
Instant Ciphertext-Only Cryptanalysis of GSM
Encrypted Communication

Elad Barkan1 Eli Biham1 Nathan Keller2

1 Computer Science Department
Technion – Israel Institute of Technology

Haifa 32000, Israel
Email: {barkan,biham}@cs.technion.ac.il

WWW: http://tx.technion.ac.il/∼barkan/,
http://www.cs.technion.ac.il/∼biham/

2 Department of Mathematics
Technion – Israel Institute of Technology

Haifa 32000, Israel
Email: nkeller@tx.technion.ac.il

Abstract. In this paper we present a very practical ciphertext-only
cryptanalysis of GSM encrypted communication, and various active at-
tacks on the GSM protocols. These attacks can even break into GSM
networks that use “unbreakable” ciphers. We describe a ciphertext-only
attack on A5/2 that requires a few dozen milliseconds of encrypted off-
the-air cellular conversation and finds the correct key in less than a sec-
ond on a personal computer. We then extend this attack to a (more com-
plex) ciphertext-only attack on A5/1. We describe new attacks on the
protocols of networks that use A5/1, A5/3, or even GPRS. These attacks
are based on security flaws of the GSM protocols, and work whenever
the mobile phone supports A5/2. We emphasize that these attacks are
on the protocols, and are thus applicable whenever the cellular phone
supports a weak cipher, for instance they are also applicable using the
cryptanalysis of A5/1. Unlike previous attacks on GSM that require un-
realistic information, like long known plaintext periods, our attacks are
very practical and do not require any knowledge of the content of the
conversation. These attacks allow attackers to tap conversations and de-
crypt them either in real-time, or at any later time. We also show active
attacks, such as call hijacking, altering of data messages and call theft.

1 Introduction

GSM is the most widely used cellular technology. By December 2002, more than
787.5 million GSM customers in over 191 countries formed approximately 71% of
the total digital wireless market. GPRS (General Packet Radio Service) is a new
service for GSM networks that offer ‘always-on’, higher capacity, Internet-based
content and packet-based data services. It enables services such as color Inter-
net browsing, e-mail on the move, powerful visual communications, multimedia
messages and location-based services.

Cryptanalysis of GSM Encrypted Communication 599

GSM incorporates security mechanisms. Network operators and their cus-
tomers rely on these mechanisms for the privacy of their calls and for the in-
tegrity of the cellular network. The security mechanisms protect the network by
authenticating customers to the network, and provide privacy for the customers
by encrypting the conversations while transmitted over the air.

There are three main types of cryptographic algorithms used in GSM: A5 is
a stream-cipher used for encryption, A3 is an authentication algorithm and A8
is the key agreement algorithm. The design of A3 and A8 is not specified in the
specifications of GSM, only the external interface of these algorithms is specified.
The exact design of the algorithm can be selected by the operators independently.
However, many operators used the example, called COMP128, given in the GSM
memorandum of understanding (MoU). Although never officially published, its
description was found by Briceno, Goldberg, and Wagner [6]. They have per-
formed cryptanalysis of COMP128 [7], allowing to find the shared (master) key
of the mobile phone and the network, thus allowing cloning. The description of
A5 is part of the specifications of GSM, but it was never made public. There are
two currently used versions of A5: A5/1 is the “strong” export-limited version,
and A5/2 is the “weak” version that has no export limitations. The exact design
of both A5/1 and A5/2 was reverse engineered by Briceno [5] from an actual
GSM telephone in 1999 and checked against known test-vectors. An additional
new version, which is standardized but not yet used in GSM networks is A5/3. It
was recently chosen, and is based on the block-cipher KASUMI. We note that a
similar construction based on KASUMI is also used in third generation networks
(3GPP) [1], on which we make no claims in this paper.

A5/1 was initially cryptanalized by Golic [14], and later by: Biryukov, Shamir
and Wagner [4], Biham and Dunkelman [2], and recently by Ekdahl and Johans-
son [11].

After A5/2 was reverse engineered, it was immediately cryptanalized by
Goldberg, Wagner and Green [13]. Their attack is a known plaintext attack
that requires the difference in the plaintext of two GSM frames, which are ex-
actly 211 frames apart (about 6 seconds apart). The average time complexity
of this attack is approximately 216 dot products of 114-bit vectors.3 A later
work by Petrović and Fúster-Sabater [17] suggests to treat the initial internal
state of the cipher as variables, write every output bit of A5/2 as a quadratic
function of these variables, and linearize the quadratic terms. They showed that
the output of A5/2 can be predicted with extremely high probability after a
few hundreds of known output bits. However, this attack does not discover the
initial key of A5/2. Thus, it is not possible to use this attack as a building block
for more advanced attacks, like those presented in Section 5. This attack’s time
complexity is proportional to 217 Gauss eliminations of matrices of size of about
400 × 719.4 This latter attack actually uses overdefined systems of quadratic

3 We observe that this attack [13] is not applicable (or fails) in about half of the cases,
since in the first frame it requires that after the initialization of the cipher the 11th
bit of R4 is zero.

4 The paper [17] does not clearly state the complexity. The above figure is our estimate.

600 E. Barkan and E. Biham, N. Keller

equations during its computations, however, there is no need to solve the equa-
tions to perform cryptanalysis — the equations are only used to predict the
output of future frames.

Solving overdefined systems of quadratic equations — as a method of crypt-
analysis drew significant attention in the literature. This method has been ap-
plied initially by Kipnis and Shamir to the HFE public key cryptosystem in [15],
later improved by Courtois, Klimov, Patarin, and Shamir in [9]. Further work
include: Courtois and Pieprzyk’s cryptanalysis of block ciphers [10]. The method
has also been applied to stream ciphers, see Courtois work on Toyocrypt [8]. The
complexity of most of these methods seems difficult to evaluate.

In this paper we show how to mount a ciphertext-only attack on A5/2. This
attack requires a few dozen milliseconds of encrypted data, and its time com-
plexity is about 216 dot products. In simulations we made, our attack found
the key in less than a second on a personal computer. We show that the attack
we propose on A5/2 can be leveraged to mount an active attack even on GSM
networks that use A5/1, A5/3, or GPRS networks, thus, realizing a real-time
active attack on GSM networks, without any prior required knowledge. The full
attack is composed of three main steps:

1. The first step is a very efficient known plaintext attack on A5/2 that recovers
the initial key. This first attack is algebraic in nature. It takes advantage
of the low algebraic order of the A5/2 output function. We represent the
output of A5/2 as a quadratic multivariate function in the initial state of the
registers. Then, we construct an overdefined system of quadratic equations
that expresses the key-stream generation process and we solve the equations.

2. The second step is improving the known plaintext attack to a ciphertext-
only attack on A5/2. We observe that GSM employs Error-Correction codes
before encryption. We show how to use this observation to adapt the attack
to a ciphertext-only attack on A5/2.

3. The third step is leveraging of an attack on A5/2 to an active attack on
A5/1, A5/3, or GPRS-enabled GSM networks. We observe that due to the
GSM security modules interface design, the key that is used in A5/2 is the
same as in A5/1, A5/3, and GPRS. We show how to mount an active attack
on any GSM network.

We then show how to mount a passive ciphertext-only attack on networks
that employ A5/1. It is basically a time/memory/data tradeoff attack. There
are many choices for the parameters of the attack, four of which are given in
Table 1. This attack on A5/1 can be similarly leveraged to active attacks on the
protocols of GSM, but the complexity is higher than the A5/2 case.

This paper is organized as follows: In Section 2 we describe A5/2, and the
way it is used, and give some background on GSM security. We present our new
known plaintext attack in Section 3. In Section 4 we improve our attack to a
ciphertext-only attack. In Section 5 we show how to leverage the ciphertext-only
attack on A5/2 to an active attack on any GSM network. We then describe the
passive ciphertext-only attack on A5/1 in Section 6. We discuss the implications

Cryptanalysis of GSM Encrypted Communication 601

of the attacks under several attack scenarios in Section 7. Section 8 summarizes
the paper.

2 Description of A5/2 and GSM Security Background

In this section we describe the internal structure of A5/2 and the way it is used.
A5/2 consists of 4 maximal-length LFSRs: R1, R2, R3, and R4. These registers
are of length 19-bit, 22-bit, 23-bit, and 17-bit respectively. Each register has taps
and a feedback function. Their irreducible polynomials are: x19⊕x5⊕x2⊕x⊕1,
x22 ⊕ x ⊕ 1, x23 ⊕ x15 ⊕ x2 ⊕ x ⊕ 1, and x17 ⊕ x5 ⊕ 1, respectively. For the
representation of the registers we adopt the notation of [2, 4, 5, 17], in which the
bits in the register are given in reverse order, i.e., xi corresponds to a tap with
index len− i−1, where len is the register size. For example, when R4 is clocked,
the XOR of R4[17− 0− 1 = 16] and R4[17− 5− 1 = 11] is computed. Then, the
register is shifted by one bit to the right, and the value of the result of the XOR
is placed in R4[0].

At each step of A5/2 R1, R2 and R3 are clocked according to a clocking
mechanism that we describe later. Then, R4 is clocked. After the clocking is
performed, one output bit is ready at the output of A5/2. The output bit is a
non-linear function of the internal state of R1, R2, and R3.

After the initialization 99 bits5 of output are discarded, and the following
228 bits of output are used as the output key-stream.

Denote the i’th bit of the 64-bit session-key Kc by Kc[i], the i’th bit of
register j by Rj[i], and the i’th bit of the 22-bit publicly known frame number
by f [i].

The initialization of the internal state with Kc and the frame number is done
in the following way:

– Set all LFSRs to 0 (R1 = R2 = R3 = R4 = 0).
– For i := 0 to 63 do

1. Clock all 4 LFSRs.
2. R1[0]← R1[0]⊕Kc[i]
3. R2[0]← R2[0]⊕Kc[i]
4. R3[0]← R3[0]⊕Kc[i]
5. R4[0]← R4[0]⊕Kc[i]

– For i := 0 to 21 do
1. Clock all 4 LFSRs.
2. R1[0]← R1[0]⊕ f [i]
3. R2[0]← R2[0]⊕ f [i]
4. R3[0]← R3[0]⊕ f [i]
5. R4[0]← R4[0]⊕ f [i]

The key-stream generation is as follows:

5 Some references state that A5/2 discards 100 bits of output, and that the output
is used with a one-bit delay. This is equivalent to stating that it discards 99 bits of
output, and that the output is used without delay.

602 E. Barkan and E. Biham, N. Keller

Clocking Unit

Majority

Function

Majority

Function

Majority

Function

1

1

1

R2

0

0

0

0 16

22

21

18R1

R4

R3

Output

stream

Fig. 1. The A5/2 internal structure

1. Initialize the internal state with Kc and frame number.

2. Force the bits R1[15], R2[16], R3[18], R4[10] to be 1.

3. Run A5/2 for 99 clocks and ignore the output.

4. Run A5/2 for 228 clocks and use the output as key-stream.

After the first clocking is performed the first output bit is ready at the out-
put of A5/2. In Figure 1 we show the internal structure of A5/2. The clocking
mechanism works as follows: R4 controls the clocking of R1, R2, and R3. When
clocking of R1, R2, and R3 is to be performed, bits R4[3], R4[7], and R4[10] are
the input of the clocking unit. The clocking unit performs a majority function
on the bits. R1 is clocked if and only if R4[10] agrees with the majority. R2 is
clocked if and only if R4[3] agrees with the majority. R3 is clocked if and only if
R4[7] agrees with the majority. After these clockings, R4 is clocked.

Once the clocking is performed, an output bit is ready. The output bit is
computed as follows: in each register the majority of two bits and the complement
of a third bit is computed; the results of all the majorities and the rightmost bit
from each register are XORed to form the output (see Figure 1). Note that the
majority function is quadratic in its input: maj(a, b, c) = a · b⊕ b · c⊕ c · a.

A5/2 is built on a somewhat similar framework of A5/1. The feedback func-
tions of R1, R2 and R3 are the same as A5/1’s feedback functions. The initial-
ization process of A5/2 is also somewhat similar to that of A5/1. The difference
is that A5/2 also initializes R4, and that one bit in each register is forced to be
1 after initialization . Then A5/2 discards 99 bits of output while A5/1 discards
100 bits of output. The clocking mechanism is the same, but the input bits to
the clocking mechanism are from R4 in the case of A5/2, while in A5/1 they
are from R1, R2, and R3. The designers meant to use similar building blocks to
save hardware in the mobile phone [16].

Cryptanalysis of GSM Encrypted Communication 603

This algorithm outputs 228 bits of key-stream. The first block of 114 bits is
used as a key-stream to encrypt the link from the network to the customer, and
the second block of 114 bits is used to encrypt the link from the customer to
the network. Encryption is performed as a simple XOR of the message with the
key-stream.

Although A5 is a stream cipher, it is used to encrypt 114-bit “blocks”, called
frames. The frames are sequentially numbered (modulo 222) by a TDMA frame

number. The frame number f that is used in the initialization of a A5 frame is
actually a fixed bit permutation of the TDMA frame number. In the rest of this
paper we ignore the existence of this permutation, since it does not affect our
analysis.

2.1 GSM Security Background: A3/A8 and GPRS

In this section we give a more detailed description on the usage and specification
of A3 and A8. This and more can be found in [12].

A3 provides authentication of the mobile phone to the network, and A8 is
used for session-key agreement. The security of these algorithms is based on a
user-specific secret key Ki that is common to the mobile phone and the net-
work. The GSM specifications do not specify the length of Ki, thus it is left
for the choice of the operator, but usually it is a 128-bit key. Authentication
of the customers to the network is performed using the A3 authentication al-
gorithm as follows: The network challenges the customer with a 128-bit ran-
domly chosen value RAND. The customer computes a 32-bit long response
SRES = A3(Ki, RAND), and sends SRES to the network, which can then
check its validity.

The session key Kc is obtained using A8 as follows: Kc = A8(Ki, RAND).
Note that A8 and A3 are always invoked together and with the same parameters.
In most implementations, they are one algorithm with two outputs, SRES and
Kc. Therefore, they are usually referred to as A3/A8.

The security in GPRS is based on the same mechanisms as of GSM. However,
GPRS uses a different encryption key to encrypt its traffic. To authenticate a
customer, the same A3/A8 algorithm is used with the same Ki, but with a
different RAND. The resulting Kc is used to encrypt the GPRS traffic. We
refer to this key as GPRS-Kc, to differentiate it from Kc which is used to
encrypt the GSM voice-traffic. Similarly we refer to the SRES and RAND as
GPRS-SRES and GPRS-RAND to differentiate them from their GSM-voice
counterparts. The GPRS cipher is referred to as GPRS-A5, or GPRS Encryption
Algorithm (GEA). There are currently three versions of the algorithm: GEA1,
GEA2, and GEA3 (which is actually A5/3).

3 A Known Plaintext Attack on A5/2

In this section we present a new known plaintext attack (known key-stream at-
tack) on A5/2. Namely, given a key-stream, divided to frames, and the respective
frame numbers, the attack recovers the session key.

604 E. Barkan and E. Biham, N. Keller

Goldberg, Wagner and Green presented the first attack [13] on A5/2. The
time complexity of this attack is very low. However, it requires the knowledge
of the XOR of plaintexts in two frames that are 211 frames apart. Their attack
shows that the cipher is quite weak, yet it might prove difficult to implement such
an attack in practice. The problem is knowing the exact XOR of plaintexts in
two frames that are 6 seconds apart. Another aspect is the elapsed time from the
beginning of the attack to its completion. Their attack takes at least 6 seconds,
because it takes 6 seconds to complete the reception of the data. Our attack
might look as if it requires more information, however, it works with only a few
milliseconds of data. We improve our attack in Section 4 to a ciphertext-only
attack that requires only a few dozen milliseconds of encrypted unknown data.
Therefore, our attack is very easy to implement in practice. We have simulated
our known plaintext attack on a personal computer, and verified the results.
This simulation recovers the key in less than a second. The computation time
and memory complexity of this attack are similar to Goldberg, Wagner and
Green’s attack. The known plaintext attack of Petrović and Fúster-Sabater [17]
has similar data requirements as our attack, however, it does not recover the
initial key.

Knowing the initial internal state of R1, R2, R3, R4, and the initial frame
number, the session key can be retrieved using simple algebraic operations. This
is mainly because the initialization process is linear in the session key and the
initial frame number. Therefore, in the attack we focus on revealing the initial
internal state of the registers.

Let kf , kf+1, kf+2, ... be the output of A5/2 divided to frames. Note that each
kj is the output key-stream for a whole frame, i.e., each kj is 114-bit long.6 Let
f, f +1, f +2, ... be the frame numbers associated with these frames. We denote
the i’th bit of the key-stream at frame j by kj [i] . The initial internal state of
register Ri at frame j (after the initialization but before the 99 clockings) is
denoted by Rij .

Assume we know the initial state R4f of R4 at the first frame. An important
observation is that R4 controls the clockings of the other registers. Since we
know R4f , then for each output bit we know the exact number of times that a
register is clocked to produce that output bit. Each register has a linear feedback,
therefore, once given the number of times a register is clocked, we can express
every bit of its internal state as a linear combination of bits of the original
internal state.

The output of A5/2 is an XOR of the last bits of R1, R2, and R3, and three
majority functions of bits of R1, R2, R3 (see Figure 1 for the exact details).
Therefore, the resulting function is quadratic with variables which are the bits
in the initial state of these registers. We take advantage of this low algebraic
degree of the output. The goal in the next paragraphs is to express every bit
of the whole output of the cipher (consisting of several frames) as a quadratic

6 Note that this notation is somewhat imprecise, since the output is actually 228 bits,
where the first half is used to encrypt the network-to-mobile link, and the second
half is used to encrypt the mobile-to-network link.

Cryptanalysis of GSM Encrypted Communication 605

multivariate function in the initial state. Then, we construct an overdefined
system of quadratic equations which expresses the key-stream generation process
and finally we solve it.

Given a frame number f , there is an algebraic description of every output bit.
We perform linearization to the quadratic terms in this algebraic description.
We observe that each majority function operates on bits of a single register.
Therefore, we have quadratic terms consisting of pairs of variables of the same
register only. Taking into account that one bit in each register is set to 1, R1
contributes 18 linear variables and all their 17∗18

2
= 153 products. In the same

way R2 contributes 21 + 21∗20
2

= 21 + 210 variables and R3 contributes 22 +
22∗21

2
= 22 + 231 variables. So far we have 18 + 153 + 21 + 210 + 22 + 231 =

655 variables after linearization. Together with constant 1 we have a set of 656
variables. We denote the set of these 656 variables by Vf . Of these variables,
18 + 21 + 22 = 61 variables form the full initial state of R1, R2, and R3.

Every output bit we have adds a linear equation with variables from Vf . A
frame consists of 114 bits. Therefore, we get 114 equations from each frame.
The solution of the equation system reveals the value of the variables in Vf , and
among them the linear variables that directly describe the initial internal state
of R1, R2, and R3. However, we do not have enough equations at this stage to
efficiently solve the system.

The main observation is that given the variables in Vf defined on frame f , we
can describe the bits of any other frame in linear terms of the variables in the set
Vf . When moving to the next frame, the frame number is incremented by 1 and
the internal state is re-initialized. We assume we know the value of R4f . Due
to the initialization method, where the frame number is XORed bit by bit into
the registers (see Section 2), we know the value of R4f+1. Since we do not know
R1f , R2f , and R3f , we do not know the value of R1f+1, R2f+1, and R3f+1, but
we know the XOR-differences between R1f , R2f , R3f and R1f+1, R2f+1, R3f+1

respectively. We define the set of variables that describe their state and the
linearization of these variables as Vf+1, in the same way as we did with the first
frame to create the set Vf . Due to the initialization method, for each register
Ri we know the difference between Rif+1 and Rif . Thus, we can describe the
variables in the set Vf+1 as linear combinations of the variables from Vf . We
emphasize that even the quadratic terms can be represented in this way. To see
this, we assume that af+1 · bf+1 is a quadratic term in Vf+1, and af · bf is a
quadratic term in Vf . We know the differences da = af+1⊕af and db = bf+1⊕bf .
Therefore, af+1 · bf+1 = (af ⊕ da) · (bf ⊕ db) = af · bf ⊕ af · db ⊕ bf · da ⊕ da · db.
Since db and da are known constants, this equation is linear in the variables in
Vf . This fact allows us to use output bits of the second frame in order to get
additional linear equations in the variables of Vf . In a similar way, we describe
the variables in any set Vi as linear combinations of the variables from Vf . In
total, we get an equation system of the form: S ·Vf = k, where S is the system’s
matrix, and k is the concatenation of kf , kf+1, etc.

It is clear that once we obtain 656 linearly independent equations the system
can be easily solved using Gauss elimination. However, it is practically very

606 E. Barkan and E. Biham, N. Keller

difficult to collect 656 linearly independent equations. This is an effect of the
frequent re-initializations, and the low order of the majority function. We note
that we do not actually need to solve all the variables, i.e., it suffices to solve
the linear variables of the system, since the other variables are defined as their
products. We have tested experimentally and found that after we sequentially
obtain about 450 equations, the original linear variables in Vf can be solved
using Gauss elimination.7

We can summarize this attack as follows: we try all the 216 possible values
for R4f , and for each such value we solve the linearized system of equations that
describe the output. The solution of the equations gives us a suggestion for the
internal state of R1, R2, and R3. Together with R4, we have a suggestion for
the full internal state. Most of the 216 − 1 wrong states are identified due to
inconsistencies in the Gauss elimination. If more than one consistent internal
state remains, these suggestions are verified by trial encryptions.

The time complexity of the attack is as follows: There are 216 possible guesses
of the value of R4f . We should multiply this figure by the time it takes to solve a
linear binary system of 656 variables, which is about 6563 ≈ 228 XOR operations.
Thus, the total complexity is about 244 bit-XOR operations. When performed
on a 32-bit machine, the complexity is 239 register-XOR operations.

An implementation of this algorithm on our Linux 800MHz PIII personal
computer finds the internal state within about 40 minutes, and requires relatively
small amount of memory (holding the linearized system in memory requires 6562

bits ≈ 54KB).

3.1 Optimization of the Known Plaintext Attack on A5/2

In an optimized implementation that will be described in detail in the full version
of this paper, the average time complexity can be further reduced to about 228

bit-XOR operations (less than 1 second on our personal computer). The mem-
ory complexity rises to about 227.8 bytes (less than 250MBs). The optimization
requires a pre-computation step whose time complexity is about 246 bit-XOR
operations (about 160 minutes on our personal computer). The data complex-
ity is slightly higher, and still in the range of a few dozen milliseconds of data.
The optimization is based on the observation that for every candidate for the
value of R4f the system of equations contains linearly dependent rows. In the
pre-computation stage we consider all the possible values of R4f , for each such
value we compute the system of equations. We find which rows in the equation
system are linearly dependent by performing a Gauss elimination. In the real-
time phase of the attack we filter wrong values for R4f by checking if the linear
dependencies that we found in the pre-computation step hold on the key-stream

7 In case the data available for the attacker is scarce, there are additional methods
that can be used to reduce the number of required equations. For example, whenever
a value of a linear variable xi is discovered, any quadratic variable of the form xi ·xj

can be simplified to 0 or xj depending whether xi = 0 or xi = 1, respectively. The
XL algorithm [9] can also be used in cases of scarce available data.

Cryptanalysis of GSM Encrypted Communication 607

bits. This kind of filtering requires two dot products on average for each wrong
value of R4f . Once we have a suggestion for the correct value of R4f , the correct
key is found using the methods of Section 3.

Note that when using this optimized attack some compromise is needed. Since
four known plaintext frames are required, we must know the XOR-differences:
f⊕ (f +1), f⊕ (f +2), f⊕ (f +3) in advance, before we know the exact value f .
These XOR-differences are required in order to express the frames’ key-stream
bits as linear terms over the set Vf , and to compute the system of equations.
The problematic element is the addition operation, for example, f +1 can result
in a carry that would propagate through f , thus not allowing the calculation
of the XOR-difference in advance. Therefore, we require that f has a specific
bit set to 0. This requirement prevents a carry from propagating beyond the
specific bit. We require the two last bits in f have a fixed value, and perform the
pre-computation for each of the four combinations of the last two bits in f . This
requirement is the source of the data complexity being slightly higher, and it also
causes a factor four increase in the memory complexity and the pre-computation
time complexity.

4 An Instant Ciphertext-Only Attack on A5/2

In this section we convert the attack of Section 3 on A5/2 to a ciphertext-only
attack. We observe that error-correction codes are employed in GSM before
encryption. Thus, the plaintext has a highly structured redundancy.

There are several kinds of error-correction methods that are used in GSM,
and different error-correction schemes are used for different data channels. We fo-
cus on control channels, and specifically on the error-correction codes of the Slow
Associated Control Channel (SACCH). We note that this error-correction code
is the one used during the initialization of a conversation. Therefore, it suffices to
focus on this code. Using this error-correction code we mount a ciphertext-only
attack that recovers the key. However, we stress that the ideas of our attack can
be applied to other error-correction codes as well.

In the SACCH, the message to be coded with error-correction codes has a
fixed size of 184 bits. The result is a 456-bit long message. The 456 bits of the
message are then interleaved, and divided to four frames. These frames are then
encrypted and transmitted.

The coding operation and the interleaving operation can be modeled together
as one 456 × 184 matrix over GF (2), which we denote by G. The message to
be coded is regarded as a 184-bit binary vector, P . The result of the coding-
interleaving operation is: M = G·P . The resulting vector M consists of 4 frames.
In the encryption process each frame is XORed with the output key-stream of
A5/2 for the respective frame.

Since G is a 456 × 184 binary matrix, there are 456 − 184 = 272 equations
that describe the kernel of the inverse transformation (and the dimension of the
kernel is not larger than 272 due to the properties of the matrix G). In other
words, for any vector M , M = G·P , there are 272 linearly independent equations

608 E. Barkan and E. Biham, N. Keller

on its elements. Let KG be a matrix that describes these 272 linear equations,
i.e., KG ·M = 0 for any such M .

We denote the output sequence bits of A5/2 for a duration of 4 frames by
k = kj ||kj+1||kj+2||kj+3, where || is the concatenation operator. The ciphertext
C is computed by C = M ⊕ k. We use the same 272 equations on C, namely:

KG · C = KG · (M ⊕ k) = KG ·M ⊕KG · k = 0⊕KG · k = KG · k.

Since the ciphertext C is known, we actually get linear equations over elements
of k. Note that the equations we get are independent of P — they depend only
on k. We substitute each bit in k with its description as linear terms over Vf

(see Section 3), and thus get equations on variables of Vf . Each 456-bit coding
block, provides 272 equations. The rest of the details of the attack and its time
complexity are similar to the case in the previous section, but in this attack we
know linear combinations of the key-stream, and therefore, the corresponding
equations are the respective linear combinations of the equations: Let S ·Vf = k
be the system of equations from Section 3, where S is the system’s matrix. In the
ciphertext-only attack we multiply this system by KG as follows: (KG ·S) ·Vf =
(KG·k). KG is a fixed known matrix that depends only on the coding-interleaving
matrix G, S is the system’s matrix which is different for each value of R4f (and
for different XOR-differences of f ⊕ (f +1), f ⊕ (f +2), f ⊕ (f +3), etc.). Thus,
in the optimized attack, all the possible matrices KG · S are computed during
the pre-computation, and for each such matrix we find linear dependencies of
rows by a Gauss elimination. In the real-time phase of the attack we filter wrong
values of R4f by checking if the linear dependencies that we found in the pre-
computation step hold on the bits of KG · k.

Note that while four frames of data suffice to launch the attack in Section 3,
in the ciphertext-only attack we need eight frames, since from each encrypted
frame we get only about half the information compared to the known plaintext
attack. The time complexity of the attack is the same as the attack in Section 3.1.

We now analyze the time and memory complexity of this ciphertext-only
attack while using the optimized attack of Section 3.1. In Section 3.1 we restrict
the values of the three least significant bits of the frame number f , since we
need four frames of data. The attack in this section requires eight frames of
data, therefore, we restrict the four least significant bits of the frame number
f . This restriction doubles the memory complexity compared to the optimized
attack of Section 3.1, and it also doubles the pre-computation complexity.

We summarize the complexity of the ciphertext-only attack (using the opti-
mized implementation) as follows: the average time complexity of this ciphertext-
only attack is approximately 216 dot products, the memory complexity is about
228.8 bytes (less than 500MBs), and the pre-computation time complexity is
about 247 bit-XORs. Our implementation on a personal computer (taking ad-
vantage of our machine’s 32-bit XOR) recovers Kc in less than a second, and it
takes about 320 minutes (less than 5.5 hours) for the one-time pre-computation.

We also successfully enhance the attack of Goldberg, Wagner, and Green and
the attack of Petrović and Fúster-Sabater to a ciphertext-only attack using our
methods. The details of these attacks will appear in the full version of this paper.

Cryptanalysis of GSM Encrypted Communication 609

5 Leveraging the Attacks to Any GSM Network

The attack shown in Section 4 assumes that the encryption algorithm is A5/2.
Using the attack it is easy to recover Kc in real-time from a few dozen mil-
liseconds of ciphertext. We ask the question what happens when the encryption
algorithm is not A5/2, but rather is A5/1 or the newly chosen A5/3. The sur-
prising answer is that using weakness of the protocols almost the same attack
applies. Also, a variant of the attack works on GPRS networks. All that is needed
for the new attack to succeed is that the mobile phone supports A5/2 for voice
conversations. The vast majority of handsets support A5/2 encryption (to allow
encryption while roaming to networks that use only A5/2).

The following three attacks retrieve the encryption key that the network uses
when A5/1 or A5/3 is employed. In the first attack the key is discovered by a
man-in-the-middle attack on the victim customer. In this attack, the attacker
plays two roles. He impersonates the network to the customer and impersonates
the customer to the network. In the second attack, the attacker needs to change
bits (flip bits) in the conversation of the mobile and the network (this attack can
also be performed as a man-in-the-middle attack). In the third one the attacker
impersonates the network for a short radio-session with the mobile. We note that
these kind of attacks are relatively very easy to mount in a cellular environment.

This man-in-the-middle attack is performed as follows: when authentication
is performed (in the initialization of a conversation), the network sends an au-
thentication request to the attacker, and the attacker sends it to the victim.
The victim computes SRES, and returns it to the attacker, which sends it back
to the network. Now the attacker is “authenticated” to the network. Next, the
network asks the customer to start encrypting with A5/1 or A5/3. In our attack,
since the attacker impersonates the customer, the network actually asks the at-
tacker to start encrypting with A5/1 or A5/3. The attacker does not have the
key, yet, and therefore, is not able to start the encryption. The attacker needs
the key before he is asked to use it. To achieve it, the attacker asks the victim
to encrypt with A5/2 just after the victim returned the SRES, and before the
attacker returns the authentication information to the network. This request
sounds to the victim as a legitimate request, since the victim sees the attacker
as the network. Then, the attacker employs cryptanalysis of A5/2 to retrieve the
encryption key of the A5/2 that is used by the victim. Only then, the attacker
sends the authentication information to the network. The key only depends on
RAND, that means that the key recovered through the A5/2 attack is the same
key to be used when A5/1 is used or even when 64-bit A5/3 is used! Now the
attacker can encrypt/decrypt with A5/1 or A5/3 using this key.

Some readers may suspect that the network may identify this attack, by
identifying a small delay in the time it takes to the authentication procedure to
complete. However, the GSM standard allows 12 seconds for the mobile phone
to complete his authentication calculations and to return an answer, while the
delay incurred by this attack is less than a second.

A second possible attack, which can be relatively easily spotted (and pre-
vented) by the network, is a class-mark attack. During initialization of conver-

610 E. Barkan and E. Biham, N. Keller

sation, the mobile phone sends his ciphering capabilities to the network (this
information is called class-mark). Most mobile phones currently support A5/1,
A5/2, and A5/0 (no encryption), but this may change from phone to phone,
and can change in the future. The attacker changes (for example using a man-
in-the-middle attack) the class-mark information that the mobile phone sends,
in a way that the network thinks that the mobile phone can only support A5/2,
and A5/0. The network then defaults to A5/2, and thus allowing the attacker to
listen to the conversation. This attack takes advantage of the following protocol
flaw: the class-mark information is not protected.

Many networks initiate the authentication procedure rarely, and use the key
created in the last authentication. An attacker can discover this key by imper-
sonating the network to the victim mobile phone. Then the attacker initiates
a radio-session with the victim, and asks the victim mobile phone to start en-
crypting using A5/2. The attacker performs the attack, recovers the key, and
ends the radio session. The owner of the mobile phone and the network have no
indication of the attack.

The leveraging in the first and last attacks relies on the fact that the same
key is loaded to A5/2 and A5/1 and even to 64-bit A5/3 (in case A5/3 is used in
GSM, according to GSM standards). Thus, discovering the key for A5/2 reveals
the key for A5/1 and 64-bit A5/3. We note that although A5/3 can be used
with key lengths of 64-128 bits, the GSM standard allows the use of only 64-bit
A5/3.

A similar attack can be performed on GPRS. The attacker listens to the
GPRS-RAND sent by the network to the customer. The attacker can imper-
sonate the voice network, initiate radio session with the customer and start
authentication procedure using the GPRS-RAND value that he intercepted, as
the GSM-voice RAND. The result is that Kc equals GPRS-Kc. The attacker
asks the customer to encrypt with A5/2, recovers Kc, and ends the radio-session.
The attacker can now decrypt/encrypt the customer’s GPRS traffic using the
recovered Kc. Alternatively, the attacker can record the customer’s traffic, and
perform the impersonation at any later time in order to retrieve the GPRS-Kc

with which the recorded data can be decrypted. If A5/2 is not supported by the
phone, but A5/1 is supported, then the above attacks against A5/3 and GPRS
can be performed using the (more complex) cryptanalysis of A5/1 instead of
A5/2 as a building block.

6 Passive Ciphertext-Only Cryptanalysis of GSM-A5/1
Encrypted Communication

In this section we discuss possible ciphertext-only attacks on GSM communi-
cations that are encrypted using A5/1. Unlike Section 5, this section discusses
passive attacks, i.e., these attacks do not transmit any radio signals. Our starting
point for the passive ciphertext-only attacks is that error-correction-codes are
employed before encryption, as discussed in Section 4.

Cryptanalysis of GSM Encrypted Communication 611

Available data M Number of P=N/D Number of PCs T Number of PCs
D 200GBs disk to complete to complete

preprocessing attack in
in one year real-time

212 (≈ 5 min) 238 ≈ 22 252 140 228 1
26.7 (≈ 8 sec) 241 ≈ 176 257.3 5000 232.6 1000
26.7 (≈ 8 sec) 242 ≈ 350 257.3 5000 230.6 200
214 (≈ 20 min) 235 ≈ 3 250 35 230 1

Table 1. Four points on the time/memory/data tradeoff curve

We apply a time/memory/data tradeoff, similar to the one presented by
Biryukov, Shamir and Wagner [4], and further discussed and generalized by
Biryukov and Shamir [3]. Their original attack requires about two second of
known plaintext, and takes a few minutes to execute on a personal computer.
It also requires a preprocessing time of about 248 and memory of four 73GByte
disks.

In our attack, we are given a block of four encrypted frames. We use the
methods of Section 4 to compute KG · k, which is 272 bits long. These 272 bits
depend only on the output of A5/1 for four consecutive frames. We call these
output bits the coded-stream. Let’s assume that we know that the frame number
of the first frame of these four frames is divisible by four without remainder —
this assumption limits us to use only a quarter of the GSM data stream on aver-
age. We can view the whole process as a function from the internal state of A5/1
to the coded-stream. Let h : {0, 1}64 → {0, 1}272 be the function that takes an
internal state of A5/1 after initialization, and outputs the coded-stream. Invert-
ing h reveals the internal state, and breaks the cipher. Note that the output of
h is calculated from the key-stream of four frames, while its input is the internal
state after the initialization of A5/1 at the first frame. The assumption we make
on the frame numbers facilitates the computation of the initial internal states
at the other three frames from the initial internal state at the first frame. It
suffices to look at only 64 bits of the output of h, therefore, we can assume that
h : {0, 1}64 → {0, 1}64. We apply Biryukov and Shamir’s time/memory/data
tradeoff attack with sampling [3] and adopt their notations: the number of pos-
sible states is N = 264, the number of four-frame blocks that we allow is denoted
by D, T is the number of applications of h during the real-time phase of the at-
tack, M is the number of memory rows (in our case each row is about 16-byte
long), and the tradeoff curve is: TM 2D2 = N2, D2 ≤ T ≤ N . The preprocessing
complexity P = N/D is the number of applications of h during preprocessing.
The attack performs about

√
T memory accesses. We assume that h can be ap-

plied 220 times every second on a personal computer. We list four points on the
tradeoff curve in Table 1.

A more detailed description about the passive attack will appear in the full
version of this paper.

612 E. Barkan and E. Biham, N. Keller

7 Possible Attack Scenarios

The attacks presented in this paper can be used in several scenarios. In this
section we present four of them: call wire-tapping, call hijacking, altering of
data messages (sms), and call theft — dynamic cloning.

7.1 Call Wire-Tapping

The most naive scenario that one might anticipate is eavesdropping conver-
sations. Communications encrypted using GSM can be decrypted and eaves-
dropped by an attacker, once the attacker has the encryption key. Both voice
conversations and data, for example SMS messages, can be wire-tapped. Video
and picture messages that are sent over GPRS can also be tapped, etc. These
attacks are described in Section 5.

In another possible wire-tapping attack the attacker records the encrypted
conversation. The attacker must make sure that he knows the RAND value
that created the used key (the RAND is sent unencrypted). At a later time,
when it is convenient for the attacker, the attacker impersonates the network to
the victim. Then the attacker initiates a GSM radio-session, asks the victim to
perform authentication with the above RAND, and recovers the session key used
in the recorded conversation. Once the attacker has the key he simply decrypts
the conversation and can listen to its contents. Note that an attacker can record
many conversations, and with subsequent later attacks recover all the keys. This
attack has the advantage of transmitting only in the time that is convenient for
the attacker. Possibly even years after the recording of the conversation, or when
the victim is in another country, or in a convenient place for the attacker.

7.2 Call Hijacking

While a GSM network can perform authentication at the initiation of the call,
encryption is the means of GSM for preventing impersonation at later stages of
the conversation. The underlying assumption is that an imposter do not have
Kc, and thus cannot conduct encrypted communications. We show how to obtain
encryption keys. Once an attacker has the encryption keys, he can cut the victim
off the conversation, and impersonate the victim to the other party. Therefore,
hijacking the conversation after authentication is possible. Hijacking can occur
during early call-setup, even before the victim’s phone begins to ring. The op-
erator can hardly suspect there is an attack. The only clue of an attack is a
moment of some increased electro-magnetic interference.

Another way to hijack incoming calls is to mount a kind of a man-in-the-
middle attack, but instead of forwarding the call to the victim, the attacker
receives the call.

7.3 Altering of Data Messages (SMS)

Once a call has been hijacked, the attacker decides on the content. The attacker
can listen to the contents of a message being sent by the victim, and send his

Cryptanalysis of GSM Encrypted Communication 613

own version. The attacker can stop the message, or send his own SMS message.
This compromises the integrity of GSM traffic.

7.4 Call Theft — Dynamic Cloning

GSM was believed to be secure against call theft, due to authentication proce-
dures of A3/A8 (at least for operators that use a strong primitive for A3/A8
rather then COMP128).

However, due to the mentioned weaknesses, an attacker can make outgoing
calls on the expense of a victim. When the network asks for authentication, a
man-in-the-middle attack similar to the one described in Section 5 can be ap-
plied: the attacker initiates an outgoing call to the cellular network in parallel
to a radio session to a victim. When the network asks the attacker for authenti-
cation, the attacker asks the victim for authentication, and relays the resulting
authentication back to the network. The attacker can also recover Kc as de-
scribed in Section 5. Now the attacker can close the session with the victim, and
continue the outgoing call to the network. This attack is hardly detectable by
the network, as the network views it as normal access. The victim’s phone does
not ring, and the victim has no indication that he is a victim. At least until his
monthly bill arrives.

8 Summary

In this paper we present new methods for attacking GSM and GPRS encryption
and security protocols. The described attacks are easy to apply, and do not
require knowledge of the conversation. We stress that GSM operators should
replace the cryptographic algorithms and protocols as early as possible, or switch
to the more secure third generation cellular system.

In GSM, even GSM networks using the new A5/3 succumb to our attack.
We suggest to change the way A5/3 is integrated to protect the networks from
such attacks. A possible correction is to make the keys used in A5/1 and A5/2
unrelated to the keys that are used in A5/3. The integration of GPRS suffers
from similar flaws that should be taken into consideration.

We would like to emphasize that our ciphertext-only attack is made possible
by the fact that the error-correction codes are employed before the encryption. In
the case of GSM, the addition of such a structured redundancy before encryption
is performed crucially reduces the system’s security.

Acknowledgments

We are grateful to Orr Dunkelman for his great help and various comments on
early versions of this paper, and to Adi Shamir for his advice and useful remarks.
We would like to thank David Wagner for providing us with information on his
group’s attack on A5/2. We also acknowledge the anonymous referees for their
important comments.

614 E. Barkan and E. Biham, N. Keller

References

1. The 3rd Generation Partnership Project (3GPP), http://www.3gpp.org/.
2. Eli Biham, Orr Dunkelman, Cryptanalysis of the A5/1 GSM Stream Cipher,

Progress in Cryptology, proceedings of Indocrypt’00, Lecture Notes in Computer
Science 1977, Springer-Verlag, pp. 43–51, 2000.

3. Alex Biryukov, Adi Shamir, Cryptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers, Advances in Cryptology, proceedings of Asiacrypt’00, Lecture
Notes in Computer Science 1976, Springer-Verlag, pp. 1–13, 2000.

4. Alex Biryukov, Adi Shamir, David Wagner, Real Time Cryptanalysis of A5/1 on a
PC, Advances in Cryptology, proceedings of Fast Software Encryption’00, Lecture
Notes in Computer Science 1978, Springer-Verlag, pp. 1–18, 2001.

5. Marc Briceno, Ian Goldberg, David Wagner, A pedagogical implementation of the
GSM A5/1 and A5/2 “voice privacy” encryption algorithms,
http://cryptome.org/gsm-a512.htm (originally on www.scard.org), 1999.

6. Marc Briceno, Ian Goldberg, David Wagner, An implementation of the GSM A3A8
algorithm, http://www.iol.ie/~kooltek/a3a8.txt, 1998.

7. Marc Briceno, Ian Goldberg, David Wagner, GSM Cloning,
http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html, 1998.

8. Nicolas Courtois, Higher Order Correlation Attacks,XL Algorithm and Cryptanal-
ysis of Toyocrypt, proceedings of ICISC’02, Lecture Notes in Computer Science
2587, Springer-Verlag, pp. 182–199, 2003.

9. Nicolas Courtois, Alexander Klimov, Jacques Patarin, Adi Shamir, Efficient Al-
gorithms for Solving Overdefined Systems of Multivariate Polynomial Equations,
Advances in Cryptology, proceedings of Eurocrypt’00, Lecture Notes in Computer
Science 1807, Springer-Verlag, pp. 392–407, 2000.

10. Nicolas Courtois, Josef Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations, Advances in Cryptology, proceedings of Asiacrypt’02, Lec-
ture Notes in Computer Science 2501, Springer-Verlag, pp. 267–287, 2002.

11. Patrik Ekdahl, Thomas Johansson, Another Attack on A5/1, to be published in
IEEE Transactions on Information Theory,
http://www.it.lth.se/patrik/publications.html, 2002.

12. European Telecommunications Standards Institute (ETSI), Digital cellular
telecommunications system (Phase 2+); Security related network functions,
TS 100 929 (GSM 03.20), http:/www.etsi.org.

13. Ian Goldberg, David Wagner, Lucky Green, The (Real-Time) Cryptanalysis of
A5/2, presented at the Rump Session of Crypto’99, 1999.

14. Jovan Golic, Cryptanalysis of Alleged A5 Stream Cipher, Advances in Cryptology,
proceedings of Eurocrypt’97, LNCS 1233, pp.239–255, Springer-Verlag,1997.

15. Aviad Kipnis, Adi Shamir, Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization, Advances in Cryptology, proceedings of Crypto’99, Lecture Notes
in Computer Science 1666, Springer-Verlag, pp. 19–30, 1999.

16. Security Algorithms Group of Experts (SAGE), Report on the specification and
evaluation of the GSM cipher algorithm A5/2,
http://cryptome.org/espy/ETR278e01p.pdf, 1996.

17. Slobodan Petrović, Amparo Fúster-Sabater, Cryptanalysis of the A5/2 Algorithm,
Cryptology ePrint Archive, Report 2000/052, http://eprint.iacr.org, 2000.

