
Universally Composable Efficient Multiparty

Computation from Threshold Homomorphic

Encryption

Ivan Damg̊ard and Jesper Buus Nielsen?

BRICS?? Department of Computer Science
University of Aarhus
Ny Munkegade

DK-8000 Arhus C, Denmark

Abstract. We present a new general multiparty computation protocol
for the cryptographic scenario which is universally composable — in par-
ticular, it is secure against an active and adaptive adversary, corrupting
any minority of the parties. The protocol is as efficient as the best known
statically secure solutions, in particular the number of bits broadcast
(which dominates the complexity) is Ω(nk|C|), where n is the number
of parties, k is a security parameter, and |C| is the size of a circuit doing
the desired computation. Unlike previous adaptively secure protocols for
the cryptographic model, our protocol does not use non-committing en-
cryption, instead it is based on homomorphic threshold encryption, in
particular the Paillier cryptosystem.

1 Introduction

The problem of multiparty computation (MPC) dates back to the papers by
Yao [14] and Goldreich et al. [11]. What was proved there was basically that a
collection of n parties can efficiently compute the value of an n-input function,
s.t. everyone learns the correct result, but no other new information. More pre-
cisely, these protocols can be proved secure against a polynomial time bounded
adversary who can corrupt a set of less than n/2 parties initially, and then make
them behave as he likes, we say that the adversary is active. Even so, the adver-
sary should not be able to prevent the correct result from being computed and
should learn nothing more than the result and the inputs of corrupted parties.
Because the set of corrupted parties is fixed from the start, such an adversary is
called static or non-adaptive.

Proving security of the protocol from [11] requires a complexity assumption,
such as existence of trapdoor one-way permutations. This is because the model of
communication considered there is s.t. the adversary may see every message sent

? {ivan,buus}@brics.dk.
?? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

248 I. Damg̊ard, J.B. Nielsen

between parties, this is sometimes known as the cryptographic model. Later, un-

conditionally secure MPC protocols were proposed by Ben-Or et al. and Chaum
et al. [2, 6], in the model where private channels are assumed between every pair
of parties. These protocols are secure, even against an adaptive adversary who
may decide dynamically during the protocol who to corrupt.

Over the years, several protocols have been proposed which, under specific
computational assumptions, improve the efficiency of general statically secure
MPC, see for instance [10]. In particular, Cramer, Damg̊ard and Nielsen [7] pro-
posed a general MPC protocol that is secure against a static adversary corrupting
any minority of the parties. The protocol assumes that keys for a threshold ho-
momorphic cryptosystem have been set up, and has communication (broadcast)
complexity Ω(nk|C|), where n is the number of parties, k is a security parame-
ter, and |C| is the size of a circuit computing the desired function. This is the so
far the most efficient protocol known for the cryptographic model, tolerating a
dishonest minority (which is the best possible if we want to guarantee termina-
tion). The homomorphic threshold cryptosystem can be the one of Paillier[13],
or can be built from the quadratic residuosity assumption.

It is possible to get adaptive security, also in the cryptographic model: we
can start from an adaptively secure protocol for the private channels model ([2,
6]), and then, instead of assuming perfect channels, we implement them using
public-key encryption. While this will in general reduce adaptive security to
static, using non-committing encryption, adaptive security carries over to the
cryptographic model [4]. In [5], it is shown that non-committing encryption plus
some additional techniques can provide MPC that is universally composable, an
even stronger notion of security defined by Canetti [3]. All these protocols are,
however, much less efficient than the best statically secure ones. An alternative
approach that also gives adaptive security is to assume that parties can be
trusted to securely erase certain critical data [1].

Our Results In this paper, we present a new general MPC protocol for the
cryptographic model, based on Paillier encryption. The protocol is universally
composable, in particular, it is secure against an active adaptive adversary cor-
rupting any minority of the parties. Up to a constant factor, it is as efficient as
the (statically secure) protocol from [7]. It is therefore the first general MPC
solution for the cryptographic model where going to adaptive security does not
cause a major loss in efficiency (or costs an extra assumption, such as secure era-
sures). It is also the first that does not use non-committing encryption, which
may be of separate interest from a technical point of view. (The protocol in [5]
is not for the private channels model, but it uses non-committing encryption
for building adaptively secure oblivious transfer.) Instead of non-committing en-
cryption we use some ideas from the universally composable commitments of [9],
and combine this with the protocol from [7]. Thus we work on the same principle
that parties supply encrypted input, and the protocol produces encryptions of
the outputs, that the parties can then cooperate to decrypt. To make this se-
cure, we introduce a new technique for randomizing encryptions before they are
decrypted. This means that the adversary has no control over the encryptions

Universally Composable Efficient Multiparty Computation 249

that are decrypted, and this turns out to be essential for our proof of security
to go through.

We prove our protocols secure in the framework for universally composable
(UC) security by Canetti[3]. This framework allows to define the security of
general reactive tasks, rather than just evaluation of functions. This allows us
to prove that our protocol does not just provide secure function evaluation,
but is in fact equivalent to what we call an arithmetic black box (ABB). An
ABB can be thought of as a secure general-purpose computer. Every party can
in private specify inputs to the ABB, and any majority of parties can ask it
to perform any feasible computational task and make the result (and only the
result) public. Moreover the ABB can be invoked several times and keeps an
internal state between invocations. This point of view allows for easier and more
modular proofs, and also makes it easier to use our protocols as tools in other
constructions.

2 An Informal Description

In this section, we give a completely informal introduction to some main ideas.
All the concepts introduced here will be treated more formally later in the paper.
We will assume that from the start, the following scenario has been established:
we have a semantically secure threshold public-key system given, i.e., there is
a public encryption key pk known by all parties, while the matching private
decryption key has been shared among the parties, s.t. each party holds a share
of it.

We will use a threshold version of the Paillier cryptosystem, so the message
space is ZN for some RSA modulus N . For a plaintext a ∈ ZN , we let a denote
an encryption of a. We have certain homomorphic properties: from encryptions
a, b, anyone can easily compute (deterministically) an encryption of a+ b, which
we denote a ¢ b. We also require that from an encryption a and a constant
α ∈ ZN , it is easy to compute a random encryption of αa, which we denote
α¡ a. This immediately gives us an algorithm ¯ for subtracting.

We can then sketch how a computation was performed securely in the (stati-
cally secure) protocol from [7]: we assume the desired computation is specified as
a circuit doing additions and multiplications in ZN — This allows us to simulate
a Boolean circuit in a straightforward way using 0/1 values in R. The protocol
then starts by having each party publish encryptions of his input values and give
zero-knowledge proofs that he knows these values. Then any operation involving
addition or multiplication by constants can be performed with no interaction: if
all parties know encryptions a, b of input values to an addition gate, all parties
can immediately compute an encryption of the output a+ b. This leaves only
the problem of multiplications: Given encryptions a, b (where it may be the case
that no parties knows a nor b), compute securely an encryption of c = ab. This
can be done by the following protocol (which is a slightly optimized version of
the protocol from [7]):

250 I. Damg̊ard, J.B. Nielsen

1. Each party Pi chooses random di ∈ ZN and broadcasts encryptions di and
dib.

2. All parties prove in zero-knowledge that they know their respective values
of di, and that dib encrypts the correct value. Let S be the subset of the
parties succeeding with both proofs.

3. All parties can now compute a¢(¢i∈Sdi). This ciphertext is decrypted using
threshold decryption, so all parties learn a+

∑
i∈S di.

4. All parties set c = (a+
∑

i∈S di)¡ b¯ (¢i∈Sdib).

At the final stage we know encryptions of the output values, which we just
decrypt using threshold decryption. Intuitively this is secure if the encryption
is secure because, other than the outputs, only random values or values that
should be known to the adversary are ever decrypted. This intuition was proved
for a static adversary in [7]. But in the UC framework, where the adversary is
adaptive, it is well known that there are several additional problems:

Loosely speaking, a proof of security requires building a simulator that sim-
ulates in an indistinguishable way the adversary’s view of a real attack, while
having access only to data the adversary is supposed to know at any given time.
This means that for instance in the input stage the simulator needs to show the
adversary encryptions that are claimed to contain the inputs of honest parties.
At this time the simulator does not know these inputs, so it must encrypt some
arbitrary values. This is fine for the time being, but if one of the honest par-
ties are later corrupted, the simulator learns the real inputs of this party and
must reveal them to the adversary along with a simulation of all internal data
of the party. The simulator is now stuck, since the real inputs most likely are
not consistent with the arbitrary values encrypted earlier.

We handle this problem using a combination of two tricks: first, we include in
the public key an encryption K = 1. Then, we redefine the encryption method,
and fix the rule that to encrypt a value a, one computes a ¡K. Under normal
circumstances, this will be an encryption of a. The point, however, is that in
the simulation, the simulator can decide what K should be, and will set K = 0.
Then all encryptions used in the simulation will contain 0, in fact — using the
algebraic properties of the encryption scheme — the simulator can compute C
as an encryption of 0, store the random coins used for this and later make it
seem as if C was computed as C = a¡K for any a it desires.

However, the simulator must also be able to find the input values the ad-
versary supplies, immediately as the encryptions are made public. This is not
possible if it only sees encryptions of 0. We therefore redefine the way inputs
are supplied: for each input value x of party Pi, Pi uses the UC commitment
scheme of [9] to make a commitment commit(x) to x, and also sends an encryp-
tion C = x ¡ K. Finally he proves in zero-knowledge that commit(x) contains
the same value as C. This can be done efficiently because [9] is also based on
Paillier encryption, and the UC property of the commitments precisely allows
the simulator to extract inputs of corrupted parties and fake it on behalf of
honest parties.

Universally Composable Efficient Multiparty Computation 251

A final problem we face is that the simulator will not be able to “cheat” in the
threshold decryption protocol. The key setup for this protocol fixes the shares
of the private key even in the simulation, so a ciphertext can only be decrypted
to the value it actually contains. Of course, when decrypting the outputs, the
correct results should be produced both in simulation and real life, and so we have
a problem since we just said that all ciphertexts in the simulation really contain
0. We solve this by randomizing all ciphertexts before they are decrypted: we
include another fixed encryption R = 0 in the public key. Then, given ciphertext
C, the parties cooperate to create an encryption r ¡ R, where r is a (secret)
randomly chosen value that depends on input from all parties. Then we compute
C ¢ (r¡R) and decrypt this ciphertext. Under normal circumstances, it will of
course contain the same plaintext as C. But in the simulation, the simulator will
set R = 1, and “cheat” in the process where r is chosen, s.t. r = a, where a is
the value the simulator wants the decryption to return. This works, since in the
simulation any C actually encrypts 0.

3 Preliminaries

Notation Throughout the paper k will denote the security parameter. For a
probabilistic polynomial time (PPT) algorithm A we will use a← A(x; r) to de-
note running A on input x and uniformly random bits r ∈ {0, 1}p(|x|) producing
output a; Here p(·) is a polynomial upper bounding the running time of A.

Non-erasure Σ-protocols Consider a binary relation R ⊆ {0, 1}∗×{0, 1}∗ where
(x,w) ∈ R can be checked in PPT. By L(R) we denote the set {x ∈ {0, 1}∗|∃w ∈
{0, 1}∗((x,w) ∈ R)}.

A non-erasure Σ-protocol for relation R is six PPT algorithms (A, l, Z,B, hvs,
rbs, xtr) (and an integer l) specifying a three move, public randomness, honest
verifier zero-knowledge protocol with special soundness. The prover has input
(x,w) ∈ R and the verifier has input x. The prover first computes a message
a ← A(x,w; rA) and sends a to V . Then V returns a l-bit challenge e. The
prover then computes a response to the challenge z ← Z(x,w, ra, e) and sends
z to the verifier. The verifier then computes b ← B(x, a, e, z), where b ∈ {0, 1}
indicates whether to believe that the prover knows a valid witness w or not. The
algorithm hvs is called the honest verifier simulator and takes as input x ∈ L(R),
e ∈ {0, 1}l and a uniformly random bit-string rhvs and produces as output (a, z)
which is supposed to be distributed as the (a, z) produced by a honest prover
with instance x receiving challenge e — this is defined formally below. The
algorithm rbs is called the random bits simulator. It takes as input (x,w) ∈ R, a
challenge e ∈ {0, 1}l and bits rhvs, which we think of as the random bits used by
hvs in a run (a, z) ← hvs(x, e; rhvs), and it produces as output a bit-string rA
s.t. a = A(x,w; rA) and z = Z(x,w, rA, e). I.e. if (a, z) is the messages simulated
using hvs given just x ∈ L(R), then if w s.t. (x,w) ∈ R later becomes known it
is possible to construct random bits rA s.t. it looks like (a, z) was generated as
a ← A(x,w; rA) and z ← Z(x,w, rA, e). Finally xtr is a knowledge extractor,

252 I. Damg̊ard, J.B. Nielsen

which given two correct conversations with the same first message can compute
a witness. We now formalize these requirements along with completeness.

Completeness: For all (x,w) ∈ R, rA and e ∈ {0, 1}l we have that
B(x,A(x,w; ra), e, Z(x,w, ra, e)) = 1.

Special non-erasure honest verifier zero-knowledge: The following two random
variables are identically distributed for all (x,w) ∈ R and e ∈ {0, 1}l:

EXEC(x,w, e) = [a← A(x,w; rA); z ← Z(x,w, rA, e) : (x,w, a, rA, e, z)]
SIM(x,w, e) = [(a, z)← hvs(x, e; rhvs); rA ← rbs(x,w, e, rhvs) : (x,w, a, rA, e, z)]

Special soundness: For all x ∈ S and (a, e, z) and (a, e′, z′) where e 6= e′,B(x, a, e, z) =
1 and B(x, a, e′, z′) = 1, we have that (x, xtr(x, a, e, z, e′, z′)) ∈ R.

4 Non-Erasure Concurrent Zero-Knowledge Proofs of

Knowledge

In [8] a concurrent zero-knowledge proofs of knowledge is presented based on
any Σ-protocol. The protocol assumes that the prover P and verifier V agree on
a key K for a trapdoor commitment scheme. The prover has input (x,w) ∈ R
and the verifier knows x. The protocol proceeds as follows.

1. The prover generates a ← A(x,w; rA), commits c ← commitK(a; rc) and
sends c to the verifier.

2. The verifier sends uniformly random e ∈ {0, 1}l to the prover.
3. The prover computes z ← Z(x,w, rA, e) and sends (a, rc, z) to the verifier.
4. The verifier outputs 1 iff c = commitK(a, rc) and B(x, a, e, z) = 1.

To simulate the protocol without w one assumes that the simulator knows
the trapdoor t of K. The simulator can then let c be a fake commitment and
when it receives e compute (a, z)← hvs(x, e; rhvs), use t to compute rc s.t. c =
commitK(a; rc) and send (a, rc, z). As observed in [9], if the Σ-protocol is non-
erasure the above protocol is adaptively secure. Assume namely that P is cor-
rupted and the simulator learns a witness. Then compute rA ← rbs(x,w, e, rhvs)
and by special non-erasure honest verifier zero-knowledge the simulation is per-
fect. In the following we will call this to patch the state of the proof of knowledge.

In [8] a knowledge extractor xtr is given working as follows. Assume K is a
random commitment key so that commitK is computational binding and assume
a corrupt prover succeeds in giving an acceptable proof with probability p say.
Then by rewinding and giving new random challenges e′ until a proof is accepted
again we get, e.w.n.p., values a, e, z, a, e′, z′ s.t. B(x, a, e, z) = B(x, a, e′, z′) =
1 and e 6= e′ and can compute a witness w for x. The expected number of
rechallenges needed is 1

p
so if we run a proof and extract if a correct proof is

given the expected number of rechallenges used in the extraction is p 1
p
where p

is the probability that the proof is accepted in the first place. This generalizes
to several proofs run concurrently. Each time a proof is accepted invoke xtr

and get a witness. If the context in which the proofs are run is PPT, then the

Universally Composable Efficient Multiparty Computation 253

running time, and the number of proofs, is bounded by a polynomial P , and
so each invocation of xtr has expected running time less than P which with a
total of at most P invocations, by the linearity of expectation, gives an expected
polynomial running time of at most P 2.

Note that for the zero-knowledge simulator it is enough that K is a trapdoor
commitment key, whereas for knowledge soundness it was needed that the key
was random to ensure that commitK is computational binding. We can therefore
let V pick the key K and send it to P . All we need to ensure is that is the
simulator can get its hands on the trapdoor of K. We will use the protocol and
simulator exactly this way later.

5 Universally Composable Security

In this section we give a sketch of the notion of universally composable security of
synchronous protocols for the authenticated link model. Except for some minor
technical differences it is the synchronous model described in [3].

A protocol π consists of n parties P1, . . . , Pn, all PPT interactive Turing
machines (ITMs). The execution of a protocol takes place in the presence of an
environment Z, also a PPT ITM, which supplies inputs to and receives outputs
from the parties. Z also models the adversary of the protocol, and so schedules
the activation of the parties and corrupts parties. In each round r each party
Pi sends a message mi,j,r to each party Pj ; The message mi,i,r is the state of
Pi after round r, and mi,i,0 = (k, ri) will be the security parameter and the
random bits used by Pi. We model open channels by showing the messages
{mi,j,r}j∈[n]\{i} to Z, where [n] = {1, . . . , n}. In each round Z inputs a value
xi,r to Pi and receives and output yi,r from Pi. We write the r’th activation of
Pi as ({mi,j,r}j∈[n], yi,r) = Pi({mj,i,r−1}j∈[n], xi,r). We model that the parties
cannot reliably erase their state by giving ri to Z when Pi is corrupted. In the
following C will denote the set of corrupted parties and H = [n] \ C. In detail
the real-life execution proceeds as follows.

Init: The input is k, random bits r = (r1, . . . , rn) ∈ ({0, 1}
∗)n and an auxiliary input

z ∈ {0, 1}∗. Set r = 0 and C = ∅. For i, j ∈ [n] let mi,j,0 = ε for i 6= j and
mi,i,0 = (k, ri). Then input k and z to Z and activate Z.

Environment activation: When activated Z outputs one of the following commands:
(activate i, xi,r, {mj,i,r−1}j∈C) for i ∈ H; (corrupt i) for i ∈ H; (end round);
or (guess b) for b ∈ {0, 1}. Commands are handled as described below and the
environment is then activated again. We require that all honest parties are acti-
vated between two (end round) commands. When a (guess b) command is given
the execution stops.

Party activation: {mj,i,r−1}j∈H were defined in the previous round; Add these to
{mj,i,r−1}j∈C from the environment and compute ({mi,j,r}j∈[n], yi,r) =
Pi({mj,i,r−1}j∈[n], xi,r). Then give {mi,j,r}j∈[n]\{i} to Z.

Corrupt: Give ri to Z. Set C = C ∪ {i}.
End round: Give the value {yi,r}i∈H defined in Party activation to Z and set

r = r + 1.

254 I. Damg̊ard, J.B. Nielsen

The result of the execution is the bit b output by Z. We denote this bit
by REALπ,Z(k, r, z). This defines a Boolean distribution ensemble REALπ,Z =
{REALπ,Z(k, z)}k∈N,z∈{0,1}∗ , where we take r to be uniformly random.

To define the security of a protocol an ideal functionality F is specified. The
ideal functionality is a PPT ITM with n input tapes and n output tapes which
we think of as being connected to n parties. The input-output behavior of the
ideal functionality defines the desired input-output behavior of the protocol. To
be able to specify protocols which are allowed to leak certain information F
has a special output tape (SOT) on which it writes this information. The ideal
functionality also has the special input tape (SIT). Each time F is given an input
for Pi it writes some value on the SOT modeling the part of the input which is
not required to be kept secret. When F receives the input (activate v) a round
is over, in response to which it writes a value on the output tape for each party.
The value v models the inputs from the corrupted parties. When a party Pi is
corrupted the ideal functionality receives the input (corrupt i) on the SIT.

We then say that a protocol π realizes an ideal functionality F if there exists
an interface, also called simulator, S which given access to F can simulate a run
of π with the same input-output behavior. In doing this S is given the inputs
of the corrupted parties, and the information leaked on the SOT of F , and can
specify the inputs of corrupted parties. In detail the ideal process, proceeds as
follows.

Init: The input is k, random bits r = (rF , rS) ∈ ({0, 1}
∗)2 and an auxiliary input

z ∈ {0, 1}∗. Set r = 0 and C = ∅. Provide S with rS , provide F with rF and give
k and z to Z and activate Z.

Environment activation: Z is defined exactly as in the real-word, but now com-
mands are handled by S, as described below.

Party activation: Give {mj,i,r−1}i∈C to S and give xi,r to F on the input tape for
Pi and run F to get some value vF on the SOT. This value is given to S which is
then required to compute some value {mi,j,r}j∈[n]\{i} which is given to Z.

Corrupt: When Z corrupts Pi, S is given the values xi,0, yi,0, xi,1, . . . exchanged be-
tween Z and F for Pi. Furthermore (corrupt i) is input on the SIT of F and F
writes a value on the SOT; This value is given to S. Then S outputs some value
ri which is given to Z. Set C = C ∪ {i}.

End round: S is activated and produces a value v. Then (activate v) is input to F
which produces output {yi,r}i∈[n]. Then {yi,r}i∈C is given to S and {yi,r}i∈H is
given to Z. Set r = r + 1.

The result of the ideal-process is the bit b output by Z. We denote this bit by
IDEALF,S,Z(k, r, z). This defines a Boolean distribution ensemble IDEALF,S,Z =
{IDEALF,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Definition 1. We say that π t-realizes F if there exists an interface S s.t. for all

environments Z corrupting at most t parties it holds that IDEALF,S,Z
c
≈ REALπ,Z .

We then define the hybrid models. The G-hybrid model is basically the real-
life model where the parties in addition to the communication lines also have

Universally Composable Efficient Multiparty Computation 255

access to an ideal functionality G. In each round all parties give an input to G
and receive the output from G in the following round. The inputs to the SIT
of G are given by Z and Z receives the outputs on the SOT. When defining
security of a protocol in a hybrid model the interface S must in addition to the
communication and internal state of parties also simulate the values exchanged
between G and Z. We call this a hybrid interface.

Definition 2. We say that π t-realizes F in the G-hybrid model if there exists

a hybrid interface S s.t. for all environments Z corrupting at most t parties it

holds that IDEALF,S,Z
c
≈ HYBGπ,Z .

A universal composability theorem can be proven for this framework. I.e. if
a protocol realizes a given functionality it can be replaced for the functionality
in all contexts. The above description easily generalizes to the case of several
ideal functionalities in a hybrid model. In particular we will in the protocols
following assume that the parties have access to an ideal functionality FBA for
doing Byzantine Agreement. It expects a bit bi as input from all parties. If all
honest parties agree on a value v, then FBA outputs v to all parties. Otherwise the
environment is allowed to determine the output through the SIT. We also assume
a broadcast channel, which can easily be model with an ideal functionality.

6 The Paillier Cryptosystem and Some Tools

In this section we describe the Paillier cryptosystem [13]. The public key is a k-bit
RSA modulus pk = N = pq, where p an q are chosen s.t. p = 2p′+1, q = 2q′+1
for primes p′, q′, and both p and q have k/2 bits. The plaintext space is ZN and
the ciphertext space is Z∗

N2 . To encrypt a ∈ ZN , one chooses r ∈ Z
∗
N uniformly

at random and computes the ciphertext as Epk(a; r) = garN mod N2, where
the element g = N + 1 has order N in Z∗

N2 . The encryption function is homo-
morphic in the following sense Epk(a1; r1)Epk(a2; r2) mod N

2 = Epk(a1a2 mod
N ; r1r2 mod N) and Epk(a; r)

b = Epk(ab mod N ; r
b mod N). The private key

is e.g. sk = φ(N)(φ(N)−1 mod N), and it is straightforward to verify that
((N+1)arN)sk mod N2 = Na+1 from which a mod N can be computed. Given

a one can then compute rN and r = (rN)N
−1 mod φ(N) mod N2. Under an appro-

priate complexity assumption — the DCRA — this system is semantic secure.
The DCRA states that random elements in Z∗

N2 are computationally indistin-
guishable from random elements of form rN mod N2.

For any ciphertextK = Epk(a; rK) we can consider the function Epk,K(m; r) =
KmrN mod N2 = Epk(am; s

mr mod N). If r is uniformly random in Z∗
N , then

smr mod N is uniformly random in Z∗
N and so Epk,K(m; r) is a uniformly ran-

dom encryption of am mod N . Notice that if a ∈ Z∗
N , then from K and c =

Epk,K(m; r) and sk we can efficiently computem. Therefore Epk,K(m; r) is again
a semantically secure encryption function. If on the other hand a = 0, then
Epk,K(m; r) is a uniformly random encryption of 0. So, Epk,K(m; r) can be seen
as a perfect hiding commitment scheme commitpk,K(m; r) = Epk,K(m; r). It is

256 I. Damg̊ard, J.B. Nielsen

trivial to see that commitpk,K(m; r) is computationally binding. If K ∈ Epk(1),
then commitpk,K(m; r) would be perfect binding, so no algorithm can find two
different openings. An algorithm finding two different openings whenK = Epk(0)
would therefore distinguish encryptions of 1 from encryptions K of 0.

Notice furthermore that if K = Epk(0; rK) and rK is known, then given ar-

bitrary m,m′ ∈ ZN and r ∈ Z∗
N we can compute r′ = sm−m′

r mod N , so that
Epk,K(m; r) = Epk,K(m

′; r′). All in all we have argued that if K = Epk(0; rK) is
a random encryption, then commitK(m; r) is a perfect hiding computationally
binding trapdoor commitment scheme with trapdoor tK . When considering val-
ues K ∈ Z∗

N2 as keys we will call keys of the form K = Epk(0; tK) trapdoor keys
and we will call keys of the form K = Epk(a; s) for a ∈ Z

∗
n encryption keys. We

now describe a commitment scheme from [9].

A UC Commitment Scheme First we have to introduce a so-called double-
trapdoor commitment scheme. Consider a trapdoor commitment scheme with
key K = (K1,K2), where K1 and K2 are both encryptions of 0. We commit as
commitK1,K2

(m) = (Epk,K1
(m1), Epk,K2

(m2)), where m1 and m2 are uniformly
random values for which m = m1+m2 mod N . To make a fake commitment just
commit to random values m1 and m2, call the commitment (c1, c2). To trapdoor
open such a commitment it is enough to know the trapdoor of one of K1 and
K2. To open c = (c1, c2) to m we can open c1 to m − m2 or we can open c2
to m − m1. We note for later use that the distribution of the random bits is
independent of which trapdoor is used. Note that the domain of commitK can
be extended by committing block-wise. Here is the protocol from [9].

Setup: We assume that commitment sender S and receiver R agree on two inde-
pendently chosen Paillier public-keys N and N ′ and a commitment key K =
(K1,K2) = (EN′(0; t1), EN′(0, t1). If R is honest at the beginning of the proto-
col we furthermore assume that t1 and t2 are uniformly random.

Commitment: S commits to s ∈ ZN as follows.

1. S generate uniformly random LS ∈ Z
∗
N2 , commits cL = commitN′,K(LS ; rL)

and sends cL to R.
2. R generates uniformly random LR ∈ ZN2 and sends LR to R.

3. S computes L = LSLR mod N
2, commits to s under L as cs = commitL(s; rs)

for uniformly random s ∈ Z∗
N and sends cs to R along with (LS , rL), and

outputs (L, cs, rs).

4. R checks that cL = commitN′,K(LS ; rL) and if so computes L = LSLR mod N
2

and outputs (L, cs).

In [9] a simulator Scommit for the UC framework is given which has the prop-
erty that given any so-called hitting commitment (L, cs) it can simulate a run of
the protocol which results in R outputting (L, cs). All the simulator needs to do
this is the trapdoor(s) of K when R is corrupted and an opening (s, rs) of (L, cs)
when S is corrupted. The simulator has some properties given in Theorem 1.

Theorem 1. Consider a simulation with hitting commitment (L, cs) and output

commitment (L′, c′s) from R.

Universally Composable Efficient Multiparty Computation 257

1. If L is uniformly random from Z∗
N2 and cs is a uniformly random commit-

ment to s, then the simulation is distributed exactly as the real-life protocol

on input s.
2. If S is honest after the simulation, then (L′, c′s) = (L, cs).
3. If N ′ is a modulus for which commitN ′,K is computationally binding, then

after a simulation where S was corrupted when cL was sent and R was honest

by the end of the simulation, L′ is an encryption key, e.w.n.p.

By simulating a trapdoor commitment under (pk,K) we mean the following.
Generate L = EN (0; rL) for uniformly random r0 and compute cs = EN,L(0; rs)
for uniformly random rs. Then run Scommit with hitting commitment (L, cs). We
write the resulting commitment as (L, cs, ?). If at some point any s ∈ ZN is
given, then use r0 and rs to compute r

′
s s.t. cs = Epk,N (s; r

′
s) and give (s, r

′
s) to

Scommit to patch the state of the simulation. We call this patching (L, cs, ?) to s.

A Non-Erasure Σ-Protocol In [9] a non-erasure Σ-protocol for identical plaintext
is given for the Paillier cryptosystem. The instance is (K1, c1,K2, c2) and a
witness is (s, r1, r2) s.t. c1 = Epk,K1

(s; r1) and c2 = Epk,K2
(s; r2).

Escape-Secure Threshold Decryption In this section we introduce the adaptively
secure threshold decryption protocol from [12]. We first make a definition which
will help us state the results precisely. We will introduce a weaker notion of UC
security, which we call escape-security. An escape-simulator S is defined as a sim-
ulator in the UC framework augmented with a special escape state. An escape-
simulation IDEALF,S,Z(k, z) proceeds exactly as in the UC framework except that
if S enters the escape state, then the simulation terminates with the output ⊥
— we say that the simulation was escaped. For environment Z and values k ∈ N
and z ∈ {0, 1}∗ of the security parameter we define the simulation probability by
sZ(k, z) = 1 − Pr[IDEALF,S,Z(k, z) = ⊥]. When sZ(k, z) is non-zero we define

the conditional probabilities cZ(k, z, b) =
Pr[IDEALF,S,Z(k,z)=b]

sZ(k,z) . When sZ(k, z) is

zero we define cZ(k, z, b) =
1
2 for b ∈ {0, 1}. Then (cZ(k, z, 0), cZ(k, z, 1)) defines

a Boolean distribution ensemble which we denote by [IDEALF,S,Z |¬⊥].

Definition 3. We say that π t-escape-securely realizes F if there exists an

escape-simulator S s.t. REALπ,Z
c
≈ [IDEALF,S,Z |¬⊥] for all environments Z cor-

rupting at most t parties.

We now proceed to present the result from [12] in the above framework.
Let (G,E,D) be a public-key cryptosystem and consider the following ideal
functionality F(G,E,D) for threshold decryption.

Init: In the first round it generates (pk, sk)← G(k) and outputs pk to all parties and
to the adversary.

Decryption: After a public key pk has been output we allow the parties to input a
ciphertext C for decryption in any round and we also allow that more than one
ciphertext is input in each round. Each ciphertext is handled as follows: If in some

258 I. Damg̊ard, J.B. Nielsen

round r all honest parties input C, then send (C,m = Dsk(C)) to the adversary
1

and in round r + 6 return m to all parties.

In our terminology here, what is proved in [12] is:

Theorem 2. There exists a protocol πpal escape-securely realizing Fpal with sim-

ulation probability 1
2 .

In [12] the key distribution is handled using a trusted party or a general MPC.
Here we model this by assuming the key is generated by an ideal functionality
Fpal,key−gen; It generates a random threshold key (N, pv, sk1, . . . , skn) where N
is a random Paillier public key, sk1, . . . , skn are the private key shares of the
parties and pv is public values used in the protocol for a.o.t. checking decryption
shares. In [12] a decryption protocol πpal,dec using this key is then described.

Their simulator consists of two parts. A simulator Spal,key−gen which given
the public key pk from the ideal functionality simulates a key (N, pv, sk1, . . . , skn) =
Spal,key−gen(pk) with the property that (N, pv) is computationally indistinguish-
able from a real key. Furthermore a simulator Spal,dec for the decryption protocol
is given, which again is computationally indistinguishable from the real protocol
as long as the simulation is not escaped. We need a last property of the proto-
col. Given a random Paillier key (pk, sk) it is possible to generate a threshold
key (pk, pv, sk1, . . . , skn) with the same distribution as Fpal,key−gen. We write
(pk, pv, sk1, . . . , skn) = SingleToThesh(pk, sk).

7 An Arithmetic Black Box

The ABB is an ideal functionality FABB. Initially FABB outputs a uniformly ran-
dom key pk = N to all parties, defining the ring ZN that FABB does arithmetic
over. In each activation it expects a command from all honest parties and carries
out the command if all honest parties agree. Typically agreement means that
the parties gave the same command, e.g. (x← x1+x2), but this does not always
make sense. If e.g. party Pi is to load a secret value s into variable x, using the
command (Pi : x← s), of course the other parties cannot acknowledge by giving
the same command. In this case they input (Pi : x←?); The intended meaning
is that Pi is allowed to define x using a value unknown to the other parties.
If two honest parties ever disagree FABB goes corrupted in the following sense:
It outputs its entire current state and all future inputs on the SOT. Besides
this it lets the environment determine all future outputs through the SIT. The
functionality FABB holds a list of defined variable names x and stores a value
val(x) ∈ ZN for each. For all commands we require that variables on the right
hand side of ← are defined and that x is defined when a (output x) command
is given. In the command (Pi : x ← x1 · x2) we require that x1 was defined by
a (Pi : x1 ←?) command. A violation of these requirements will make FABB go

1 We return these values to the adversary to specify that it is not part of the func-
tionality to keep C or m secret

Universally Composable Efficient Multiparty Computation 259

corrupted. Each time a variable x is defined FABB outputs (defined x) to all
parties. Except for the s in (Pi : x← s) all input values are output on the SOT.

Init: Let c be the number of rounds used for setting up the keys in the real-life protocol.
When the init command is given the ABB simply runs for c rounds ignoring all
inputs. Then it generates a random Paillier key (N, sk) and outputs pk to all
parties and outputs (N, sk) to the adversary.

Load: On (Pi : x ←?) in round r, if Pi inputs (Pi : x ← s) for s ∈ ZN , then set
val(x) = s in round r+8. If in a round before round r+8 Pi is corrupted and the
adversary inputs (change s′) on the SIT, then val(x) = s′, and if the adversary
inputs fail, then val(x) is not defined.

Linear combination: On (x ← a0 +
∑l

j=1 ajxj) for aj ∈ ZN define val(x) = a0 +
∑l

j=1 ajval(xj) mod N in the same round.

Private multiplication: On (Pi : x← x1 · x2) in round r, if Pi also inputs (Pi : x←
x1 · x2), (this is an extra requirement as Pi might be corrupted), then in round
r+4 define val(x) = val(x1)val(x2) mod N . If in a round before round r+5 the
adversary inputs fail on the SIT and Pi is corrupted, then val(x) is not defined.

Output: On (output x) in round r output (output x = val(x)) on the SIT and output
(output x = val(x)) to all parties in round r + 12.

The functionality has no general multiplication command, but running in the
FABB-hybrid model, parties can do a multiplication of any two variable using the
multiplication protocol from the introduction. We now describe a protocol πABB
realizing FABB. A variable x with val(x) = s is represented by an encryption
enc(x) = Epk,K(s) on which the parties agree.

Init: The protocol runs in the hybrid model with access to two copies of the func-
tionality Fpal,key−gen described in Section 6. We call the public key returned by
the first copy pk = N , and we assume that the first copy also returns two random
encryptions K = Epk(1) and R = Epk(0). We call the public key returned by the
second copy pk′ = N ′, and we assume that the second copy also return 3n random
encryptions Ki,l = Epk′(0) for i ∈ [n], l ∈ {0, 1, 2}. The key Kj,0 is for for running
the proof of knowledge protocol from Section 4 with the relation in Section 6 with
Pj as verifier. We will denote this by Pi proves to Pj . The double-trapdoor key
Kj = (N

′,Kj,1,Kj,2) will be used for running the universally composable commit-
ment scheme in Section 6 with Pj as receiver to generate commitments under N .
When Pi is the committer with some value s we will denote this by Pi commits to

s to Pj . In the first round the parties call the ideal functionalities and wait until
all keys are returned.

Load: Below we use M as the key under which encryptions are made. When the
parties carry out the load commands given from the environment they always use
M = K. However the implementation of Output also uses the load command as
an internal sub-routine, with M = R.

1. Pi computes S = Epk,M (s; rS) and broadcasts S.

2. For j 6= i party Pi commits to s to Pj . Denote the commitment by (Lj , cs,j , rs,j).

3. For j 6= i party Pi proves to Pj with instance x = (pk,M, S, Lj , cs,j) and
witness (s, rS , s, rs,j).

260 I. Damg̊ard, J.B. Nielsen

4. For j 6= i party Pj inputs 1 to FBA iff the zero-knowledge proof given by Pi to
Pj was accepted.

5. Wait until FBA outputs a bit b. If b = 1 the parties set enc(x) = S.

Linear combination: Set enc(x) = ga0
∏l

i=1 enc(xj)
aj mod N2.

Private multiplication: We assume that Pi knows (s, rs) s.t. enc(x1) = Epk,K(s; rs).

1. Pi computes X = Epk,enc(x2)(s; rX) and broadcasts X.
2. For j 6= i party Pi proves to Pj with instance x = (pk,K, enc(x1), enc(x2), X)
and witness (s, rS , s, rX), and as above the parties run a BA to determine
whether to accept the proof.

3. If the result of the BA is 1 the parties set enc(x) = X.

Output: 1. Pi generates random ri ∈ ZN and loads it into variable xi usingM = K.
Let {Cj}j 6=i denote the commitments used in Step 2 of the load.

2. Parti Pi loads ri into variable yi using M = R, but reuses the commitments
{Cj}j 6=i from the previous load. If a party Pi input 0 to the BA in the previous
load for Pj , then input 0 again in this load.

3. Let I be a size t+1 subset of the set of indices i for which yi is now defined. Let
{λIi }i∈I be degree t Lagrange coefficients interpolating from {f(i)}i∈I to f(0)

over ZN . Compute S =
∏
i∈I enc(yi)

λI
i mod N2 and T = enc(x)S mod N2.

We assume some fixed way of picking the subset I so that all parties agree on
T .

4. The parties run πpal,dec from Section 6 on T and take as their output the value
v returned by πpal,dec.

Theorem 3. πABB d(n− 1)/2e-securely realizes FABB.

Due to space limitations we can only sketch the proof of Theorem 3, a full
proof will appear in the Ph.D. dissertation of the second author. In the proof we
construct an interface S simulating πABB in the ideal process with access to FABB.
The simulator runs a copy of the protocol πABB and keeps it consistent with the
inputs and outputs of FABB in ideal process (in which S is run). In simulating
πABB, S must provide inputs to FABB on behalf of the corrupted parties. For
all commands except Load and Private Multiplication only the inputs from
honest parties are consider by FABB. However for a load (Pi : x←?) and a private
multiplication (Pi : x ← x1 · x2) the input from S matters. In the first case S
must provide an input (Pi : x ← s) for x to be defined and in the second case
S must provide the input (Pi : x ← x1 · x2) for x to be defined. Whether the
simulator supplies these inputs, and the value of s, depends on Z: If Z lets
Pi participate in the simulation of πABB in a way which results in the honest
parties defining enc(x) to hold some encryption, then S will provide the input
to FABB and in the case of a Load it will determine an appropriate value of s.
The initialization is simulated as follows::

Init: For the first copy it receives the key (pk = N, sk) from FABB and computes
(N, pv, sk1, . . . , skn) = SingleToThesh(pk, sk).(1) Then it computesK = Epk(0; rK)
and computes R = Epk(1; rR) and outputs (pk, pv, ski, R,K) to party Pi. For the
second copy it generatesN ′ and all the keysKj,l = EN′(0; rj,l) itself and distributes
these as in the protocol. When running the simulator for the zero-knowledge proofs
with Pj as verifier the key Kj,0 is given to the simulator, and if Pj is corrupted tj,0

Universally Composable Efficient Multiparty Computation 261

is given to the simulator. Notice that we do not use sk′ so the commitment schemes
Epk′,Kj,0

will be computationally binding as required. When running the simulator
for a commitment from Pi to Pj the key (Kj,1,Kj,2) is given to the simulator, and
if Pj is corrupted tj,1 and tj,2 are given to the simulator. Notice that except for K
and R this initialization simulates perfectly the protocol.

The simulator maintains the invariant that a variable x is defined in the
simulated πABB iff it is defined in FABB. Furthermore the simulator maintains that
for all defined variables x it knows ran(x) s.t. enc(x) = Epk(0; ran(x)). These
values are used for trapdoor openings under K, e.g. in the simulation of the load
command:

Load: We only describe how to simulate for M = K as for all loads with key R we
will actually know the value to load, so the ’simulation’ can be done by running
the protocol. On (Pi : x←?), if Pi is honest we proceed as follows:

1. Pi computes S = Epk(0; r0) and broadcasts S. If Pi is corrupted after this
step, then we learn (Pi : x← s) from the ideal process. Then using rK and r0
compute rS s.t. S = Epk,K(s; rS) and uses rS as the internal state of Pi.

2. For j 6= i party Pi simulates a trapdoor commitment to Pj giving commitment
(Lj , cs,j , ?). If Pi is corrupted in or after this step, then first patch as as above,
and then patch (Lj , cs,j , ?) to s.

3. For each party Pj where j 6= i party Pi run the simulator from Section 4 with
instance x = (pk,K, S, (Lj , cs,j)). If Pi is corrupted after this Step, then first
patch as above. Then w = (s, rS , rs,j) is a witness to x. Give this witness to
the simulator from Section 4 to patch the state of the proof of knowledge.

4. The parties execute the BA following the protocol. If the result is 1 the parties
set enc(x) = S and ran(x) = r0.

For corrupted Pi the simulator inputs (Pi : x ← 0) to FABB on behalf of Pi and
then lets the honest parties follow the protocol. If the BA fails the simulator inputs
fail on the SIT of FABB. If the broadcast value enc(x) = S is accepted, then the
simulator must at the end of the load input (change s) on behalf of Pi on the SIT
of FABB. Since the BA output 1, at least t+1 parties input 1, so at least one party
Pj which is still honest input 1. Let (Lj , cs,j) be the commitment received by Pj .
Since the proof received was accepted, Pi can, e.w.n.p., open (Lj , cs,j) and S to
the same value, s say — i.e. if we could rewind we could extract such a value.
By Theorem 1 we can assume that if S was sent by the adversary, then Lj is a
binding key, so (Lj , sj) can only be opened to one value. Therefore we can using
sk decrypt(2) (Lj , cs,j) to obtain the value s to which Pi can open S. The intuition
here is that if K had been an encryption of 1, then this value s, to which Pi can
open S, would indeed be its plaintext value, so we have extracted the ’plaintext’
of S.
If Pi is honest at the onset of the load but is corrupted before the third message
of the commitment protocol is sent, i.e. in round r + 2, then the environment
might send a commitment (Lj , cs,j) to a value s

′ different from the s which has
already been input to FABB, and we have no guarantee that Lj is an encryption
key. However, we have no need to decrypt either: Since the simulator sent S it
patched the state of Pi to be consistent with S = encpk,K(s; rS). So, if K had been
a binding key, then the state of Pi would be consistent with FABB.
In all cases, if enc(c) is accepted the simulator decrypts(3) enc(x) to learn random
bits ran(x) s.t. enc(x) = Epk(0; ran(x)).

262 I. Damg̊ard, J.B. Nielsen

A private multiplication is simulated similarly, letting X = Epk(0; r0) and if
s becomes known, computing rX s.t. X = Epk,enc(x2)(s; rX) — in doing this
we use that we know ran(x2) s.t. enc(x2) = Epk(0; ran(x2)). Linear com-

bination is simulated by letting enc(x) = ga
0 ∏l

i=1 enc(xj)
aj and ran(x) =

a0

∏l
i=1 ran(xj)

aj mod N . An output is simulated as follows:

Output: On input (output x = v) from FABB we know that all honest parties got the
input (output x) and will output v in 12 rounds. We cannot use the simulator
from Section 6 to simulate a decryption to v, as the inconsistent party might get
corrupted. Instead we cheating in the randomization as to make T an encryption
of v, and then decrypt honestly.

1. For honest Pi run the load command by committing to uniformly random
elements r′i under trapdoor keys.

2. Let J be the indices j of corrupted parties for which the load into xj succeeded.
If |J | < t, then add the indices of some uniformly random honest parties until
|J | = t and for those parties, let ri = r′i. Pick a random degree t+1 polynomial
f(j) s.t. f(j) = rj for j ∈ J and f(0) = v. Then for the honest parties set
ri = f(i) and patch the load into xi to be consistent with s = ri. Then load
ri into yi under R by running the load protocol honestly. This is possible as
the previous load is now consistent with ri.

3. This step is simulated by following the protocol. Since R is an encryption of
1, unless a corrupted party Pj was able to load different values into xj and yj ,
we will have that S is an encryption of f(0) = v and so is then T .(4)

4. Run the decryption protocol as in the protocol.

We then prove IDEALFABB,S,Z
c
≈ REALπABB,Z using a hybrids argument. Define

H′
0 by taking FABB, S and Z and running IDEALFABB,S,Z with the modification

that Sgen,pal(pk) is run at (1) to produce the key and Spal,dec(T,Dsk(T)) is run
at (4) instead of πpal,gen. Let H0 = [H0|¬⊥]. Doing this we got rid of the use
of sk at (1) but introduced one at (4). By the results in Section 6 we will have

that IDEALFABB,S,Z
c
≈ H0. Define H

′
1 as H

′
0 but at (2, 3) use xtr from Section

4 to extract the plaintext (and for (3), the random bits.) Let H1 = [H ′
1|¬⊥].

By the results in Section 4 we will have H0
c
≈ H1. Define H

′
2 as H

′
1 but at (4)

run Spal,dec(T, v) instead of Spal,dec(T,Dsk(T)). Let H2 = [H ′
2|¬⊥]. By using

Sections 4 it can be proved that v = Dsk(T), e.w.n.p. So, H2
c
≈ H1. Notice

that H2 can be produced without using sk, so now we can use the semantic
security of Epk. Define H

′
3 as H

′
2, but use R = Epk(0). It follows via semantic

security that H3 = [H
′
3|¬⊥]

c
≈ H2. Define H

′
4 as H

′
3 except that we use correct

inputs to all honest parties and pick the ri values uniformly at random for all
honest parties. It can be seen that H4 = [H ′

4|¬⊥] = H3, as K,R ∈ Epk(0), so
no information is leaked about the inputs and the environment sees at most t
of the ri values and so cannot distinguish random values from random values
consistent with a degree t+1 polynomial. Define H′

5 as H
′
4 but with K = Epk(1)

and use semantic security to prove H5 = [H ′
5|¬⊥]

c
≈ H4. Because K = E(1)

we cannot use the simulator from 6 for simulating the commitments anymore.
However this not not needed either as from H ′

4 all honest parties use correct

Universally Composable Efficient Multiparty Computation 263

inputs, so at the same time we start running all commitments honestly. Define

H′
6 as H

′
5 but starting to use sk at (2) again and as for H0

c
≈ H1 get that

H6 = [H ′
6|¬⊥]

c
≈ H5. Define H

′
7 as H

′
6 but at (4) run Spal,dec on (T,Dsk(T))

instead. Proving H7 = [H ′
7|¬⊥]

c
≈ H ′

6 basically involves proving the protocol
correct, which is done using the results from Sections 4. The only difference
between H7 and REALπABB,Z is between the use of Spal,key−gen and Spal,dec instead

of Fpal,key−gen and πpal,dec, and H7
c
≈ REALπABB,F follows as IDEALFABB,S,Z

c
≈ H0.

References

1. D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic
adversaries. In R. A. Rueppel, editor, Advances in Cryptology - EuroCrypt ’92,
pp. 307–323, Berlin, 1992. Springer-Verlag. LNCS Vol. 658.

2. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th

STOC, pp. 1–10, Chicago, Illinois, May 1988.
3. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42th FOCS. IEEE, 2001.

4. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party
computation. In 28th STOC, pp. 639–648, Philadelphia, Pennsylvania, May 1996.

5. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In 34th STOC, pp. 494–503, Montreal,
Quebec, Canada, 2002.

6. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols (extended abstract). In 20th STOC, pp. 11–19, Chicago, Illinois, May 1988.

7. R. Cramer, I. Damgaard, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Advances in Cryptology - EuroCrypt 2001, pp. 280–
300, Berlin, 2001. Springer-Verlag. LNCS Vol. 2045.

8. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
B. Preneel, editor, Advances in Cryptology - EuroCrypt 2000, pp. 418–430, Berlin,
2000. Springer-Verlag. LNCS Vol. 1807.

9. I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In M. Yung,
editor, Advances in Cryptology - Crypto 2002, pp. 581–596, Berlin, 2002. Springer-
Verlag. LNCS Vol. 2442.

10. R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and fast-track multi-party
computations with applications to threshold cryptography. In PODC’98, 1998.

11. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In 19th STOC, pp.
218–229, New York City, May 1987.

12. A. Lysyanskaya and C. Peikert. Adaptive security in the threshold setting: From
cryptosystems to signature schemes. In C. Boyd, editor, Advances in Cryptology -

ASIACRYPT 2001, pp. 331–350, Berlin, 2001. Springer. LNCS Vol. 2248.
13. P. Paillier. Public-key cryptosystems based on composite degree residue classes.

In J. Stern, editor, Advances in Cryptology - EuroCrypt ’99, pp. 223–238, Berlin,
1999. Springer-Verlag. LNCS Vol. 1592.

14. A. C. Yao. Protocols for secure computations (extended abstract). In 23rd FOCS.
IEEE. 1982. pp. 160–164, Chicago, Illinois, 3–5 Nov. 1982.

