exl(iq —l)ud,c/yd,c)n;be(q)/zpe(d%e)e‘d c Xe|dG
2. Compute Z,, , = 2Pn @/ € @

3. For d | n, u(n/d) = +1
(a) Map (Zg.e)p. (d)=d,eld € Xe|dGz,. to Zg € Gy, by using a table look up.

dl* U g ’

( ) Compute xTq = Z H deld, e;én(ZUd/e Igg Dugr e /Ya ,e)¢e(q)wd,e/yd,e
which is in Gy, - (qd_l)/Ud

€ Gy, and map it to (Za,e)eja € Xe|dGz,,. by using

Zd,e

Zpe(d),e’

Zpn(n),n’

qd'



4. Multiply z,, with z2n(@®nn/ynn
5. 0(x, (Td)djn,u(n/d)=—1) = (Td)djn,pu(n/d)y=+1-

The ideas in section 3 can be used to show the algorithm above is well-defined.
The improved computation of =1 is similar, where we make sure to use the
inverse of the coordinate permutation used in 6.

6.2 Complexity

For background on efficient computations in fields and subgroups, see [6, 12, 29].
Consider the algorithm for 6. In step 1, for d | n, u(n/d) = —1, we perform 1+
Ze| 4 1 exponentiations in Fj«. Notice that, in step 1b we do not need to compute

Zs;’c since it can be combined with the table lookup in step la (there is an entry
in the table corresponding to Z} _ for every v). Step 2 costs 1 exponentiation in
Fiyn. ’

For d | n, u(n/d) = —1 or d = n, we precompute 22, 0 < i < dlogq. This
costs dlog ¢ multiplications in Fi«. By using the results of the precomputation, an
exponentiation z, for some ¢, in Fa costs on average (dlogq)/2 multiplications
in Fia (the bit length of the exponent ¢ is (dlog q) and roughly half the time a
bit is equal to 1). Each multiplication in Fja costs f(d) < d* multiplications in
F,. Summarizing, steps 1 and 2 cost about

Ci=(3f(mn+ > (B+> Df(dd logg

2
dn,u(n/d)=—1 eld

multiplications in Fj.

In step 3, for d | n, u(n/d) = +1, we need to perform, for each e | d with
pe(d’) = d, one exponentiation in F . We do not need to compute Zsj‘f’e’e which
can be combined with the table lookup in step 1la.

The cost of step 3, measured in multiplications in the base field Fy, is on

average approximately > ;. . d)=11 2 e|d Flpz2(d)pzt(d)(log q)/2. Since pe
defines a permutation, this expression is equal to

G=[foms X (a2

2
dln,u(n/d)=—1 eld

The total cost is C' +Cy multiplications in Fy, where we neglect the cost of table
lookups, addition, and multiplication modulo an integer. Since Ee| .1 =0(d%),

we have 35— 1 (3423, Df(d)d = O, &%) = O((XC ), 0°F) =
O(n37¢), since the sum of divisors of n is O(n'*¢) for any e > 0. This proves
C1 + C2 = O(n3¢ logq).

The same techniques show 67! requires O(n*¢log ¢) multiplications in F.



6.3 Efficiency Improvements

To improve the efficiency we may use exponentiation algorithms for fixed expo-
nents using vector addition chains. Also, we may group several exponentiations
of x4 together into one exponentiation by appropriately choosing the bijections
Pe- If m is not too large, we may use simultaneous exponentiation to speed up
the computations. Full simultaneous exponentiations in every step requires a
precomputation of 2 multiplications. We may optimize by using simultaneous
exponentiation to compute intermediate results which we multiply together to
compute the full exponentiation. Finally, we may combine the exponentiations
required in our applications with the evaluation of 6.

Notice that € is much more efficient if, for d | n with u(n/d) = —1, z4 €
Ggi—1y/u,- Then, for e | d | n with pu(n/d) = =1, Zg. = 1 and Zg = 1. Table
lookups can be avoided. Therefore each x4, for d | n with u(n/d) = +1, can
be computed by a single simultaneous exponentiation of z,z4 € G(ga_1y/v,,d |
n, p(n/d) = —1, with fixed exponents in step 3. To make use of this, we define
a new map 7 which maps (, (£4)qjn,u(n/d)=—1) into (z, (ded)dm#(n/d):,l) and

the table entries of (gcglqdfl)/Ud)

cost by

d|n,pu(n/d)=—1- This increases the communication

Z log, Uq

d|n,u(n/d)=—1

bits which in practice is much less than log, g. So at the cost of a small increase
in communication we improve the computational efficiency.

Computation of 7(x, (2a)djn,u(n/d)=—1) and 7

1. For d | n, M(n/d) = —1, compute (x:i _ x&qdfl)/Ud)

2. Compute

d|n,u(n/d)=—1-

Uar (¥ =D o /yar o\, o/ Yd.e
2y = H (2 Aol Vil ey (Dwa,e/yae Gga_1yu, S F;d,
pe(d')=d,e|d,e#n

for d | n with p(n/d) = +1. Multiply z,, with z®n(@wn/z0n+®n(@wnn/ynn,

3. (@, (Td)djn,u(n/dy=—1) = (Tad)djn,u(n/dy=+15 (T d|n.pu(n/d)y=—1)-
(qn_1)Un,n/Un+(qn_1)un,n/yn,n

4. Compute = 7.
5. Compute
d
1Gq1 (@ —Dug,er/Ya,er \ & b ragr Uyb
' g ( H (24 e TIbYer (@0ar er PYarer Your — g Q" P = g,

d=p/(d),e!|d’

for d' | n with p(n/d") = —1, where qi];lad/ + Ugpbg = 1.

6. 77 ((Td)dpn,p(n/d)=+1> (Zg)din,un/dy=—1) = (T; (Za)djn,u(n/d)=—1)-

For n =30, {d | n: u(n/d) = =1} = {15,10,6,1} and {d | n : u(n/d) =
+1) = {30,5,3,2}. We define py(15) = 5, p3(15) = 30, p5(15) = 5, p15(15) =




30, p1(10) = 2,p2(10) = 2, p5(10) = 30, p1o(10) = 30, p1(6) = 3,p2(6) = 30,
p3(6) = 3, ps(6) = 30, p1(1) = 30, p30 = 30. We use f(30) = 234, f(15) = 78,
f(10) = 45, f(6) = 18, f(5) = 15, f(3) = 6, and f(2) = 3 [31]. In step 1, we
compute x5, =1y, zg, and z} using single exponentiations by using the square
and multiply method [18, p. 614]. This costs in total 3(78 -154+45-10+ 18- 6+
1)(log q)/2 = 2593.5 log ¢ multiplications in F,.

In step 2, x3p is computed as a simultaneous exponentiation [18, p. 618]in
x € Fypo,x15 € Fps, w19 € Fpo,26 € Fys,x1 € Fy. In a precomputation we
compute for each of the 2° possible sets S C {z, 15,210, 76,21} the product
[1.,csw. The whole precomputation costs at most 25 multiplications in Fyo. In
the computation of x3g the exponents of x, x15, z19, etc., have bit lengths 30 log g,
15loggq, 10loggq, etc. This means that in the second half of the simultaneous
exponentiation (the last 30log g — 15loggq bits of the exponents) we only need to
square or square-and-multiply with x € Fiso. So the average costs in the second
half of the simultaneous multiplication is equal to 3(15logq)/2 multiplications
in Fyso. The simultaneous exponentiation corresponding to the bits ranging from
position 10logq to 15logq involves square or square and multiply with x, 15,
or z - x15. This costs on average 7(5log¢q)/4 multiplications (5 is the difference
between 15 and 10, on average we need 1 multiplication in 1 out of 4 cases
and 2 multiplications in 3 out of 4 cases). Notice that we treat squaring as a
single multiplication in this excersise. Continuing this argument we need in total
234(2° +15(3/2) +5(7/4) +4(15/8) +5(31/16) + 1(63/32)) (logq) = 19283.11ogq
multiplications in F, (2° comes from preprocessing).

The outputs x5, x3 and x5 are single multiplications in x5, zg, and 19,
respectively costing a total of 3(78-15418-6+45-10)(logg)/2 = 2592 log ¢ mul-
tiplications. Concluding, the computation of 7 costs approximately 24468.6 log g
multiplications in Fj;. A single exponentiation in Fyso costs 234 - 30(log q)3/2 =
10530 log ¢ multiplications. Hence, T costs about 2.32 exponentiations in Fiso.

In the implementation of 7~ we compute = as a single exponentiation in z3g,
costing 234 - 30(log ¢)3/2 = 10530 log ¢ multiplications. In step 5, x5 is a simul-
taneous exponentiation in 30 and x5 (and a table look up for the exponentiation
in z} ;). This costs 78(22+25(3/2) +5(7/4))(log q) = 3919.5 log ¢ multiplications.
Similarly, 219 costs 45(22 + 28(3/2) + 2(7/4))(log q) = 2227.5logq and x¢ costs
18(22 +27(3/2) +3(7/4))(log q) = 895.51og ¢ multiplications. We compute 1 as
a single exponentiation in x3g, costing 234 - 30(log ¢)3/2 = 10530 log ¢ multipli-
cations. Concluding, the computation of 7~ costs approximately 28102.5logq
multiplications, which is equivalent to 2.67 exponentiations in Fso.

7 Conclusions and Open Problems

Our fundamental contribution is a compact and efficient representation of ele-
ments of T),(F,), namely, the construction of bijections 6 and 6§~ of section 3.
This allows us to construct ElGamal signature and encryption schemes meeting
the optimal rate of communication, as well as a secret key exchange protocol
meeting this rate asymptotically. If the torus conjecture of [24] is proven, the



schemes in that paper will also achieve this rate, and moreover, their scheme for
DH key exchange will meet the optimal rate even for a single key exchanged.
Hence, resolving their conjecture is an important problem. Another important
question is whether the computational cost of our schemes can be reduced to
a more practical level. Finally, our representation of T,,(F,) may have other
applications.
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