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Abstract. In [3] M. Luby and C. Rackoff have proved that 3-round
random Feistel schemes are secure against all adaptative chosen plaintext
attacks when the number of queries is m ¿ 2n/2. Moreover, 4-round
random Feistel schemes are also secure against all adaptative chosen
plaintext and chosen ciphertext attacks when m ¿ 2n/2. It was shown
later that these bounds are tight for 3 and 4 rounds (see [9] or [1]).
In this paper our main results are that for every ε > 0, when m ¿

2n(1−ε):
– for 4 rounds or more, a random Feistel scheme is secure against
known plaintext attacks (KPA).

– for 7 rounds or more it is secure against all adaptative chosen plain-
text attacks (CPA).

– for 10 rounds or more it is secure against all adaptative chosen plain-
text and chosen ciphertext attacks (CPCA).

These results achieve the optimal value of m, since it is always possible
to distinguish a random Feistel cipher from a truly random permutation
with O(2n) queries, given sufficient computing power.
This paper solves an open problem of [1, 9] and [17]. It significantly im-

proves the results of [13] that proves the security against only 2
3n
4 queries

for 6 rounds, and the results of [6] in which the 2n(1−ε) security is only ob-
tained when the number of rounds tends to infinity. The proof technique
used in this paper is also of independent interest and can be applied to
other schemes.

An extended version of this paper is available from the author.

1 Introduction

In this paper we study the security proofs for random Feistel ciphers with
k rounds, k ∈ IN, which is also known as ”Luby-Rackoff construction
with k rounds” or simply ”L-R construction with k rounds” (see Section
2 for precise definitions). By definition a random Feistel cipher with k
rounds, is a Feistel cipher in which the round functions f1, . . . , fk are
independently chosen as truly random functions.
In their famous paper [3], M. Luby and C. Rackoff have shown that in
an adaptative plaintext attack (CPA) with m queries to the encryption
oracle, the probability to distinguish the 3-round L-R construction from
a truly random permutation of 2n bits → 2n bits, is always ≤ m2/2n.
Therefore 3-round L-R constructions are secure against all chosen plain-
text attacks when m is very small compared with 2n/2 (i.e. m¿ 2n/2).
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Moreover, in all adaptative chosen plaintext and chosen ciphertext attack
(CPCA), the probability to distinguish the 4-round L-R construction from
a truly random permutation of 2n bits → 2n bits, is also ≤ m2/2n (This
result was mentioned in [3] and a proof published in [10]). Therefore 4-
round L-R constructions are secure against CPCA when m¿ 2n/2.
These results are valid if the adversary has unbounded computing power
as long as he does only m queries.

These results, as well the results of the present paper, can be applied in
two different ways:

1. Directly, using k truly random functions f1, . . . , fk (that requires sig-
nificant storage). Then we obtain an unconditionally secure cipher,
that is secure even against adversaries that are not limited in their
computing power, however they have to be limited in the number of
known (plaintext, ciphertext) pairs.

2. In a hybrid setting, in which instead of using k truly random functions
f1, . . . , fk, we use k pseudo-random functions. If no adversary with
limited computing power can distinguish these functions from truly
random functions by any existing test, a fortiori he cannot achieve
worse security for the hybrid cipher, than for the ideal version with
truly random functions, and all the security results will hold.

The L-R construction inspired a considerable amount of research, see [7]
for a summary of existing works on this topic. One direction of research is
to use less than 4 different pseudo-random functions, or to use less than
4 calls to these functions in one encryption, see [7, 11, 16, 17]. However in
these papers the proven security is still m ¿ 2n/2. In [18], the authors
proved that even if the adversary has block-box access to the middle two
functions of a 4 round L−R construction the security proof is maintained.

Another direction of research, also followed in the present paper, is to
improve the security bound m ¿ 2n/2. Then one may try to prove the
security bound obtained is tight. Thus in [9] and independently in[1], it is
shown that for the Luby-Rackoff theorems for 3 and 4 rounds, the bound
m ¿ 2n/2 is optimal. Generic attacks exist, KPA for 3 rounds (with
the notations that we will see below, just count the number of equalities
Ri⊕Si = Rj ⊕Sj) and CPA for 4 rounds (take Ri = constant and count
the number of equalities Si ⊕ Li = Sj ⊕ Lj), that distinguish them from
a random permutation for m = O(2n/2).
In order to improve this bound m ¿ 2n/2 we have the choice between
two strategies: either to study the L-R constructions with 5 and more
rounds (see for example [9, 13] and the present paper), or to design new
constructions. For this second strategy the best results obtained so far
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are in [1] and [7]. In [1] the bound m ¿ 2n could be achieved for a con-
struction ”Benes” that however is not a permutation. In [7] the security
of unbalanced Feistel schemes1 is studied. A security proof in 2n(1−ε) is
obtained, instead of 2n/2, but for much larger round functions (from 2n
bits to ε bits, instead of n bits to n bits). This bound is basically again
the birthday bound for these functions.

For the first strategy, the best security results obtained so far are in [13]

and [6]. In [13] it is shown that when m¿ 2
3n
4 the L-R construction with

6 rounds (or more) is secure against CPCA. (In this paper, we will get

m¿ 2
5n
6 for these conditions: 6 rounds and CPCA.) Recently in [6] it is

shown that for L-R construction the security in 2n(1−ε) can be achieved
for all ε > 0, when the number of rounds → ∞. In this paper we will
show that when m ¿ 2n(1−ε), ε > 0, 4 rounds are sufficient to achieve
security against KPA, 7 rounds are sufficient to achieve security against
CPA, and 10 rounds are sufficient for security against CPCA. Thus the
number of rounds can in fact be fixed to a small value.

Thus we will solve an open problem described in [9], p. 310, as well as in
[1], p. 319 and in [17], p. 149. This result also immediately improves the
proven bound for one scheme of [2].

Our results are optimal with the regard of the number of queries, since
an adversary with unlimited computing power can always distinguish a
k−round L-R construction (i.e. a random Feistel cipher with k rounds)
from a random permutation with O(k · 2n) queries and O(2kn2n) compu-
tations by simply guessing all the round functions (this fact was already
pointed out in [9] and in [14]).

Remark: It is conjectured but still unclear if 5 rounds are enough to avoid
all CPCA attacks when m¿ 2n(1−ε). (See section 10).

In Appendix, we will summarize all the results proved so far for k rounds.

2 Notations

– In = {0, 1}n denotes the set of the 2n binary strings of length n.
|In| = 2n.

– The set of all functions from In to In is Fn. Thus |Fn| = 2n·2
n
.

– The set of all permutations from In to In is Bn. Thus Bn ⊂ Fn, and
|Bn| = (2n)!

– For any f, g ∈ Fn, f ◦ g denotes the usual composition of functions.

1 In [19] such unbalanced Feistel schemes are studied under the angle of linear and
differential cryptanalysis.
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– For any a, b ∈ In, [a, b] will be the string of length 2n of I2n which is
the concatenation of a and b.

– For a, b ∈ In, a⊕ b stands for bit by bit exclusive or of a and b.
– Let f1 be a function of Fn. Let L, R, S and T be four n-bit strings in
In. Then by definition

Ψ(f1)[L,R] = [S, T ] def⇔
{

S = R
T = L⊕ f1(R)

– Let f1, f2, . . . , fk be k functions of Fn. Then by definition:

Ψk(f1, . . . , fk) = Ψ(fk) ◦ · · · ◦ Ψ(f2) ◦ Ψ(f1).

The permutation function Ψk(f1, . . . , fk) is called ”a Feistel scheme with
k rounds” or shortly Ψk. When f1, f2, . . . , fk are randomly and indepen-
dently chosen functions in Fn, then Ψk(f1, . . . , fk) is called a “random
Feistel scheme with k rounds”, or a “L-R construction with k rounds”.
We assume that the definitions of distinguishing circuits,and of normal
and inverse (encrypting/decrypting) oracle gates are known. These stan-
dard definitions can be found in [3] and [7]. Let φ be a distinguishing
circuit. We will denote by φ(F ) it’s output (1 or 0) when its oracle gates
are implementing the encryption or decryption with the function F .

3 The “coefficients H technique”

We will formulate four theorems that we will use to prove our results.
These theorems are the basis of a general proof technique, called the ”co-
efficients H technique”, that allows to prove security results for permuta-
tion generators (and thus applies for random and pseudorandom Feistel
ciphers). This ”coefficient H technique” was first described in [10].

Notations for this section
In this section, f1, . . . fp will denote p functions of Fn, and Λ(f1, . . . , fp)
is a function of F2n (Λ is derived from the f1, . . . fp).
When [Li, Ri], [Si, Ti], 1 ≤ i ≤ m, is a given sequence of 2m values of I2n,
we will denote by H(L,R, S, T ) or in short by H, the number if p−tuples
of functions (f1, . . . fp) such that:

∀i, 1 ≤ i ≤ m, Λ(f1, . . . , fp)[Li, Ri] = [Si, Ti].

Theorem 31 (Coefficient H technique, sufficient condition for
security against KPA) Let α and β be real numbers, α > 0 and β > 0.
If :
(1) For random values [Li, Ri], [Si, Ti], 1 ≤ i ≤ m, such that i 6= j ⇒ Li 6=
Lj orRi 6= Rj, with probability ≥ 1− β we have: H ≥ |Fn|

p

22nm
(1− α)
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Then:
(2) For all algorithm A (with no limitation in the number of computa-
tions) that takes the [Li, Ri], [Si, Ti], 1 ≤ i ≤ m in input and outputs 0 or
1, we have that the expectation of |P1−P ∗1 | when the [Li, Ri], 1 ≤ i ≤ m,
are randomly chosen satisfy:

|E(P1 − P ∗1 )| ≤ α+ β.

With P1 being the probability that A outputs 1 when [Si, Ti] = Λ(f1, . . . , fp)[Li, Ri]
and when (f1, . . . , fp) are p independent random functions chosen in Fn.

And with P ∗1 being the probability that A outputs 1 when [Si, Ti] = F [Li, Ri]
and when F is randomly chosen in F2n.

Remarks:

1. In this paper Λ will be the L−R construction Ψ .

2. The condition i 6= j ⇒ Li 6= Lj orRi 6= Rj , is in m(m− 1)/22n.

3. Here if α+ β is negligible, Λ(f1, . . . , fp) will resist to all known plain-
text attacks, i.e. an attack where m cleartext/ciphertext pairs are
given and when the m cleartext have random values.

4. A proof of this Theorem 31 is given in [15].

5. From this Theorem 31 we can prove that in order to attack Ψ 2 with
KPA, we must have m ≥ about 2n/2 (see [15]).

Theorem 32 (Coefficient H technique sufficient condition for se-
curity against adaptative CPA)

Let α and β be real numbers, α > 0 and β > 0.

Let E be a subset of Im2n such that |E| ≥ (1− β) · 22nm. If :
(1) For all sequences [Li, Ri], 1 ≤ i ≤ m, of m pairwise distinct elements
of I2n and for all sequences [Si, Ti], 1 ≤ i ≤ m, of E

we have: H ≥ |Fn|
p

22nm
(1− α)

Then:
(2) For every distinguishing circuit φ with m oracle gates, we have :







AdvPRFφ (m,n)
def
= |P1 − P ∗1 | ≤ α+ β

AdvPRPφ (m,n)
def
= |P1 − P ∗∗1 | ≤ α+ β + m(m−1)

2.22n

With P1 being the probability that φ(F ) = 1 when F = Λ(f1, . . . , fp) and
when (f1, . . . , fp) are p independent random functions chosen in Fn.

With P ∗∗1 being the probability that φ(F ) = 1 when F is randomly cho-
sen in B2n. And with P

∗
1 being the probability that φ(F ) = 1 when F is

randomly chosen in F2n.
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Remarks:

1. In all this paper, “pairwise distinct elements of I2n” means here that
∀i, 1 ≤ i ≤ m, (Li 6= Lj) or (Ri 6= Rj).

2. Note that there is no limitation in the number of computations that
the distinguishing circuit can perform, in order to analyse them values
given by its oracle gates.

3. A proof of this Theorem 32 (and more general formulations of it) can
be found in [10] page 27 (for P ∗1 ) and pages 27 and 40 (for P ∗∗1 ).

4. Note that when m¿ 2n the term m(m−1)
2·22n is negligible and this term

will not be a problem.
5. Here if AdvPRP = |P1 − P ∗∗1 | is negligible, Λ(f1, . . . , fp) will resist to

all chosen plaintext attacks (we have only encryption gates). This in-
cludes adaptive attacks: in the distinguishing circuit the query number
i, 1 ≤ i ≤ m can depend on the results of the previous queries.

6. From this Theorem 32 (see [8], [10] or [15]), we obtain one way to
prove the famous result of Luby and Rackoff: to attack Ψ 3 with CPA
we must have m ≥ about 2n/2.

Theorem 33 (Coefficient H technique sufficient condition for se-
curity against adaptative CPCA)
Let f1, . . . fp be p functions in Fn, and let Λ(f1, . . . , fp) ∈ B2n. Let α > 0.
If:
(1) For all sequences [Li, Ri], 1 ≤ i ≤ m, of m distinct elements of I2n,
and for all sequences [Si, Ti], 1 ≤ i ≤ m, of m distinct elements of I2n

we have: H ≥ |Fn|
p

22nm
(1− α)

Then:
(2) For all super distinguishing circuit φ with m ”super oracle gates”
(normal/encryption or inverse/decryption gates), we have :

AdvSPRPφ (m,n)
def
= |P1 − P ∗∗1 | ≤ α+

m(m− 1)

2 · 22n
.

With P1 being the probability that φ(F ) = 1 when F = Λ(f1, . . . , fp) and
(f1, . . . , fp) are randomly (and independently) chosen in Fn.
And with P ∗∗1 being the probability that φ(F ) = 1 when F is randomly
chosen in B2n.

Remarks:

1. This Theorem 33 can be found in [11], and in [10] p.40 where a proof
is given.
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2. Here if AdvSPRP = |P1−P ∗∗1 | is negligible, Λ(f1, . . . , fp) will resist to
all adaptive CPCA (we have both encryption and decryption oracle
queries here).

3. From this Theorem 33 (see [8], [10] or [15]) we can prove that in order
to attack Ψ4 with CPCA we must have m ≥ about 2n/2.

Theorem 34 (Variant of Theorem 33, a bit more general)
With the same notations, let assume that

(1a) We have H ≥ |Fn|p
22nm (1−α) for all [L,R, S, T ] ∈ E, where E is a subset

of I4m
n .

(1b) For all super distinguishing circuit φ with m super oracle gates, the
probability that [L,R, S, T ](φ) ∈ E is ≥ 1 − β, when φ acts on a
random permutation f of B2n. (Here [L,R, S, T ](φ) denotes the suc-
cessive [Si, Ti] = f [Li, Ri] or [Li, Ri] = f−1[Si, Ti], 1 ≤ i ≤ m, that
will appear.)

Then (2) : |P1 − P ∗∗1 | ≤ α+ β + m(m−1)
2·22n .

Remarks:

1. This Theorem 34 can be found in [10] p. 38.
2. Theorem 33 is a special case of Theorem 34 where E is the set of all

possible [L,R, S, T ] (with pairwise distinct [L,R] and pairwise distinct
[S, T ]).

3. This Theorem 34 is sometime useful because it allows to study only
cleartext/ciphertext pairs where we do not have too many equations
that cannot be forced by CPCA attacks (for example like Ri = Si,
and unlike Li = Ri).

In this paper we will use Theorem 31 for KPA on Ψ 4, Theorem 32 for
CPA on Ψ7 (and our result on Ψ 5), Theorem 33 for CPCA on Ψ 10, and
Theorem 34 for our result for CPCA on Ψ 6.

4 An exact formula for H

Let [Li, Ri], 1 ≤ i ≤ m be m pairwise distinct elements of I2n, and let
[Si, Ti], 1 ≤ i ≤ m be some other m pairwise distinct elements of I2n. We
will noteH the number of (f1, . . . , fk) ∈ F k

n such that Ψk(f1, . . . , fk)[Li, Ri] =
[Si, Ti].
This is the coefficient H that we need to apply Theorems 31, 32, 33 and 34
to k-round L-R construction Ψ k. Fortunately it is possible to give an exact
formula for H for every number of rounds k. Unfortunately when k ≥ 3,
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the exact formula for H will involve a somewhat complex summation,
and therefore it is not easy to use it. In this paper we will use the exact
formula for H for 4 rounds. The proof of this formula (and formulas for
1, 2, 3 rounds) can be found in [10], pages 132-136, or in [15].

An exact formula for H for 4 rounds
Let Pi andQi, with 1 ≤ i ≤ m, be the values such that Ψ 2(f1, f2)[Li, Ri] =
[Pi, Qi], i.e. the values after 2 rounds. Let P = (P1, . . . Pm) and Q =
(Q1, . . . Qm). Let (C) be the conditions:

∀(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ m,



















Ri = Rj ⇒ Li ⊕ Pi = Lj ⊕ Pj
Si = Sj ⇒ Qi ⊕ Ti = Qj ⊕ Tj
Pi = Pj ⇒ Ri ⊕Qi = Rj ⊕Qj

Qi = Qj ⇒ Pi ⊕ Si = Pj ⊕ Sj

(C)

Then

H =
∑

(P,Q) satisfying (C)

|Fn|4
24mn

· 2n(r+s+p+q),

with p being the number of linearly independent equations of the form
Pi = Pj , i 6= j, and similarly with q,r and s being the number of linearly
independent equations of the form respectively Qi = Qj , i 6= j, Ri = Rj ,
i 6= j and Si = Sj , i 6= j.

5 A formula for H for 4 rounds with ”frameworks”

Most of the work in this paper is done for 4 rounds. Only at the end we
will add some additional rounds to get the final results. From now on, we
will use the same notations as in the formula for H for 4 rounds given in
Section 4.

Definition 51 We will call a ”framework” a set F of equalities such that
each equality of F is of one of the following forms: Pi = Pj or Qi = Qj

with 1 ≤ i < j ≤ m.

Let (P,Q) be an element of Imn × Imn .

Definition 52 We will say that (P,Q) ”satisfy” F if the set of all the
equations of the form Pi = Pj i < j that are true in the sequence P , and
all the equations of the form Qi = Qj i < j true in Q, is exactly F .
If it is so we will also say that F ”is the framework of (P,Q)”. (Each
(P,Q) has one and only one framework).
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Then from the exact formula given in Section 4 we have:

H =
∑

all frameworks
F









∑

(P,Q) satisfying
(C) and F

|Fn|4
24mn

· 2n(r+s+p+q)









The set of conditions (C) was defined in Section 4. We observe that when
F is fixed, from (C) we get a set of equations between the P values (and
L and S values) or between the Q values (and T and R values), i.e. in
these equations from (C), the Pi and the Qi will never appear in the same
equation.

We have:

H =
|Fn|4
24mn

∑

all frameworks
F





∑

P satisfying (C1)

2n(r+q)



 ·




∑

Q satisfying (C2)

2n(s+p)





With (C1) and (C2) being the sets of conditions defined as follows:

(C1) :



















The equalities Pi = Pj , i < j that are present in F ,
and no other equalities Pi = Pj , i < j
Ri = Rj ⇒ Pi ⊕ Pj = Li ⊕ Lj
The equalities Pi ⊕ Pj = Si ⊕ Sj for all (i, j) such that Qi = Qj is in F

(C2) :



















The equalities Qi = Qj , i < j that are present in F ,
and no other equalities Qi = Qj , i < j
Si = Sj ⇒ Qi ⊕Qj = Ti ⊕ Tj
The equalities Qi ⊕Qj = Ri ⊕Rj for all (i, j) such that Pi = Pj is in F

We have:

H =
|Fn|4
24mn

∑

all frameworks
F

2n(r+q) [Number of P satisfying (C1)] ·

· 2n(s+p) [Number of Q satisfying (C2)]

For a fixed framework F , let:
HF1 = 2n(r+q) [Number of (P1, . . . Pm) satisfying (C1)]

HF2 = 2n(s+p) [Number of (Q1, . . . Qm) satisfying (C2)]

Then: H =
|Fn|4
24mn

∑

all frameworks
F

HF1 ·HF2 .

Remark: When F is fixed, in (C1) we have only conditions on P and in
(C2) we have only conditions on Q.
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6 Some definitions on sets of equations and frameworks

Definition 61 For a fixed framework F ,
let JF1 = Number of (P1, . . . Pm) such that the equalities Pi = Pj, i < j
are exactly those of F .
let JF2 = Number of (Q1, . . . Qm) such that the equalities Qi = Qj, i < j
are exactly those of F .

So we have: JF1 = 2n · (2n − 1) · (2n − 2) · . . . · (2n −m+ 1 + p)
and JF2 = 2n · (2n − 1) · (2n − 2) · . . . · (2n −m+ 1 + q)

Definition 62 Let F be a framework.We will say that two indices i and
j, 1 ≤ i ≤ m and 1 ≤ j ≤ m are ”connected in P” if the equation Pi = Pj
is in F .(Similar definition for ”connected in Q”).We say that i and j are
connected in R if we have Ri = Rj (here it does not depend on F).

Definition 63 Let F be a framework. We will say that F “has a circle
in R,P,Q” if there are k indices i1, i2, . . . , ik, with k ≥ 3 and such that:

1. ik = i1 and i1 6= i2, i2 6= i3, . . . , ik−1 6= ik.
2. ∀λ, 1 ≤ λ ≤ k − 2 we have one of the three following conditions:

– iλ and iλ+1 are connected in R, and iλ+1 and iλ+2 are connected
in P or in Q

– iλ and iλ+1 are connected in P , and iλ+1 and iλ+2 are connected
in R or in Q

– iλ and iλ+1 are connected in Q, and iλ+1 and iλ+2 are connected
in R or in P

Examples.

– If P1 = P2 and Q1 = Q2 are in F , then F has a circle in P,Q.
– If F = {P1 = P2, P2 = P3}, then F has no circle in P,Q.

Definition 64 Let F be a framework. We will say that (in F) two indices
i and j are connected by R, P , Q if there exist some indices i1, i2, ...,
iv such that i = i1, iv = j, and ∀k, 1 ≤ k ≤ v − 1, we have either
(Rik = Rik+1

), or (Pik = Pik+1
) ∈ F or (Qik = Qik+1

) ∈ F .

Definition 65 Let F be a framework. We will say that F has “no more
than θ equalities in R, P , Q in the same line” if for all set of θ + 1
independent equations that are either of F or of the form Ri = Rj (with
Ri = Rj true), there exist two indices i and j which are not connected by
R, P , Q.(Similar definition for “no more than θ equalities in S, P , Q in
the same line”.)
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Definition 66 Let F be a framework. Let F ′ be the set of all the following
equations:

– Pi = Pj such that Pi = Pj is in F .
– Pi ⊕ Pj = Li ⊕ Lj for all i < j such that Ri = Rj.

– Pi ⊕ Pj = Si ⊕ Sj such that Qi = Qj is in F .

If from these equations of F ′ we can generate by a linear combination an
equation Pi = Pj , i 6= j, we say that F has a circle in R,P,Q, [LS].
We define in the same way “F has a circle in S, P , Q, [RT ]” (by inter-
changing R and S, P and Q, and L and T ).

Example. If F = {Qi = Qk} and we have Ri = Rj and Li⊕Lj = Si⊕Sk
then F ′ contains Pi⊕Pj = Li⊕Lj and contains Pi⊕Pk = Si⊕Sk, and then
from F ′ we can generate Pj = Pk. Here F has a circle in R,P,Q, [LS].

7 The proof strategy

We recall that from the end of Section 5, for 4 rounds we have:

H =
|Fn|4
24mn

∑

all frameworks
F

HF1 ·HF2 .

We will evaluate H with this formula, in order to get the results of sec-
tion 9 below. For this, the general strategy is to study this summation
“framework by framework”, i.e. we will compare HF and JF for a fixed
framework F . We will do this by using mainly four ideas:

– We will see that when m ¿ 2n we can avoid all the ”circles” in the
equalities in the variables, and when mθ+1 ¿ 2nθ we can avoid all the
θ + 1 equalities of the variables in the same line.

– We will use a property (Theorem 81 given in section 8) on sets of
equations Pi ⊕ Pj = λk.

– We will see that we can assume that the λk are generally random
(sometime by adding 3 rounds at the beginning or at the end).

– We will need a general result of probability (Theorem 73 below).

More precisely, we will prove the following theorems.

a) Analysing sets of equations Pi ⊕ Pj = λk
First we will prove Theorem 81 given in section 8. Conjecture 81 of

section 8 is also of interest.
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b) Avoiding “circles” and “long lines”

Theorem 71 LetM be the set of all frameworks F such that:
1. F has no circle in R,P,Q
2. F has no circle in S, P,Q
3. F has no circle in R,P,Q, [LS]
4. F has no circle in S, P,Q, [RT ]
5. F has no more than θ equalities in R,P,Q in the same line
6. F has no more than θ equalities in S, P,Q in the same line
Let M be the number of (P,Q) such that the framework F of (P,Q) is in
M. Then, with probability ≥ p, M satisfies:

M ≥ 22nm

(

1−O
(m2

22n

)

−O
(mθ+1

2nθ

)

)

,

where p is near 1 when the big O in the expression above are small, and
when the R, L, S, T variables have random values, or are the output of a
two rounds (or more) random Feistel scheme.

See [15] for the exact value of p. A similar result, with a small restriction
on the inputs/outputs also exist if we add only one round (see [15]).

c) We can assume that the λk are generally random

Theorem 72 Let λk, 1 ≤ k ≤ a, be some variables of In such that ∀k,
1 ≤ k < a, ∃i, j, such that λk = Li ⊕ Lj, or λk = Si ⊕ Sj, with no circle
in the L or in the S variables that appear in the λk. Then if:
(1a) The [Li, Ri, Si, Ti] are random variables of In. or:
(1b)The [Si, Ti] are random variables of I2n and the [Li, Ri] are obtained
after a Ψ3(f1, f2, f3) where f1, f2, f3 are randomly chosen in Fn. or:
(1c)The [Li, Ri] are obtained after a Ψ 3(f1, f2, f3) and the [Si, Ti] are
obtained after a Ψ 3(g1, g2, g3), where f1, f2, f3, g1, g2, g3 are randomly
chosen in Fn. Then:
The probability to distinguish λ1, λ2, . . ., λa from a truly random values
of In is ≤ 1−O( a2

22n ) (with no limitation in the computing power).

Proof: See [15].

d) A general result of probability

Theorem 73 Let ai and bi, 1 ≤ i ≤ N , be N variables ai ≥ 0, bi ≥ 0,
such that: ∀i, 1 ≤ i ≤ N, ai ≥ bi with a probability ≥ 1− ε.

Then: ∀λ > 0, the probability that
N
∑

i=1
ai ≥

( N
∑

i=1
bi
)

(1− λε) is ≥ 1− 1
λ .

Proof: See [15].
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8 About sets of equations Pi ⊕ Pj = λk

Definition 81 Let (A) be a set of equations Pi⊕Pj = λk. If by linearity
from (A) we cannot generate an equation in only the λk, we will say
that (A) has “no circle in P”, or that the equations of (A) are “linearly
independent in P”.

Let a be the number of equations in (A), and α be the number of variables
Pi in (A). So we have parameters λ1, λ2, . . ., λa and a+ 1 ≤ α ≤ 2a.

Definition 82 We will say that two indices i and j are “in the same
block” if by linearity from the equations of (A) we can obtain Pi ⊕ Pj =
an expression in λ1, λ2, . . ., λa.

Definition 83 We will denote by ξ the maximum number of indices that
are in the same block.

Example. If A = {P1 ⊕ P2 = λ1, P1 ⊕ P3 = λ2, P4 ⊕ P5 = λ3}, here we
have two blocks of indices {1, 2, 3} and {4, 5} and ξ = 3.

Definition 84 For such a system (A), when λ1, λ2, . . ., λa are fixed, we
will denote by hα the number of P1, P2, . . ., Pα solutions of (A) such that:
∀i, j, i 6= j ⇒ Pi 6= Pj.
We will also denote Hα = 2nahα.

Definition 85 We will denote by Jα the number of P1, P2, . . ., Pα in In
such that: ∀i, j, i 6= j ⇒ Pi 6= Pj.

So Jα = 2n · (2n − 1) . . . (2n − α+ 1).

Theorem 81 Let ξ be a fixed integer, ξ ≥ 2.
For all set (A) of equations Pi⊕Pj = λk, with no circle in P , with no more
than ξ indices in the same block, with α variables Pi and a equations in
(A), with α¿ 2n (and also ξα¿ 2n since ξ is a fixed integer), when λ1,
λ2, . . ., λa are randomly chosen in the subset D of I

a
n such that Hα 6= 0,

we have:
1) the average value of Hα is

2na

|D| · Jα so is ≥ Jα.

2) the standard variation of Hα is σ ≤ Jα · O
(

α
√
α

2n
√

2n

)

.

Proof: See [15]
The condition Hα 6= 0 means that for all i and j in the same block, i 6= j,
the expression of Pi ⊕ Pj in λ1, λ2, . . ., λa is 6= 0. So this condition is in
1−O( α2n ).
¿From Bienaymé-Tchébichef Theorem, we get :
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Corollary 81 For all λ > 0, with a probability ≥ 1−O( 1
λ2 )−O( α2n ), we

have:

Hα ≥ Jα
(

1− λα
√
α

2n
√
2n

)

.

We will say that we have Hα ≥ Jα
(

1− λα
√
α

2n
√

2n

)

with a probability as near
as 1 as we want.

Theorem 82 Let ξ be a fixed integer, ξ ≥ 2.

Let (A) be a set of equations Pi ⊕ Pj = λk with no circle in P, with α
variables Pi, such that:

1. α3 ¿ 22n (and also ξα3 ¿ 22n since ξ is here a fixed integer).

2. We have no more than ξ indices in the same block.

3. The λ1, λ2, . . ., λk have any fixed values such that: for all i and j in
the same block, i 6= j, the expression of Pi ⊕ Pj in λ1, λ2, . . ., λa is
6= 0 (i.e. by linearity from (A) we cannot generate an equation Pi = Pj
with i 6= j).

Then we have, for sufficiently large n: Hα ≥ Jα.

Proof: See [15]

Conjecture 81 This Theorem 82 is still true when α ¿ 2n (instead of
α3 ¿ 22n).

This conjecture 81 is not yet proved in general.

9 Results for 4, 7 and 10 rounds in O(2n(1−ε))

¿From the theorems of section 7 and Theorem 91 we get the following
theorems on H (see [15] for the proofs).

Theorem 91 Let [Li, Ri], and [Si, Ti], 1 ≤ i ≤ m, be random values
such that the [Li, Ri] are pairwise distincts and the [Si, Ti] are pairwise
distincts. Then for Ψ 4 the probability p that :

H ≥ |Fn|
4

22nm

(

1−O
(

m

2n

)

−O
(

mθ+1

2nθ

))

.

satisfy:

p ≥ 1−O
(

m

2n

)
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Theorem 92 Let [Li, Ri], and [Si, Ti], 1 ≤ i ≤ m, be some values such
that the [Li, Ri] are pairwise distincts and the [Si, Ti] are pairwise dis-
tincts. Then for Ψ 7 we have:

There is a subset E of Im2n with |E| ≥ (1−O(m2n )−O(m
θ+1

2nθ
)) such that if

the [Si, Ti], 1 ≤ i ≤ m are in E we have:

H ≥ |Fn|
7

22nm

(

1−O
(

m

2n

)

−O
(

mθ+1

2nθ

))

.

Theorem 93 Let [Li, Ri], and [Si, Ti], 1 ≤ i ≤ m, be some values such
that the [Li, Ri] are pairwise distincts and the [Si, Ti] are pairwise dis-
tincts. Then for Ψ 10 we have:

For all integer θ ≥ 1 H ≥ |Fn|
10

22nm

(

1−O
(

m

2n

)

−O
(

mθ+1

2nθ

))

.

Security results against cryptographic attacks

Finally our cryptographic results on 4,7 and 10 rounds are just a direct
consequence of Theorem 91,92,93 and of Theorem 31, 32 and 33: this is
because θ can be any integer.

Remarks:

1. In these theorems when θ is fixed, we can get explicit values for all the
coefficients that appear as O() in our theorems. Therefore our results
are not only asymptotic (when n → ∞), they can also be written as
explicit concrete security bounds.

2. For Ψ4 our security results are optimal both in term of m and in term
of the number of computations to be performed. With O(2n) messages
and O(2n) computations it is indeed possible to distinguish Ψ 4 from a
truly random permutation with a KPA (count the number of (i, j, k)
with Ri = Rj and Si ⊕ Li = Sj ⊕ Lj).

10 Results for 5 or 6 rounds in O(25n/6)

Here we cannot assume that the λk are almost random. However, from
Theorem 82 we can prove:

Theorem 101 Ψ5 resists all CPA when m ¿ O(25n/6). Ψ6 resists all
CPCA when m¿ O(25n/6).
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(See [15] for the proofs. Hint: we will have α ' m2

2n and α3 ¿ 22n, so

m¿ O(2 5n
6 ) will be our condition.)

Remark: If we can use Conjecture 81, then from it we can prove that
Ψ5 resists all CPA when m¿ O(2n(1−ε)) and Ψ6 resists all CPCA when
m ¿ O(2n(1−ε)) since we will have to add only one or two rounds in
addition of the central Ψ 4. However, Conjecture 81 is not yet proven in
general.

11 Conclusion and further work

In this paper we were able to prove improved security bounds for random
Feistel ciphers. It seems reasonable that our method can be extended, for
example for 5 or 6 rounds. This method can also be used in various other
directions. For example one can study Feistel schemes with a different
group law than ⊕ (it has already been studied but only when m¿ 2n/2).
One can also study the Feistel schemes on digits/GF (q)/bytes etc. instead
of bits. Finally one can study cryptographic constructions of different
type.

It seems particularly interesting to study dissymmetric Feistel schemes,
i.e. schemes in which a round is defined as Ψ(fi)[L,R] = [S, T ] def⇔ S =
R and T = L ⊕ f1(R) but with L and T having only 1 bit, and S and
R having 2n − 1 bits, and with the fi being single Boolean functions
fi ∈ I2n−1 → I1. It seems that in such schemes the methods of the
present paper should give a security proof for m¿ 22n(1−ε), even against
unbounded adversaries 2. (This will improve the 2n(1−ε) result of [7] for
such schemes). For comparison, the best possible result for classical Feistel
schemes with the same block size 2n (and achieved in the present paper) is
m¿ 2n(1−ε) and cannot be improved in the unbounded adversary model.

In conclusion we hope that the proof techniques given in this paper will
be useful in future works, on one hand in the design of cryptographic
schemes with optimal proofs of security, and on the other hand to detect
flaws in existing designs and suggest some new attacks.
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Appendix: Summary of the known results on Ψ k

Ψ Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψk, k ≥ 10

≥ O(2n(1−ε)) ≥ O(2n(1−ε)) ≥ O(2n(1−ε)) ≥ O(2n(1−ε)) ≥ O(2n(1−ε))

KPA 1 O(2
n
2 ) O(2

n
2 ) and and and and and

≤ O(2n) ≤ O(2n) ≤ O(2n) ≤ O(2n) ≤ O(2n)

≥ O(2
5n
6 ) ≥ O(2

5n
6 ) ≥ O(2n(1−ε)) ≥ O(2n(1−ε))

CPA 1 2 O(2
n
2 ) O(2

n
2 ) and and and and

≤ O(2n) ≤ O(2n) ≤ O(2n) ≤ O(2n)

≥ O(2
n
2 ) ≥ O(2

5n
6 ) ≥ O(2

n
2 ) ≥ O(2n(1−ε))

CPCA 1 2 3 O(2
n
2 ) and and and and

≤ O(2n) ≤ O(2n) ≤ O(2n) ≤ O(2n)

Figure 1: The minimum number m of queries needed to distinguish Ψ i

from a random permutation of B2n

Ψ Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψk, k ≥ 10

≥ O(2n(1−ε)) ≥ O(2n(1−ε)) ≥ O(2n(1−ε)) ≥ O(2n(1−ε)) ≥ O(2n(1−ε))

KPA O(1) O(2
n
2 ) O(2

n
2 ) and and and and and

≤ O(2n) ≤ O(2
7n
4 ) ≤ O(22n) ≤ O(22n) ≤ O(22n)

≥ O(2
5n
6 ) ≥ O(2

5n
6 ) ≥ O(2n(1−ε)) ≥ O(2n(1−ε))

CPA O(1) O(1) O(2
n
2 ) O(2

n
2 ) and and and and

≤ O(2
3n
2 ) ≤ O(22n) ≤ O(22n) ≤ O(22n)

≥ O(2
n
2 ) ≥ O(2

5n
6 ) ≥ O(2

n
2 ) ≥ O(2n(1−ε))

CPCA O(1) O(1) O(1) O(2
n
2 ) and and and and

≤ O(2
3n
2 ) ≤ O(22n) ≤ O(22n) ≤ O(22n)

Figure 2: The minimum number λλ of computations needed to

distinguish Ψ i from a random permutation of B2n

Remark: The result λ ≤ O(22n) is obtained due to the fact that Ψ k

permutations always have an even signature. If we want to distinguish Ψ k

from random permutations with an even signature (instead of random
permutations of the whole B2n), or if we do not have exactly all the
possible cleartext/ciphertext pairs, then we only know that (when k is
even): λ ≤ O(2n(k2/2−4k+8)), see [14].


