
Short Group Signatures

Dan Boneh1,?, Xavier Boyen2, and Hovav Shacham3

1 Stanford University, dabo@cs.stanford.edu
2 Voltage Security, xb@boyen.org

3 Stanford University, hovav@cs.stanford.edu

Abstract. We construct a short group signature scheme. Signatures
in our scheme are approximately the size of a standard RSA signa-
ture with the same security. Security of our group signature is based
on the Strong Diffie-Hellman assumption and a new assumption in bilin-
ear groups called the Decision Linear assumption. We prove security of
our system, in the random oracle model, using a variant of the security
definition for group signatures recently given by Bellare, Micciancio, and
Warinschi.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [14], provide anonymity
for signers. Any member of the group can sign messages, but the resulting signa-
ture keeps the identity of the signer secret. In some systems there is a third party
that can trace the signature, or undo its anonymity, using a special trapdoor.
Some systems support revocation [12, 4, 29, 15] where group membership can be
selectively disabled without affecting the signing ability of unrevoked members.
Currently, the most efficient constructions [2, 12, 4] are based on the Strong-RSA
assumption introduced by Baric and Pfitzman [5].

In the last two years a number of projects have emerged that require the
properties of group signatures. The first is the Trusted Computing effort [28]
that, among other things, enables a desktop PC to prove to a remote party
what software it is running via a process called attestation. Group signatures
are needed for privacy-preserving attestation [17, Sect. 2.2]. Perhaps an even
more relevant project is the Vehicle Safety Communications (VSC) system from
the Department of Transportation in the U.S. [18]. The system embeds short-
range transmitters in cars; these transmit status information to other cars in
close proximity. For example, if a car executes an emergency brake, all cars in
its vicinity are alerted. To prevent message spoofing, all messages in the system
are signed by a tamper-resistant chip in each car. (MACs were ruled out for this
many-to-many broadcast environment.) Since VSC messages reveal the speed
and location of the car, there is a strong desire to provide user privacy so that
the full identity of the car sending each message is kept private. Using group
signatures, where the group is the set of all cars, we can maintain privacy while

? Supported by NSF and the Packard Foundation.



still being able to revoke a signing key in case the tamper resistant chip in a car
is compromised. Due to the number of cars transmitting concurrently there is a
hard requirement that the length of each signature be under 250 bytes.

The two examples above illustrate the need for efficient group signatures.
The second example also shows the need for short group signatures. Currently,
group signatures based on Strong-RSA are too long for this application.

We construct short group signatures whose length is under 200 bytes that
offer approximately the same level of security as a regular RSA signature of the
same length. The security of our scheme is based on the Strong Diffie-Hellman
(SDH) assumption [8] in groups with a bilinear map. We also introduce a new as-
sumption in bilinear groups, called the Linear assumption, described in Sect. 3.2.
The SDH assumption was recently used by Boneh and Boyen to construct short
signatures without random oracles [8]. A closely related assumption was used by
Mitsunari et al. [22] to construct a traitor-tracing system. The SDH assumption
has similar properties to the Strong-RSA assumption. We use these properties
to construct our short group signature scheme. Our results suggest that systems
based on SDH are simpler and shorter than their Strong-RSA counterparts.

Our system is based on a new Zero-Knowledge Proof of Knowledge (ZKPK)
of the solution to an SDH problem. We convert this ZKPK to a group signature
via the Fiat-Shamir heuristic [16] and prove security in the random oracle model.
Our security proofs use a variant of the security model for group signatures
proposed by Bellare, Micciancio, and Warinschi [6].

Recently, Camenisch and Lysyanskaya [13] proposed a signature scheme with
efficient protocols for obtaining and proving knowledge of signatures on commit-
ted values. They then derive a group signature scheme using these protocols as
building blocks. Their signature scheme is based on the LRSW assumption [21],
which, like SDH, is a discrete-logarithm-type assumption. Their methodology
can also be applied to the SDH assumption, yielding a different SDH-based
group signature.

The SDH group signature we construct is very flexible and we show how to
add a number of features to it. In Sect. 7 we show how to apply the revocation
mechanism of Camenisch and Lysyanskaya [12]. In Sect. 8 we briefly sketch how
to add strong exculpability.

2 Bilinear Groups

We first review a few concepts related to bilinear maps. We follow the notation
of Boneh, Lynn, and Shacham [9]:

1. G1 and G2 are two (multiplicative) cyclic groups of prime order p;
2. g1 is a generator of G1 and g2 is a generator of G2;
3. ψ is a computable isomorphism from G2 to G1, with ψ(g2) = g1; and
4. e is a computable map e : G1 ×G2 → GT with the following properties:

– Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
– Non-degeneracy: e(g1, g2) 6= 1.



Throughout the paper, we consider bilinear maps e : G1 × G2 → GT where
all groups G1, G2, GT are multiplicative and of prime order p. One could set
G1 = G2. However, we allow for the more general case where G1 6= G2 so that
our constructions can make use of certain families of non-supersingular elliptic
curves defined by Miyaji et al. [23]. In this paper we only use the fact that G1

can be of size approximately 2170, elements in G1 are 171-bit strings, and that
discrete log in G1 is as hard as discrete log in Z∗q where q is 1020 bits. We will
use these groups to construct short group signatures. We note that the bilinear
groups of Rubin and Silverberg [25] can also be used.

We say that two groups (G1, G2) as above are a bilinear group pair if the
group action in G1 and G2, the map ψ, and the bilinear map e are all efficiently
computable.

The isomorphism ψ is only needed for the proofs of security. To keep the
discussion general, we simply assume that ψ exists and is efficiently computable.
(When G1, G2 are subgroups of the group of points of an elliptic curve E/Fq, the
trace map on the curve can be used as this isomorphism. In this case,G1 ⊆ E(Fq)
and G2 ⊆ E(Fqr ).)

3 Complexity Assumptions

3.1 The Strong Diffie-Hellman Assumption

Let G1, G2 be cyclic groups of prime order p, where possibly G1 = G2. Let g1
be a generator of G1 and g2 a generator of G2. Consider the following problem:

q-Strong Diffie-Hellman Problem. The q-SDH problem in (G1, G2) is de-
fined as follows: given a (q + 2)-tuple (g1, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 ) as input,

output a pair (g1/(γ+x)
1 , x) where x ∈ Z∗p. An algorithm A has advantage ε

in solving q-SDH in (G1, G2) if

Pr
[
A(g1, g2, g

γ
2 , . . . , g

(γq)
2 ) = (g

1
γ+x

1 , x)
]
≥ ε ,

where the probability is over the random choice of γ in Z∗p and the random
bits of A.

Definition 1. We say that the (q, t, ε)-SDH assumption holds in (G1, G2) if
no t-time algorithm has advantage at least ε in solving the q-SDH problem in
(G1, G2).

Occasionally we drop the t and ε and refer to the q-SDH assumption rather
than the (q, t, ε)-SDH assumption. The q-SDH assumption was recently used by
Boneh and Boyen [8] to construct a short signature scheme without random
oracles. To gain confidence in the assumption they prove that it holds in generic
groups in the sense of Shoup [27]. The q-SDH assumption has similar properties
to the Strong-RSA assumption [5]. We use these properties to construct our
short group signature scheme.



3.2 The Linear Diffie-Hellman Assumption

With g1 ∈ G1 as above, along with arbitrary generators u, v, and h of G1,
consider the following problem:

Decision Linear Problem in G1. Given u, v, h, ua, vb, hc ∈ G1 as input, out-
put yes if a+ b = c and no otherwise.

One can easily show that an algorithm for solving Decision Linear in G1 gives
an algorithm for solving DDH in G1. The converse is believed to be false. That
is, it is believed that Decision Linear is a hard problem even in bilinear groups
where DDH is easy. More precisely, we define the advantage of an algorithm A
in deciding the Decision Linear problem in G1 as

Adv LinearA
def=

∣∣∣∣∣∣Pr
[
A(u, v, h, ua, vb, ha+b) = yes : u, v, h R← G1, a, b

R← Zp

]
− Pr

[
A(u, v, h, ua, vb, η) = yes : u, v, h, η R← G1, a, b

R← Zp

] ∣∣∣∣∣∣ .
The probability is over the uniform random choice of the parameters to A, and
over the coin tosses of A. We say that an algorithm A (t, ε)-decides Decision
Linear in G1 if A runs in time at most t, and Adv LinearA is at least ε.

Definition 2. We say that the (t, ε)-Decision Linear Assumption (LA) holds in
G1 if no t-time algorithm has advantage at least ε in solving the Decision Linear
problem in G1.

In the full version of the paper we show that the Decision Linear Assumption
holds in generic bilinear groups.

Linear Encryption The Decision Linear problem gives rise to the Linear en-
cryption (LE) scheme, a natural extension of ElGamal encryption. Unlike El-
Gamal encryption, Linear encryption can be secure even in groups where a
DDH-deciding algorithm exists. In this scheme, a user’s public key is a triple
of generators u, v, h ∈ G1; her private key is the exponents x, y ∈ Zp such that
ux = vy = h. To encrypt a message M ∈ G1, choose random values a, b ∈ Zp,
and output the triple (ua, vb,m · ha+b). To recover the message from an encryp-
tion (T1, T2, T3), the user computes T3/(T x

1 · T
y
2 ). By a natural extension of the

proof of security of ElGamal, LE is semantically secure against a chosen-plaintext
attack, assuming Decision-LA holds.

4 A Zero-Knowledge Protocol for SDH

We are now ready to present the underlying building block for our group sig-
nature scheme. We present a protocol for proving possession of a solution to
an SDH problem. The public values are g1, u, v, h ∈ G1 and g2, w ∈ G2. Here
w = gγ

2 for some (secret) γ ∈ Zp. The protocol proves possession of a pair
(A, x), where A ∈ G1 and x ∈ Zp, such that Ax+γ = g1. Such a pair satisfies
e(A,wgx

2 ) = e(g1, g2). We use a standard generalization of Schnorr’s protocol for
proving knowledge of discrete logarithm in a group of prime order [26].



Protocol 1. Alice, the prover, selects exponents α, β R← Zp, and computes a
Linear encryption of A:

T1 ← uα T2 ← vβ T3 ← Ahα+β .

She also computes two helper values δ1 ← xα and δ2 ← xβ.
Alice and Bob then undertake a proof of knowledge of values (α, β, x, δ1, δ2)

satisfying the following five relations:

uα = T1 vβ = T2

e(T3, g2)x · e(h,w)−α−β · e(h, g2)−δ1−δ2 = e(g1, g2)/e(T3, w)

T x
1 u

−δ1 = 1 T x
2 v

−δ2 = 1 .

This proof proceeds as follows. Alice picks blinding values rα, rβ , rx, rδ1 , and
rδ2 at random from Zp. She computes five values based on all these:

R1 ← urα R2 ← vrβ

R3 ← e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1−rδ2

R4 ← T rx
1 · u−rδ1 R5 ← T rx

2 · v−rδ2 .

She then sends (T1, T2, T3, R1, R2, R3, R4, R5) to the verifier. Bob, the verifier,
sends a challenge value c chosen uniformly at random from Zp. Alice computes
and sends back sα = rα + cα, sβ = rβ + cβ, sx = rx + cx, sδ1 = rδ1 + cδ1, and
sδ2 = rδ2 + cδ2. Finally, Bob verifies the following five equations:

usα
?= T c

1 ·R1 (1)

vsβ
?= T c

2 ·R2 (2)

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2
?=

(
e(g1, g2)/e(T3, w)

)c ·R3 (3)

T sx
1 u−sδ1

?= R4 (4)

T sx
2 v−sδ2

?= R5 . (5)

Bob accepts if all five hold.

Theorem 1. Protocol 1 is an honest-verifier zero-knowledge proof of knowledge
of an SDH pair under the Decision Linear assumption.

The proof of the theorem follows from the following lemmas that show that
the protocol is (1) complete (the verifier always accepts an interaction with
an honest prover), (2) zero-knowledge (can be simulated), and (3) a proof of
knowledge (has an extractor).

Lemma 1. Protocol 1 is complete.



Proof. If Alice is an honest prover in possession of an SDH pair (A, x) she follows
the computations specified for her in the protocol. In this case,

usα = urα+cα = (uα)c · urα = T c
1 ·R1 ,

so (1) holds. For analogous reasons (2) holds. Further,

T sx
1 u−sδ1 = (uα)rx+cxu−rδ1−cxα = (uα)rxu−rδ1 = T rx

1 ·R4 ,

so (4) holds. For analogous reasons (5) holds. Finally,

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2

= e(T3, g2)rx+cx · e(h,w)−rα−rβ−cα−cβ · e(h, g2)−rδ1−rδ2−cxα−cxβ

= e(T3, g
x
2 )c · e(h−α−β , wgx

2 )c ·
(
e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1−rδ2

)
= e(T3h

−α−β , wgx
2 )c · e(T3, w)−c · (R3)

=
(
e(A,wgx

2 )/e(T3, w)
)c ·R3 =

(
e(g1, g2)/e(T3, w)

)c ·R3 .

so (3) holds. ut

Lemma 2. Transcripts of Protocol 1 can be simulated, under the Decision Lin-
ear assumption.

Proof. We describe a simulator that outputs transcripts of Protocol 1.
Pick A

R← G1, and α, β
R← Zp. Set T1 ← uα, T2 ← vβ , and T3 ← Ahα+β .

Assuming the Decision Linear assumption holds on G1, the tuples (T1, T2, T3)
generated by the simulator are drawn from a distribution that is indistinguish-
able from the distribution output by any particular prover.

The remainder of this simulator does not assume knowledge of A, x, α, or β,
so it can also be used when T1, T2, and T3 are pre-specified. When the pre-
specified (T1, T2, T3) are a random Linear encryption of some A, the remainder
of the transcript is simulated perfectly.

Now choose a challenge c R← Zp. Select sα
R← Zp, and set R1 ← T c

1/u
sα . Then

(1) is satisfied. With α and c fixed, a choice for either of rα or sα determines
the other, and a uniform random choice of one gives a uniform random choice
of the other. Therefore sα and R1 are distributed as in a real transcript. Choose
sβ and R2 analogously.

Select sx, sδ1 , sδ2

R← Zp and set R4 ← T sx
1 usδ1 and R5 ← T sx

2 vsδ2 . Again, all
the computed values are distributed as in a real transcript. Finally set

R3 ← e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 ·
(
e(T3, w)/e(g1, g2)

)c
.

This R3 satisfies (3), and it, too, is properly distributed.
The transcript output is (T1, T2, T3, R1, R2, R3, R4, R5, c, sα, sβ , sx, sδ1 , sδ2).

As argued above, this transcript is distributed identically to transcripts of Pro-
tocol 1, assuming the Decision Linear assumption holds. ut

Lemma 3. There exists an extractor for Protocol 1.



Proof. Suppose that an extractor can rewind a prover in the protocol above to
the point just before the prover is given a challenge c. At the first step of the
protocol, the prover sends T1, T2, T3 and R1, R2, R3, R4, R5. Then, to challenge
value c, the prover responds with sα, sβ , sx, sδ1 , and sδ2 . To challenge value c′ 6=
c, the prover responds with s′α, s′β , s′x, s′δ1

, and s′δ2
. If the prover is convincing,

all five verification equations (1–5) hold for each set of values.
For brevity, let ∆c = c − c′, ∆sα = sα − s′α, and similarly for ∆sβ , ∆sx,

∆sδ1 , and ∆sδ2 .
Now consider (1) above. Dividing the two instances of this equation, we

obtain u∆sα = T∆c
1 . The exponents are in a group of known prime order, so we

can take roots; let α̃ = ∆sα/∆c. Then uα̃ = T1. Similarly, from (2), we obtain
β̃ = ∆sβ/∆c such that vβ̃ = T2.

Consider (4) above. Dividing the two instances gives T∆sx
1 = u∆sδ1 . Substi-

tuting T1 = uα̃ gives uα̃∆sx = u∆sδ1 , or ∆sδ1 = α̃∆sx. Similarly, from (5) we
deduce that ∆sδ2 = β̃∆sx.

Finally, dividing the two instances of (3), we obtain(
e(g1, g2)/e(T3, w)

)∆c = e(T3, g2)∆sx · e(h,w)−∆sα−∆sβ · e(h, g2)−∆sδ1−∆sδ2

= e(T3, g2)∆sx · e(h,w)−∆sα−∆sβ · e(h, g2)−α̃∆sx−β̃∆sx .

Taking ∆c-th roots, and letting x̃ = ∆sx/∆c, we obtain

e(g1, g2)/e(T3, w) = e(T3, g2)x̃ · e(h,w)−α̃−β̃ · e(h, g2)−x̃(α̃+β̃) .

This can be rearranged as

e(g1, g2) = e(T3h
−α̃−β̃ , wgx̃

2 ) ,

or, letting Ã = T3h
−α̃−β̃ ,

e(Ã, wgx̃
2 ) = e(g1, g2) .

Thus the extractor obtains an SDH tuple (Ã, x̃). Moreover, the Ã in this SDH
tuple is, perforce, the same as that in the Linear encryption (T1, T2, T3). ut

5 SDH Signatures of Knowledge

Armed with Theorem 1, we obtain from Protocol 1 a signature scheme secure in
the random oracle model by applying the Fiat-Shamir heuristic [16]. Signatures
obtained from a proof of knowledge via the Fiat-Shamir heuristic are often called
signatures of knowledge. We use a variant of the Fiat-Shamir heuristic, used also
by Ateniese et al. [2], where the challenge c rather than the values R1, . . . , R5 is
transmitted in the signature; the output of the random oracle acts as a checksum
for those values not transmitted.

The signature scheme is defined as follows. The public key contains a hash
function (viewed as a random oracle) H : {0, 1}∗ → Zp, groups G1 and G2 with



respective generators g1 and g2 as in Sect. 2, the random generators u, v, and h
of G1, and w = gγ

2 ∈ G2, where γ is chosen at random in Z∗p. The private key
is an SDH pair (A, x), i.e., a pair such that Ax+γ = g1. Any such pair is a valid
private key.

The signer signs a messageM ∈ {0, 1}∗ using the private key (A, x) as follows.
She first undertakes the computation specified in the first round of Protocol 1
to obtain T1, T2, T3, R1, R2, R3, R4, R5. She obtains the challenge c by giving M
and her first-round values to the random oracle:

c← H(M,T1, T2, T3, R1, R2, R3, R4, R5) ∈ Zp . (6)

She then undertakes the computation specified in the third round of the protocol
using the challenge value c to obtain sα, sβ , sx, sδ1 , sδ2 . Finally, she outputs the
signature σ, computed as

σ ← (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2) . (7)

The verifier uses equations (1–5) to re-derive R1, R2, R3, R4, and R5:

R̃1 ← usα/T c
1 R̃2 ← vsβ/T c

2 R̃4 ← T sx
1 /u

sδ1 R̃5 ← T sx
2 /v

sδ2

R̃3 ← e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 ·
(
e(T3, w)/e(g1, g2)

)c
.

He then checks that these, along with the other first-round messages included
in σ, give the challenge c, i.e., that

c
?= H(M,T1, T2, T3, R̃1, R̃2, R̃3, R̃4, R̃5) . (8)

He accepts if this check succeeds.
The Fiat-Shamir heuristic shows that this signature scheme is secure against

existential forgery in the random oracle model [1]. Note that a signature com-
prises three elements of G1 and six of Zp.

6 Short Group Signatures from SDH

The signature scheme presented in Sect. 5 is, in fact, also a group signature
scheme. In describing the scheme, we follow the definitions given by Bellare
et al. [6].

Consider bilinear groups G1 and G2 with respective generators g1 and g2,
as in Sect. 2. Suppose further that the SDH assumption holds on (G1, G2),
and the Linear assumption holds on G1. The scheme employs a hash function
H : {0, 1}∗ → Zp, treated as a random oracle in the proof of security.

KeyGen(n). This randomized algorithm takes as input a parameter n, the num-
ber of members of the group, and proceeds as follows. Select h R← G1 \{1G1}
and ξ1, ξ2

R← Z∗p, and set u, v ∈ G1 such that uξ1 = vξ2 = h. Select γ R← Z∗p,
and set w = gγ

2 . Using γ, generate for each user i, 1 ≤ i ≤ n, an SDH tuple



(Ai, xi): select xi
R← Z∗p, and set Ai ← g

1/(γ+xi)
1 . The group public key is

gpk = (g1, g2, h, u, v, w). The private key of the group manager (the party
able to trace signatures) is gmsk = (ξ1, ξ2). Each user’s private key is her
tuple gsk[i] = (Ai, xi). No party is allowed to possess γ; it is only known to
the private-key issuer.

Sign(gpk,gsk[i],M). Given a group public key gpk = (g1, g2, h, u, v, w), a user’s
key gsk[i] = (Ai, xi), and a message M ∈ {0, 1}∗, compute and output a
signature of knowledge σ = (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2) as in the scheme
of Sect. 5 (Equation (7)).

Verify(gpk,M, σ). Given a group public key gpk = (g1, g2, h, u, v, w), a mes-
sage M , and a group signature σ, verify that σ is a valid signature of knowl-
edge in the scheme of Sect. 5 (Equation (8)).

Open(gpk, gmsk,M, σ). This algorithm is used for tracing a signature to a
signer. It takes as input a group public key gpk = (g1, g2, h, u, v, w) and
the corresponding group manager’s private key gmsk = (ξ1, ξ2), together
with a message M and a signature σ = (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2) to
trace, and proceeds as follows. First, verify that σ is a valid signature on M .
Second, consider the first three elements (T1, T2, T3) as a Linear encryption,
and recover the user’s A as A ← T3/(T

ξ1
1 · T

ξ2
2 ), following the decryption

algorithm given at the end of Sect. 3.2. If the group manager is given the
elements {Ai} of the users’ private keys, he can look up the user index cor-
responding to the identity A recovered from the signature.

Signature Length. A group signature in the system above comprises three ele-
ments of G1 and six elements of Zp. Using any of the families of curves described
in [9], one can take p to be a 170-bit prime and use a group G1 where each ele-
ment is 171 bits. Thus, the total group signature length is 1533 bits or 192 bytes.
With these parameters, security is approximately the same as a standard 1024-
bit RSA signature, which is 128 bytes.

Performance. The pairings e(h,w), e(h, g2), and e(g1, g2) can be precomputed
and cached by both signers and verifiers. The signer can cache e(A, g2), and, when
signing, compute e(T3, g2) without evaluating a pairing. Accordingly, creating a
group signature requires eight exponentiations (or multi-exponentiations) and
no pairing computations. The verifier can derive R̃3 efficiently by collapsing the
e(T3, g2)sx and e(T3, w)c pairings into a single e(T3, w

cgsx
2 ) term. Thus verifying a

group signature requires six multi-exponentiations and one pairing computation.
With parameters selected as above, the exponents are in every case 170-bit
numbers. For the signer, all bases for exponentiation are fixed, which allows
further speedup by precomputation.

6.1 Group Signature Security

We now turn to proving security of the system. Bellare et al. [6] give three
properties that a group signature scheme must satisfy:



– correctness, which ensures that honestly-generated signatures verify and
trace correctly;

– full-anonymity, which ensures that signatures do not reveal their signer’s
identity; and

– full-traceability, which ensures that all signatures, even those created by the
collusion of multiple users and the group manager, trace to a member of the
forging coalition.

For the details of the definitions, see Bellare et al. [6]. We prove the security
of our scheme using a variation of these properties. In our proofs, we relax the
full-anonymity requirement. As presented [6, Sect. 2], the full-anonymity exper-
iment allows the adversary to query the opening (tracing) oracle before and
after receiving the challenge σ. In this respect, the experiment mirrors the indis-
tinguishability experiment against an adaptive CCA2 adversary. We therefore
rename this experiment CCA2-full-anonymity. We define a corresponding exper-
iment, CPA-full-anonymity, in which the adversary cannot query the opening
oracle. We prove privacy in this slightly weaker model.

Access to the tracing functionality will likely be carefully controlled when
group signatures are deployed, so CPA-full-anonymity is a reasonable model to
consider. In any case, anonymity and unlinkability, the two traditional group
signature security requirements implied by full anonymity [6, Sect. 3], also fol-
low from CPA-full-anonymity. Thus a fully-traceable and CPA-fully-anonymous
group signature scheme is still secure in the traditional sense.

In the statements of the theorem, we use big-O notation to elide the specifics
of additive terms in time bounds, noting that, for given groups G1 and G2,
operations such as sampling, exponentiation, and bilinear map evaluation are all
constant-time.

Theorem 2. The SDH group signature scheme is correct.

Proof. For any group public key gpk = (g1, g2, h, u, v, w), and for any user with
key gsk[i] = (Ai, xi), the key generation algorithm guarantees that Aγ+xi

i =
g1, so (Ai, xi) is an SDH tuple for w = gγ

2 . A correct group signature σ is a
proof of knowledge, which is itself a transcript of the SDH protocol given in
Sect. 4. Verifying the signature entails verifying that the transcript is correct;
thus Lemma 1 shows that σ will always be accepted by the verifier.

Moreover, an honest signer outputs, as the first three components of any
signature σ, values (T1, T2, T3) = (uα, vβ , Ai · hα+β) for some α, β ∈ Zp. These
values form a Linear encryption of Ai under public key (u, v, h), which the group
manager, possessing the corresponding private key (ξ1, ξ2), can always recover.
Therefore any valid signature will always be opened correctly. ut

Theorem 3. If Linear encryption is (t′, ε′)-semantically secure on G1 then the
SDH group signature scheme is (t, qH , ε)-CPA-fully-anonymous, where ε = ε′ and
t = t′ − qHO(1). Here qH is the number of hash function queries made by the
adversary and n is the number of members of the group.



Proof. Suppose A is an algorithm that (t, qH , ε)-breaks the anonymity of the
group signature scheme. We show how to construct a t+qHO(1)-time algorithm B
that breaks the semantic security of Linear encryption (Sect. 3.2) with advantage
at least ε.

Algorithm B is given a Linear encryption public key (u, v, h). It generates the
remaining components of the group signature public key by following the group
signature’s key generation algorithm. It then provides to A the group public
key (g1, g2, h, u, v, w), and the users’ private keys (Ai, xi).

At any time, A can query the random oracle H. Algorithm B responds with
elements selected uniformly at random from Zp, making sure to respond identi-
cally to repeated queries.

Algorithm A requests its full-anonymity challenge by providing two indices,
i0 and i1, and a message M . Algorithm B, in turn, requests its indistinguishabil-
ity challenge by providing the two user private keys Ai0 and Ai1 as the messages
whose Linear encryption it must distinguish. It is given a Linear encryption
(T1, T2, T3) of Aib

, where bit b is chosen by the Linear encryption challenger.
Algorithm B generates from this Linear encryption a protocol transcript

(T1, T2, T3, R1, R2, R3, R4, R5, c, sα, sβ , sx, sδ1 , sδ2) by means of the simulator of
Lemma 2. This simulator can generate a trace given (T1, T2, T3), even though B
does not know α, β, or x. Since (T1, T2, T3) is a random Linear encryption of
Aib

, the remainder of the transcript is distributed exactly as in a real protocol
with a prover whose secret A is Aib

.
Algorithm B then patches H at (M,T1, T2, T3, R1, R2, R3, R4, R5) to equal c.

It encounters a collision only with negligible probability. In case of a collision,
B declares failure and exits. Otherwise, it returns the valid group signature
σ ← (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2) to A.

Finally, A outputs a bit b′. Algorithm B returns b′ as the answer to its own
challenge. Since the encryption of Aib

is turned by B into a group signature by
user ib, B answers its challenge correctly whenever A does.

The keys given toA, and the answers toA’s queries, are all valid and properly
distributed. Therefore A succeeds in breaking the anonymity of the group signa-
ture σ with advantage ε, and B succeeds in distinguishing the Linear encryption
(T1, T2, T3) with the same advantage.

Algorithm B’s running time exceeds A’s by the amount it takes to answer
A’s queries. Each hash query can be answered in constant time, and there are at
most qH of them. Algorithm B can also create the challenge group signature σ
in constant time. If A runs in time t, B runs in time t+ qHO(1). ut

The following theorem proves full traceability of our system. The proof is
based on the forking lemma [24] and is given in the full version of the paper.

Theorem 4. If SDH is (q, t′, ε′)-hard on (G1, G2), then the SDH group signature
scheme is (t, qH , qS, n, ε)-fully-traceable, where n = q − 1, ε = 4n

√
2ε′qH + n/p,

and t = Θ(1) · t′. Here qH is the number of hash function queries made by the
adversary, qS is the number of signing queries made by the adversary, and n is
the number of members of the group.



7 Revocation

We now discuss how to revoke users in the SDH group signature scheme of
Sect. 6. A number of revocation mechanisms for group signatures have been
proposed [4, 12]. All these mechanisms can be applied to our system. Here we
describe a revocation mechanism along the lines of [12].

Recall that the group’s public key in our system is (g1, g2, h, u, v, w) where
w = gγ

2 ∈ G2 for random γ ∈ Z∗p and random h, u, v ∈ G1. User i’s private key

is a pair (Ai, xi) where Ai = g
1/(γ+xi)
1 ∈ G1.

Now, suppose we wish to revoke users 1, . . . , r without affecting the signing
capability of other users. To do so, the Revocation Authority (RA) publishes
a Revocation List (RL) containing the private keys of all revoked users. More
precisely, RL = {(A∗1, x1), . . . , (A∗r , xr)}, where A∗i = g

1/(γ+xi)
2 ∈ G2. Note that

Ai = ψ(A∗i ). Here the SDH secret γ is needed to compute the A∗i ’s. In the case
where G1 equals G2 then Ai = A∗i and consequently the Revocation List can be
derived directly from the private keys of revoked users without having to use γ.

The list RL is given to all signers and verifiers in the system. It is used to
update the group public key used to verify signatures. Let y =

∏r
i=1(γ + xi) ∈

Z∗p. The new public key is (ḡ1, ḡ2, h, u, v, w̄) where ḡ1 = g
1/y
1 , ḡ2 = g

1/y
2 , and

w̄ = (ḡ2)γ . We show that, given RL, anyone can compute this new public key,
and any unrevoked user can update her private key locally so that it is well
formed with respect to this new public key. Revoked users are unable to do so.

We show how to revoke one private key at a time. By repeating the process r
times (as the revocation list grows over time) we can revoke all private keys on
the Revocation List. We first show how given the public key (g1, g2, h, u, v, w)
and one revoked private key (A∗1, x1) ∈ RL anyone can construct the new public
key (ĝ1, ĝ2, h, u, v, ŵ) where ĝ1 = g

1/(γ+x1)
1 , ĝ2 = g

1/(γ+x1)
2 , and ŵ = (ĝ2)γ . This

new public key is constructed simply as:

ĝ1 ← ψ(A∗1) ĝ2 ← A∗1 and ŵ ← g2 · (A∗1)−x1 ;

then ĝ1 = ψ(A1)∗ = g
1/(γ+x1)
1 and ŵ = g2 · (A∗1)−x1 = g

1− x1
γ+x1

2 = (A∗1)
γ = (ĝ2)γ ,

as required.
Next, we show how unrevoked users update their own private keys. Con-

sider an unrevoked user whose private key is (A, x). Given a revoked private
key, (A∗1, x1) the user computes Â ← ψ(A∗1)

1/(x−x1)/A1/(x−x1) and sets his new
private key to be (Â, x). Then, indeed,

(Â)γ+x = ψ(A∗1)
γ+x

x−x1
/
A

γ+x
x−x1 = ψ(A∗1)

(γ+x1)+(x−x1)
x−x1

/
g

1
x−x1
1 = ψ(A∗1) = ĝ1 ,

as required. Hence, (Â, x) is a valid private key with respect to (ĝ1, ĝ2, h, u, v, ŵ).
By repeating this process r times (once for each revoked key in RL) anyone

can compute the updated public key (ḡ1, ḡ2, h, u, v, w̄) defined above. Similarly,
an unrevoked user with private key (A, x) can compute his updated private key
(Ā, x) where Ā = (ḡ1)1/(γ+x). We note that it is possible to process the entire



RL at once (as opposed to one element at a time) and compute (ḡ1, ḡ2, h, u, v, w̄)
directly; however this is less efficient when keys are added to RL incrementally.

A revoked user cannot construct a private key for the new public key (ḡ1, ḡ2, h,
u, v, w̄). In fact, the proof of Theorem 4 shows that, if a revoked user can generate
signatures for the new public key (ḡ1, ḡ2, h, u, v, w̄), then that user can be used
to break the SDH assumption. Very briefly, the reason is that given an SDH
challenge one can easily generate a public key tuple (ḡ1, ḡ2, h, u, v, w̄) along with
the private key for a revoked user (g1/(x+γ)

1 , x). Then an algorithm that can forge
signatures given these two tuples can be used to solve the SDH challenge.

Brickell [11] proposes an alternate mechanism where revocation messages are
only sent to signature verifiers, so that there is no need for unrevoked signers to
update their keys. Similar mechanisms were also considered by Ateniese et al. [4]
and Kiayias et al. [19]. We refer to this as Verifier-Local Revocation (VLR) group
signatures. Boneh and Shacham [10] show how to modify our group signature
scheme to support this VLR revocation mechanism.

8 Exculpability

In Bellare et al. [6], exculpability (introduced by Ateniese and Tsudik [3]) is
informally defined as follows: No member of the group and not even the group
manager – the entity that is given the tracing key – can produce signatures on
behalf of other users. Thus, no user can be framed for producing a signature
he did not produce. They argue that a group signature secure in the sense of
full-traceability also has the exculpability property. Thus, in the terminology of
Bellare et al. [6], our group signature has the exculpability property.

A stronger notion of exculpability is considered in Ateniese et al. [2], where
one requires that even the entity that issues user keys cannot forge signatures
on behalf of users. Formalizations of strong exculpability have recently been
proposed by Kiayias and Yung [20] and by Bellare, Shi, and Zhang [7].

To achieve this stronger property the system of Ateniese et al. [2] uses a
protocol (called JOIN) to issue a key to a new user. At the end of the protocol,
the key issuer does not know the full private key given to the user and therefore
cannot forge signatures under the user’s key.

Our group signature scheme can be extended to provide strong exculpabil-
ity using a similar mechanism. Instead of simply giving user i the private key
(g1/(γ+xi)

1 , xi), the user and key issuer engage in a JOIN protocol where at the end
of the protocol user i has a triple (Ai, xi, yi) such that Aγ+xi

i hyi

1 = g1 for some
public parameter h1. The value yi is chosen by the user and is kept secret from
the key issuer. The ZKPK of Sect. 4 can be modified to prove knowledge of such a
triple. The resulting system is a short group signature with strong exculpability.

9 Conclusions

We presented a group signature scheme based on the Strong Diffie-Hellman
(SDH) and Linear assumptions. The signature makes use of a bilinear map



e : G1 × G2 → GT . When any of the curves described in [9] are used, the
group G1 has a short representation and consequently we get a group signature
whose length is under 200 bytes – less than twice the length of an ordinary RSA
signature (128 bytes) with comparable security. Signature generation requires no
pairing computations, and verification requires a single pairing; both also require
a few exponentiations with short exponents.

Acknowledgments

The authors thank the anonymous referees for their valuable feedback.

References

[1] M. Abdalla, J. An, M. Bellare, and C. Namprempre. From identification to sig-
natures via the Fiat-Shamir transform: Minimizing assumptions for security and
forward-security. In L. Knudsen, editor, Proceedings of Eurocrypt 2002, volume
2332 of LNCS, pages 418–33. Springer-Verlag, May 2002.

[2] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In M. Bellare, editor, Proceed-
ings of Crypto 2000, volume 1880 of LNCS, pages 255–70. Springer-Verlag, Aug.
2000.

[3] G. Ateniese and G. Tsudik. Some open issues and directions in group signa-
tures. In Proceedings of Financial Cryptography 1999, volume 1648, pages 196–
211. Springer-Verlag, Feb. 1999.

[4] G. Ateniese, G. Tsudik, and D. Song. Quasi-efficient revocation of group sig-
natures. In M. Blaze, editor, Proceedings of Financial Cryptography 2002, Mar.
2002.

[5] N. Baric and B. Pfitzman. Collision-free accumulators and fail-stop signature
schemes without trees. In Proceedings of Eurocrypt 1997, pages 480–494. Springer-
Verlag, May 1997.

[6] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of
LNCS, pages 614–29. Springer-Verlag, May 2003.

[7] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case
of dynamic groups. Cryptology ePrint Archive, Report 2004/077, 2004. http:

//eprint.iacr.org/.
[8] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin

and J. Camenisch, editors, Proceedings of Eurocrypt 2004, LNCS, pages 56–73.
Springer-Verlag, May 2004.

[9] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
In Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 514–32. Springer-
Verlag, Dec. 2001. Full paper: http://crypto.stanford.edu/~dabo/pubs.html.

[10] D. Boneh and H. Shacham. Group signatures with verifier-local revocation, 2004.
Manuscript.

[11] E. Brickell. An efficient protocol for anonymously providing assurance of the
container of a private key, Apr. 2003. Submitted to the Trusted Computing
Group.



[12] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In M. Yung, editor, Proceedings of
Crypto 2002, volume 2442 of LNCS, pages 61–76. Springer-Verlag, Aug. 2002.

[13] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In M. Franklin, editor, Proceedings of Crypto 2004, LNCS.
Springer-Verlag, Aug. 2004.

[14] D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Pro-
ceedings of Eurocrypt 1991, volume 547 of LNCS, pages 257–65. Springer-Verlag,
1991.

[15] X. Ding, G. Tsudik, and S. Xu. Leak-free group signatures with immediate re-
vocation. In T. Lai and K. Okada, editors, Proceedings of ICDCS 2004, Mar.
2004.

[16] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, Proceedings of Crypto 1986,
volume 263 of LNCS, pages 186–194. Springer-Verlag, Aug. 1986.

[17] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual
machine-based platform for trusted computing. In Proceedings of SOSP 2003,
pages 193–206, Oct. 2003.

[18] IEEE P1556 Working Group, VSC Project. Dedicated short range communica-
tions (DSRC), 2003.

[19] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and
J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages
571–89. Springer-Verlag, May 2004.

[20] A. Kiayias and M. Yung. Group signatures: Efficient constructions and anonymity
from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076, 2004. http:
//eprint.iacr.org/.

[21] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys
and C. Adams, editors, Proceedings of SAC 1999, volume 1758 of LNCS, pages
184–99. Springer-Verlag, Aug. 1999.

[22] S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans.
Fundamentals, E85-A(2):481–4, Feb. 2002.

[23] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic
curve traces for FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234–43,
May 2001.

[24] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. J. Cryptology, 13(3):361–96, 2000.

[25] K. Rubin and A. Silverberg. Supersingular Abelian varieties in cryptology. In
M. Yung, editor, Proceedings of Crypto 2002, volume 2442 of LNCS, pages 336–
53. Springer-Verlag, Aug. 2002.

[26] C. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–
174, 1991.

[27] V. Shoup. Lower bounds for discrete logarithms and related problems. In
W. Fumy, editor, Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages
256–66. Springer-Verlag, May 1997.

[28] Trusted Computing Group. Trusted Computing Platform Alliance (TCPA) Main
Specification, 2003. Online: www.trustedcomputinggroup.org.

[29] G. Tsudik and S. Xu. Accumulating composites and improved group signing. In
C. S. Laih, editor, Proceedings of Asiacrypt 2003, volume 2894 of LNCS, pages
269–86. Springer-Verlag, Dec. 2003.


