
Scalable Protocols for

Authenticated Group Key Exchange

Jonathan Katz1 and Moti Yung2

1 Dept. of Computer Science, University of Maryland, College Park, MD
jkatz@cs.umd.edu

2 Dept. of Computer Science, Columbia University, New York, NY
moti@cs.columbia.edu

Abstract. We consider the fundamental problem of authenticated group
key exchange among n parties within a larger and insecure public net-
work. A number of solutions to this problem have been proposed; how-
ever, all provably-secure solutions thus far are not scalable and, in partic-
ular, require n rounds. Our main contribution is the first scalable protocol
for this problem along with a rigorous proof of security in the standard
model under the DDH assumption; our protocol uses a constant number
of rounds and requires only O(1) modular exponentiations per user (for
key derivation). Toward this goal and of independent interest, we first
present a scalable compiler that transforms any group key-exchange pro-
tocol secure against a passive eavesdropper to an authenticated protocol
which is secure against an active adversary who controls all commu-
nication in the network. This compiler adds only one round and O(1)
communication (per user) to the original scheme. We then prove secure
— against a passive adversary — a variant of the two-round group key-
exchange protocol of Burmester and Desmedt. Applying our compiler to
this protocol results in a provably-secure three-round protocol for au-

thenticated group key exchange which also achieves forward secrecy.

1 Introduction

Protocols for authenticated key exchange (AKE) allow a group of parties within
a larger and completely insecure public network to establish a common secret
key (a session key) and furthermore to be guaranteed that they are indeed
sharing this key with each other (i.e., with their intended partners). Protocols
for securely achieving AKE are fundamental to much of modern cryptography.
For one, they are crucial for allowing symmetric-key cryptography to be used for
encryption/authentication of data among parties who have no alternate “out-
of-band” mechanism for agreeing upon a common key. Furthermore, they are
instrumental for constructing “secure channels” on top of which higher-level
protocols can be designed, analyzed, and implemented in a modular manner.
Thus, a detailed understanding of AKE — especially the design of provably-
secure protocols for achieving it — is critical.
The case of 2-party AKE has been extensively investigated (e.g., [19, 8, 20, 6,

25, 4, 30, 15–17] and others) and is fairly well-understood; furthermore, a variety

Scalable Protocols for Authenticated Group Key Exchange 111

of efficient and provably-secure protocols for 2-party AKE are known. Less atten-
tion has been given to the important case of group AKE where a session key is to
be established among n parties; we survey relevant previous work in the sections
that follow. Group AKE protocols are essential for applications such as secure
video- or tele-conferencing, and also for collaborative (peer-to-peer) applications
which are likely to involve a large number of users. The recent foundational pa-
pers of Bresson, et al. [13, 11, 12] (building on [6, 7, 5]) were the first to present
a formal model of security for group AKE and the first to give rigorous proofs
of security for particular protocols. These represent an important initial step,
yet much work remains to be done to improve the efficiency and scalability of
existing solutions.

1.1 Our Contributions

We may summarize the prior “state-of-the-art” for group AKE as follows (see
Section 1.2 for a more detailed discussion of previous work):

– The best-known provably-secure solutions in the standard model are those
of [13, 11, 12], building on [31]. These protocols do not scale well: to establish
a key among n participants, they require n rounds and additionally require
(for some players) O(n) modular exponentiations and O(n) communication.

– Subsequent to the present work, a constant-round protocol for group AKE
has been proven secure in the random oracle model [10]. Unfortunately, this
protocol does not achieve forward secrecy (an explicit attack is known [10]).
The protocol is also not symmetric; furthermore, the initiator of the protocol
must perform O(n) encryptions and send O(n) communication.

Our main result is the first constant-round and fully-scalable protocol for
group AKE which is provably-secure in the standard model. Security is proved
(in the same security model used in previous work [13, 11, 12, 10]) via reduction
to the decisional Diffie-Hellman (DDH) assumption. The protocol also achieves
forward secrecy [20] in the sense that exposure of principals’ long-term secret keys
does not compromise the security of previous session keys.3 Our 3-round protocol
remains practical even for large groups: it requires only O(1) communication, 3
modular exponentiations, and O(n) signature verifications per user.
The difficulty of analyzing protocols for group AKE has seemingly hindered

the development of practical and provably-secure solutions, and has led to the
proposal of some protocols which were later found to be flawed (see, e.g., the at-
tacks given in [29, 10]). To manage this complexity, we take a modular approach
which greatly simplifies the design and analysis of group AKE protocols and
should therefore prove useful for future work. Specifically, we show a compiler
that transforms any group key-exchange protocol secure against a passive eaves-
dropper to one secure against a stronger (and more realistic) active adversary
who controls all communication in the network. If the original protocol achieves

3 We of course also require that exposure of (multiple) session keys does not compro-
mise the security of unexposed session keys; see the formal model in Section 2.

112 J. Katz and M. Yung

forward secrecy, the compiled protocol does too. Adapting work of Burmester
and Desmedt [14], we then present a 2-round group key-exchange protocol and
rigorously prove its security — against a passive adversary — under the DDH
assumption.4 Applying our compiler to this protocol gives our main result.
We note two additional and immediate applications of the compiler presented

here. First, the compiler may be applied to the group key-exchange protocols
of [31] to yield a group AKE protocol similar to that of [13] but with a much
simpler security proof which holds for groups of polynomial size (the proof given
in [13] holds only for groups of constant size). Second, we may compile the 1-
round, 3-party key-exchange protocol of Joux [23] to obtain a simple, 3-party
AKE protocol requiring 2 rounds. The simplicity of the resulting security proof
in these cases makes a modular approach of this sort compelling, especially when
this approach is compared to the largely ad hoc methods which are often used
when analyzing group AKE protocols (as in, e.g., [1, 26, 27]).

1.2 Previous Work

Group key exchange. A number of works have considered the problem of
extending the 2-party Diffie-Hellman protocol [19] to the multi-party setting.
Most well-known among these are perhaps the works of Ingemarsson, et al. [22],
Burmester and Desmedt [14], and Steiner, et al. [31]. These works all assume
a passive (eavesdropping) adversary, and only [31] provides a rigorous proof of
security (but see footnote 4).

Authenticated protocols are designed to be secure against the stronger class
of adversaries who —in addition to eavesdropping — control all communication
in the network (cf. Section 2). A number of protocols for authenticated group key
exchange have been suggested [24, 9, 2, 3, 32]; unfortunately, none of these works
present rigorous security proofs and thus confidence in these protocols is limited.
Indeed, attacks on some of these protocols have been presented [29], emphasizing
the need for rigorous proofs in a well-defined model. Tzeng and Tzeng [33] prove
security of a group AKE protocol using a non-standard adversarial model; an
explicit attack on their protocol has recently been identified [10].

Provably-secure protocols. As mentioned earlier, only recently have Bresson,
et al. [13, 11, 12] given the first formal model of security and the first provably-
secure protocols for the group AKE setting. Their security model builds on
earlier work of Bellare and Rogaway in the 2-party setting [6, 7] as extended by
Bellare, et al. [5] to handle (among other things) forward secrecy.
The provably-secure protocols of Bresson, et al. [13, 11, 12] are based on the

protocols of Steiner, et al. [31], and require n rounds to establish a key among
a group of n users. The initial work [13] deals with the static case, and shows a

4 Because no proof of security appears in [14], the Burmester-Desmedt protocol has
been considered “heuristic” and not provably-secure (see, e.g., [13, 10]). Subsequent
to our work we became aware that a proof of security for a variant of the Burmester-
Desmedt protocol (in a weaker model than that considered here) appears in the
pre-proceedings of Eurocrypt ’94 [18]. See Section 4 for further discussion.

Scalable Protocols for Authenticated Group Key Exchange 113

protocol which is secure (and achieves forward secrecy) under the DDH assump-
tion.5 Unfortunately, the given proof of security applies only when n is constant ;
in contrast, the proofs given here allow n = poly(k).
Later work [11, 12] focuses on the dynamic case where users join or leave

and the session key must be updated whenever this occurs. Although we do
not explicitly address this case, note that dynamic group membership can be
handled efficiently — when using a constant-round protocol — by running the
group AKE protocol from scratch among members of the new group. For the
protocol given here, the complexity of this approach is roughly equivalent6 to
the Join and Remove protocols of [11, 12]. Yet, handling dynamic membership
even more efficiently remains an interesting topic for future research.
More recently (in work subsequent to ours), a constant-round group AKE

protocol with a security proof in the random oracle model has been shown [10].
The given protocol does not provide forward secrecy; in fact (as noted by the au-
thors) an explicit attack is possible when long-term keys are exposed. Finally, the
protocol is not symmetric but instead requires a “group leader” to perform O(n)
encryptions and send O(n) communication each time a group key is established.

Compilers for key-exchange protocols. A modular approach such as ours
has previously been used in the design and analysis of key-exchange protocols.
Mayer and Yung [28] give a compiler which converts any 2-party protocol into
a centralized (non-contributory) group protocol; their compiler invokes the orig-
inal protocol O(n) times, however, and is therefore not scalable. In work with
similar motivation as our own, Bellare, et al. [4] show a compiler which converts
unauthenticated protocols into authenticated protocols in the 2-party setting.
Their compiler was not intended for the group setting and does not scale as well
as ours; extending [4] to the group setting gives a compiler which triples the num-
ber of rounds and furthermore requires n signature computations/verifications
and an O(n) increase in communication per player per round. In contrast, the
compiler presented here adds only a single round and introduces an overhead of
1 signature computation, n signature verifications, and O(1) communication per
player per round. (In fact, the compiler introduced here is slightly more efficient
than that of [4] even in the 2-party case.)

1.3 Outline

In Section 2, we review the security model of Bresson, et al. [13]. We present our
compiler in Section 3 and a two-round protocol secure against passive adversaries
in Section 4. Applying our compiler to this protocol gives our main result: an
efficient, fully-scalable, and constant-round group AKE protocol.

5 The given reduction is in the random oracle model using the CDH assumption but
they mention that the protocol can be proven secure in the standard model under
the DDH assumption.

6 For example, the Join algorithm of [11, 12] requires 2 rounds when one party joins
and O(n) rounds when n parties join; running our group AKE protocol from scratch
requires only 3 rounds regardless of the number of parties who have joined.

114 J. Katz and M. Yung

2 The Model and Preliminaries

Our security model is the standard one of Bresson, et al. [13] which builds on
prior work from the 2-party setting [6, 7, 5] and which has been widely used
to analyze group key-exchange protocols (e.g., [11, 12, 10]). We explicitly define
notions of security for both passive and active adversaries; this will be necessary
for stating and proving meaningful results about our compiler in Section 3.

Participants and initialization. We assume for simplicity a fixed, polynomial-
size set P = {U1, . . . , U`} of potential participants. Any subset of P may decide
at any point to establish a session key, and we do not assume that these subsets
are always the same size or always include the same participants. Before the
protocol is run for the first time, an initialization phase occurs during which
each participant U ∈ P runs an algorithm G(1k) to generate public/private keys
(PKU , SKU). Each player U stores SKU , and the vector 〈PKi〉1≤i≤|P| is known
by all participants (and is also known by the adversary).

Adversarial model. In the real world, a protocol determines how principals
behave in response to signals from their environment. In the model, these signals
are sent by the adversary. Each principal can execute the protocol multiple times
with different partners; this is modeled by allowing each principal an unlimited
number of instances with which to execute the protocol. We denote instance i
of user U as Π iU . A given instance may be used only once. Each instance Π

i
U

has associated with it the variables stateiU , term
i
U , acc

i
U , usediU , sid

i
U , pidiU , and

skiU ; the last of these is the session key whose computation is the goal of the
protocol, while the function of the remaining variables is as in [5].
The adversary is assumed to have complete control over all communication in

the network. An adversary’s interaction with the principals in the network (more
specifically, with the various instances) is modeled by the following oracles:

– Send(U, i,M) — This sends message M to instance Π i
U , and outputs the

reply generated by this instance. We allow the adversary to prompt the
unused instance Π i

U to initiate the protocol with partners U2, . . . , Un by
calling Send(U, i, 〈U2, . . . , Un〉).

– Execute(U1, . . . , Un) — This executes the protocol between unused instances
of players U1, . . . , Un ∈ P and outputs the transcript of the execution. The
number of group members and their identities are chosen by the adversary.

– Reveal(U, i) — This outputs session key skiU .
– Corrupt(U) — This outputs the long-term secret key SKU of player U .
– Test(U, i) — This query is allowed only once, at any time during the adver-
sary’s execution. A random bit b is generated; if b = 1 the adversary is given
skiU , and if b = 0 the adversary is given a random session key.

A passive adversary is given access to the Execute, Reveal, Corrupt, and Test

oracles, while an active adversary is additionally given access to the Send oracle.
(Even though the Execute oracle can be simulated via repeated calls to the Send

oracle, allowing the adversary access to the Execute oracle allows for a tighter
definition of forward secrecy.)

Scalable Protocols for Authenticated Group Key Exchange 115

Partnering. Partnering is defined via session IDs and partner IDs. The session
ID for instance Π i

U (denoted sidiU) is a protocol-specified function of all com-
munication sent and received by Π i

U ; for our purposes, we will simply set sidiU
equal to the concatenation of all messages sent and received by Π i

U during the
course of its execution. The partner ID for instance Π i

U (denoted pidiU) consists
of the identities of the players in the group with whom Π i

U intends to establish
a session key, including U itself; note that these identities are always clear from
the initial call to the Send or Execute oracles. We say instances Π i

U and Π
j
U ′ are

partnered iff (1) pidiU = pid
j
U ′ and (2) sidiU = sid

j
U ′ . Our definition of partnering

is much simpler than that of [13] since, in our protocols, all messages are sent to
all other members of the group taking part in the protocol.

Correctness. Of course, we wish to rule out “useless” protocols from considera-
tion. In the standard way, we require that for all U,U ′, i, j such that sidiU = sid

j
U ′ ,

pidiU = pid
j
U ′ , and acciU = acc

j
U ′ = true it is the case that skiU = sk

j
U ′ 6= null.

Freshness. Following [5, 13], we define a notion of freshness appropriate for the
goal of forward secrecy. An instance Π i

U is fresh unless one of the following is
true: (1) at some point, the adversary queried Reveal(U, i) or Reveal(U ′, j) where
ΠiU and Π

j
U ′ are partnered; or (2) a Corrupt query was asked before a query of

the form Send(U, i, ∗).

Definitions of security.We say event Succ occurs if the adversary queries the
Test oracle on a fresh instance and correctly guesses the bit b used by the Test

oracle in answering this query. The advantage of an adversary A in attacking

protocol P is defined as AdvA,P (k)
def
= |2 · Pr[Succ] − 1|. We say protocol P

is a secure group key exchange (KE) protocol if it is secure against a passive
adversary; that is, for any ppt passive adversary A it is the case that AdvA,P (k)
is negligible. We say protocol P is a secure authenticated group key exchange
(AKE) protocol if it is secure against an active adversary; that is, for any ppt

active adversary A it is the case that AdvA,P (k) is negligible.

To enable a concrete security analysis, we define AdvKE−fs
P (t, qex) to be the

maximum advantage of any passive adversary attacking P , running in time t and
making qex calls to the Execute oracle. Similarly, we define AdvAKE−fs

P (t, qex, qs)
to be the maximum advantage of any active adversary attacking P , running in
time t and making qex calls to the Execute oracle and qs calls to the Send oracle.

Protocols without forward secrecy. Throughout this paper we will be con-
cerned primarily with protocols achieving forward secrecy; the definitions above
already incorporate this requirement since the adversary has access to the Cor-

rupt oracle in each case. However, our compiler may also be applied to KE pro-
tocols which do not achieve forward secrecy (cf. Theorem 2). For completeness,
we define AdvKE

P (t, qex) and AdvAKE
P (t, qex, qs) in a manner completely analogous

to the above, with the exception that the adversary in each case no longer has
access to the Corrupt oracle.

Authentication. We do not define any notion of explicit authentication or,
equivalently, confirmation that the other members of the group have computed

116 J. Katz and M. Yung

the common key. Indeed, our protocols do not explicitly provide such confirma-
tion. However, explicit authentication in our protocols can be achieved at little
additional cost. Previous work (e.g., [13, Sec. 7]) shows how to achieve explicit
authentication for any secure group AKE protocol using one additional round
and minimal extra computation. (Although [13] use the random oracle model,
their techniques can be extended to the standard model by replacing the random
oracle with a pseudorandom function.) Applying their transformation to our fi-
nal protocol will result in a constant-round group AKE protocol with explicit
authentication.

2.1 Notes on the Definition

Although the above definition is standard for the analysis of group key-exchange
protocols — it is the definition used, e.g., in [13, 11, 10] — there are a number
of concerns that it does not address. For one, it does not offer any protection
against malicious insiders, or users who do not honestly follow the protocol. Sim-
ilarly, the definition is not intended to ensure any form of “agreement” and thus
secure protocols for group AKE do not contradict known impossibility results
for asynchronous distributed computing (e.g., [21]). (Actually, since the public-
key model is assumed here, many of these impossibility results do not apply.)
Finally, the definition inherently does not protect against “denial of service”
attacks, and cannot prevent the adversary from causing an honest instance to
“hang” indefinitely; this is simply because the model allows the adversary to
refuse to deliver messages to any instance.
Some of these concerns can be addressed — at least partially — within the

model above. For example, to achieve confirmation that all intended partici-
pants have computed the (correct, matching) session key following execution
of a protocol, we may augment any group AKE protocol in the following way:
after computing key sk, each player Ui computes xi = Fsk(Ui), signs xi, broad-
casts xi and the corresponding signature, and computes the “actual” session key
sk′ = Fsk(⊥) (here, F represents a pseudorandom function and “⊥” represents
some distinguished string); other players check the validity of these values in the
obvious way.7 Although this does not provide agreement (since an adversary can
refuse to deliver messages to some of the participants), it does prevent a cor-
rupted user from sending different messages to different parties, thereby causing
them to generate and use non-matching keys.
Addressing the other concerns mentioned above represents an interesting

direction for future work.

3 A Scalable Compiler for Group AKE Protocols

We show here a compiler transforming any secure group KE protocol P to a
secure group AKE protocol P ′. Without loss of generality, we assume the fol-
lowing about P : (1) Each message sent by an instance Π i

U during execution of

7 This is slightly different from the approach of [13, Sec. 7] in that we require a
signature on the broadcast value xi.

Scalable Protocols for Authenticated Group Key Exchange 117

P includes the sender’s identity U as well as a sequence number which begins
at 1 and is incremented each time Π i

U sends a message (in other words, the
jth message sent by an instance Π i

U has the form U |j|m); (2) every message of
the protocol is sent — via point-to-point links — to every member of the group
taking part in the execution of the protocol (that is, Π i

U sends each message to
all users in pidiU). For simplicity, we refer to this as “broadcasting a message”
but stress that we do not assume a broadcast channel and, in particular, an
active adversary or a corrupted user can deliver different messages to different
members of the group. Note that any secure group KE protocol P̃ can be readily
converted to a secure group KE protocol P in which the above assumptions hold
(recall, security of a KE protocol is with respect to a passive adversary only).
Let Σ = (Gen,Sign,Vrfy) be a signature scheme which is strongly unforgeable

under adaptive chosen message attack (where “strong” means that an adversary
is also unable to forge a new signature for a previously-signed message), and let
SuccΣ(t) denote the maximum advantage of any adversary running in time t in
forging a new message/signature pair. We furthermore assume that the signature
length is independent of the length of the message signed; this is easy to achieve
by hashing the message (using a collision-resistant hash function) before signing.
Given P as above, our compiler constructs protocol P ′ as follows:

1. During the initialization phase, each party U ∈ P generates the verifica-
tion/signing keys (PK ′

U , SK
′
U) by running Gen(1k). This is in addition to

any keys (PKU , SKU) needed as part of the initialization phase for P .
2. Let U1, . . . , Un be the identities (in lexicographic order) of users wishing
to establish a common key, and let U = U1| · · · |Un. Each user Ui begins
by choosing a random nonce ri ∈ {0, 1}

k and broadcasting Ui|0|ri (note
we assign this message the sequence number “0”). After receiving the ini-
tial broadcast message from all other parties, each instance stores U and
r1| · · · |rn as part of its state information.

3. The members of the group now execute P with the following changes:
– Whenever instance Π i

U is supposed to broadcast U |j|m as part of pro-
tocol P , the instance instead signs j|m|U|r1| · · · |rn using SK

′
U to obtain

signature σ, and then broadcasts U |j|m|σ.
– When instance Π i

U receives message V |j|m|σ, it checks that: (1) V ∈
pidiU , (2) j is the next expected sequence number for messages from V ,
and (3) (using PK ′

V) σ is a correct signature of V on j|m|U|r1| · · · |rn.
If any of these are untrue, Π i

U aborts the protocol and sets acciU =
false and skiU = null. Otherwise, Π i

U continues as it would in P upon
receiving message V |j|m.

4. Each non-aborted instance computes the session key as in P .

Theorem 1. If P is a secure group KE protocol achieving forward secrecy, then
P ′ given by the above compiler is a secure group AKE protocol achieving forward
secrecy. Namely:

AdvAKE−fs
P ′ (t, qex, qs) ≤ (qex+qs)·AdvKE−fs

P (t, 1)+|P|·SuccΣ(t)+
q2
s + 2qexqs + |P|q

2
ex

2k+1
.

118 J. Katz and M. Yung

Proof. Given an active adversary A′ attacking P ′, we will construct a passive
adversary A attacking P where A makes only a single Execute query; relating
the success probabilities of A′ and A gives the stated result.
Before describing A, we first define events Forge and Repeat and bound their

probabilities of occurrence. Let Forge be the event that A′ outputs a new, valid
message/signature pair with respect to the public key PK ′

U of some user U ∈ P
before querying Corrupt(U), and let Pr[Forge] denote PrA′,P ′ [Forge] for brevity.
Using A′, we may construct an algorithm F that forges a signature with respect
to signature scheme Σ as follows: given a public key PK, algorithm F chooses a
random U ∈ P, sets PK ′

U = PK, and honestly generates all other public/private
keys for the system. F simulates the oracle queries of A′ in the natural way
(accessing its signing oracle when necessary); this results in a perfect simulation
unless A′ queries Corrupt(U). If this occurs, F simply aborts. Otherwise, if A′

ever outputs a new, valid message/signature pair with respect to PK ′
U = PK,

then F outputs this pair as its forgery. The success probability of F is exactly
Pr[Forge]
|P| ; this immediately implies that

Pr[Forge] ≤ |P| · SuccΣ(t).

Let Repeat be the event that a nonce is used twice by a particular user;
i.e., that there exists a user U ∈ P and i, j (i 6= j) such that the nonce used
by instance Π iU is equal to the nonce used by instance Π

j
U . A straightforward

“birthday problem” calculation shows that Pr[Repeat] ≤ |P|(qex+qs)
2

2k+1 , since each

user U ∈ P chooses at most (qex + qs) nonces from {0, 1}
k. A more careful

analysis (omitted in the present abstract) in fact shows that

Pr[Repeat] ≤
q2
s + 2qexqs + |P|q

2
ex

2k+1
.

We now construct our passive adversary A attacking protocol P . Recall that
as part of the initial setup, adversary A is given public keys {PKU}U∈P if
any are defined as part of protocol P . We first have A obtain all secret keys
{SKU}U∈P using multiple Corrupt queries. Next, A runs Gen(1k) to generate
keys (PK ′U , SK

′
U) for each U ∈ P; the set of public keys {PK ′

U , PKU}U∈P is
then given to A′. We now have A run A′, simulating the oracle queries of A′ as
described below.
Before describing the details, we provide a high-level overview. Let Q = qex+

qs denote the total number of Execute and Send queries made by A′. Intuitively,
A chooses an α ∈ {1, . . . , Q} representing a guess as to which Send/Execute

query of A′ activates the instance for which A′ will ask its Test query. For the
αth such query of A′, we will have A respond by making an Execute query,
obtaining a transcript of an execution of P , modifying this transcript to obtain
a valid transcript for P ′, and then returning an appropriate response to A′. (We
also need to ensure that this provides A′ with a consistent view; these details are
discussed below.) For all other (unrelated) Send/Execute queries of A′, we have
A respond by directly running protocol P ′; note that A can do this since it has

Scalable Protocols for Authenticated Group Key Exchange 119

the secret keys for all players. A aborts and outputs a random bit if it determines
that its guess α was incorrect, or if events Forge or Repeat occur. Otherwise, A
outputs whatever bit is output by A′. We now describe the simulation of the
oracle queries of A′ in detail.

Execute queries. If an Execute query is not the αth Send/Execute query of A′,
then A simply generates on its own a transcript of an execution of P ′ and returns
this to A′ (as noted above, A can do this since it knows all the secret keys for all
players). If an Execute query is the αth Send/Execute query ofA′, let the query be
Execute(U1, . . . Un) and let U = U1| · · · |Un. Adversary A sends the same query to
its Execute oracle and receives in return a transcript T of an execution of P . To
simulate a transcript T ′ of an execution of P ′,A first chooses random r1, . . . , rn ∈
{0, 1}k. The initial messages of T ′ are set to {Ui|0|ri}1≤i≤n. Then, for each
message U |j|m in transcript T , A computes σ ← SignSK′

U
(j|m|U|r1| · · · |rn) and

places U |j|m|σ in T ′. When done, the complete transcript T ′ is given to A′.

Send queries. If a Send query is not the αth Send/Execute query of A′, the
intuition is to have A simulate by itself the actions of this instance and thus
generate the appropriate responses for A′. On the other hand, if a Send query is
the αth Send/Execute query of A′, then A should obtain a transcript T from its
Execute oracle and generate responses for A′ by modifying T using the signature
keys {SK ′U}U∈P . The actual simulation is slightly more difficult, since we need
to ensure consistency in the view of A′.
Consider an arbitrary instance Π`

U . Denote the initial Send query to this
instance (i.e., protocol initiation) by Send0; this query always has the form
Send0(U, `, 〈U1, . . . , Un〉) for some n. We set U

`
U = U |U1| · · · |Un, where we as-

sume without loss of generality that these are in lexicographic order. We de-
note the second Send query to the instance by Send1; this query always has the
form Send(U, `, U1|0|r1, . . . , Un|0|rn). After a Send1 query, we may set R

`
U =

r`U |r1| · · · |rn, where r
`
U is the nonce generated by instance Π

`
U . To aid the sim-

ulation, A will maintain a list Nonces whose function will become clear below.
If a Send query is not the αth Send/Execute query of A′, then:

– On query Send0(U, `, ∗), A simply chooses a random nonce r
`
U and replies to

A′ with U |0|r`U . Note that U
`
U is now defined.

– If the query is not a Send0 query and has the form Send(U, `,M), then R`U is
defined (either by the present query or by some previous query). A looks in
Nonces for an entry of the form (U `U |R

`
U , c). There are two cases to consider:

• If such an entry exists and c = 1 then A has already queried its Execute

oracle and received in return a transcript T . First, A verifies correctness
of the current incoming message(s) as in the description of the compiler
(and aborts execution of Π`

U if verification fails). A then finds the appro-
priate message U |j|m in T , computes σ ← SignSK′

U
(j|m|U `U |R

`
U), and

replies to A′ with U |j|m|σ.
• If no such entry exists, A stores (U `U |R

`
U , 0) in Nonces. In this case or if

the entry exists and c = 0, then A simulates on its own the actions of
this instance (A can do this since it knows all relevant secret keys).

120 J. Katz and M. Yung

If a Send query is the αth Send/Execute query of A′, then:

– If the query is not a Send1 query, then A aborts (and outputs a random bit)
since its guess α was incorrect.

– If a Corrupt query has previously been made by A′, then A aborts. The
current instance is no longer fresh, and therefore the guess α is incorrect.

– If the query is a Send1 query to instance Π
`
U , then U

`
U and R

`
U are now

both defined. A looks in Nonces for an entry of the form (U `U |R
`
U , 0). If such

an entry exists, then A aborts (and outputs a random bit). Otherwise, A
stores (U `U |R

`
U , 1) in Nonces. Next, A queries Execute(U `U), obtains in return

a transcript T (which is stored for later use), and finds the message U |1|m in
T . The signature σ ← SignSK′

U
(1|m|U `U |R

`
U) is computed, and the message

U |1|m|σ is returned to A′.

Corrupt queries. On query Corrupt(U), A returns (SKU , SK
′
U) (recall that A

has obtained SKU already, and knows SK
′
U since it was generated by A).

Reveal queries.When A′ queries Reveal(U, i) for a terminated instance it must
be the case that U `U and R

`
U are both defined. A locates the entry (U

`
U |R

`
U , c)

in Nonces and aborts (and outputs a random bit) if c = 1 since its guess α was
incorrect. Otherwise, c = 0 implies that this instance was simulated by A itself;
thus A can compute the appropriate key sk`U and returns this key to A

′.

Test queries. When A′ queries Test(U, i) for a terminated instance it must be
the case that U `U and R

`
U are both defined. A finds the entry (U

`
U |R

`
U , c) in

Nonces and aborts (and outputs a random bit) if c = 0 since its guess α was
incorrect. Otherwise, c = 1 implies that this instance corresponds to an instance
for which A had asked its single Execute query. So, A asks its own Test query
for any such instance (it does not matter which, since they are all partnered and
all hold the same key) and returns the result to A′.

Let Guess denote the event that A correctly guesses α. We claim that as long
as Guess and Forge and Repeat occur, the above simulation is perfect. Indeed,
assuming Guess occurs the only difference between the simulation and a real
execution of A′ occurs for those instances Π`

U for which (U
`
U |R

`
U , 1) ∈ Nonces.

Here, the simulation is perfect unless A′ forges a signature or can “splice in” a
message from a different execution. However, neither of these events can happen
as long as neither Forge nor Repeat occur.

Letting Good
def
= Forge ∧ Repeat and Bad

def
= Good, and recalling that Q =

qex+qs denotes the total number of Send/Execute queries asked by A′, a straight-
forward probability calculation shows that:

2 ·
∣∣PrA,P [Succ]− 1

2

∣∣

= 2 ·
∣∣PrA′,P ′ [Succ ∧ Guess ∧ Good] + 1

2 PrA′,P ′ [Guess ∨ Bad]− 1
2

∣∣

= 2 ·
∣∣∣ 1
Q
PrA′,P ′ [Succ ∧ Good] + 1

2 PrA′,P ′ [Bad]

+ 1
2 Pr[Guess|Bad] PrA′,P ′ [Bad]− 1

2

∣∣

Scalable Protocols for Authenticated Group Key Exchange 121

= 2 ·
∣∣∣ 1
Q
PrA′,P ′ [Succ]− 1

Q
PrA′,P ′ [Succ ∧ Bad] + 1

2 PrA′,P ′ [Bad]

+ 1
2 (
Q−1
Q
)(1− PrA′,P ′ [Bad])− 1

2

∣∣∣

≥ 1
Q
· |2 · PrA′,P ′ [Succ]− 1| − 1

Q
|2 · PrA′,P ′ [Succ ∧ Bad]− PrA′,P ′ [Bad]| .

Since 2
∣∣PrA,P [Succ]− 1

2

∣∣ ≤ AdvKE−fs
P (t, 1) by assumption, we obtain:

AdvAKE−fs
P ′ (t, qex, qs) ≤ Q · AdvKE−fs

P (t, 1) + PrA′,P ′ [Forge] + Pr[Repeat],

which immediately yields the statement of the theorem.

We remark that the above theorem is a generic result that applies to the
invocation of the compiler on an arbitrary group KE protocol P . For specific
protocols, a better exact security analysis may be obtainable. Furthermore, the
compiler above may also be applied to KE protocols that do not achieve forward
secrecy. In this case, we obtain the following tighter security reduction.

Theorem 2. If P is a secure group KE protocol (without forward secrecy), then
P ′ given by the above compiler is a secure group AKE protocol (without forward
secrecy). Namely:

AdvAKE
P ′ (t, qex, qs) ≤ AdvKE

P (t, qex + qs) + |P| · SuccΣ(t) +
q2
s + 2qexqs + |P|q

2
ex

2k+1
.

The proof is largely similar to that of Theorem 1, and will appear in the full
version of this paper.

4 A Constant-Round Group KE protocol

Let G be any finite cyclic group of prime order q (e.g., letting p, q be prime such
that p = βq + 1 we may let G be the subgroup of order q in Z

∗
p), and let g be

an arbitrary generator of G. We define Advddh
G (t) as the maximum value, over all

adversaries A running in time at most t, of:
∣∣∣Pr[x, y ← Zq : A(g, g

x, gy, gxy) = 1]− Pr[x, y, z ← Zq : A(g, g
x, gy, gz) = 1]

∣∣∣ .

Informally, we say the DDH assumption holds in G if Advddh
G (t) is “small” for

“reasonable” values of t. We now describe an efficient, two-round group KE
protocol whose security is based on the DDH assumption in G. Applying the
compiler of the previous section to this protocol immediately yields an efficient,
three-round group AKE protocol.
The protocol presented here is essentially the protocol of Burmester and

Desmedt [14], except we assume that G is a finite, cyclic group of prime order
in which the DDH assumption holds. Our work was originally motivated by the
fact that no proof of security appears in the proceedings version of [14]; further-
more, subsequent work in this area (e.g., [13, 10]) implied that the Burmester-
Desmedt protocol was “heuristic” and had not been proven secure. (Indeed, pre-
sumably for this reason the group AKE protocols of [13, 11, 12] are based on the

122 J. Katz and M. Yung

O(n)-round group KE protocol of Steiner, et al. [31] rather than the Burmester-
Desmedt protocol.) Subsequent to our work, however, we became aware that a
proof of security for a variant of the Burmester-Desmedt protocol appears in the
pre-proceedings of Eurocrypt ’94 [18].8 Even so, we note the following:

– The given proof shows only that an adversary cannot compute the entire
session key; in contrast to our work, it says nothing about whether the key
is indistinguishable from random. On the other hand, for this reason their
proof uses only the weaker CDH assumption.

– A proof of security is given only for an even number of participants n. A
modified, asymmetric protocol (which is slightly less efficient) is introduced
and proven secure for the case of n odd.

– Finally, the previously-given proof of security makes no effort to optimize
the concrete security of the reduction (since this issue was not generally
considered at that time).

As required by the compiler of the previous section, our protocol ensures
that players send every message to all members of the group via point-to-point
links; although we refer to this as “broadcasting” we stress that no broadcast
channel is assumed (in any case, the distinction is moot since we are dealing here
with a passive adversary). In our protocol P , no public keys are required but for
simplicity we assume a group G and generator g ∈ G have been fixed in advance
and are known to all parties in the network. Note that this assumption can be
avoided at the expense of an additional round in which the first player simply
generates and broadcasts these values (that this is secure is clear from the fact
that we are now considering a passive adversary). When n players U1, . . . , Un
wish to generate a session key, they proceed as follows (the indices are taken
modulo n so that player U0 is Un and player Un+1 is U1):

Round 1 Each player Ui chooses a random ri ∈ Zq and broadcasts zi = gri .
Round 2 Each player Ui broadcasts Xi = (zi+1/zi−1)

ri .
Key computation Each player Ui computes their session key as:

Ki = (zi−1)
nri ·Xn−1

i ·Xn−2
i+1 · · ·Xi−2.

(It may be easily verified that all users compute the same key gr1r2+r2r3+···+rnr1 .)
We do not explicitly include sender identities and sequence numbers as re-

quired by the compiler of the previous section; however, as discussed there, it
is easy to modify the protocol to include this information. Note that each user
only computes three (full-length) exponentiations since n¿ q in practice.

Theorem 3. Protocol P is a secure group KE protocol achieving forward se-
crecy. Namely:

AdvKE−fs
P (t, qex) ≤ 4 · Advddh

G (t).

8 We are happy to publicize this, especially since it appears to have been unknown to
many others in the cryptographic community as well!

Scalable Protocols for Authenticated Group Key Exchange 123

Proof. Let ε(t)
def
= Advddh

G (t). We provide here a proof for the case of an ad-
versary making only a single Execute query, and show the weaker result that
AdvKE−fs

P (t, 1) ≤ 2|P|ε(t). Note that this is sufficient for the purposes of apply-
ing Theorem 1, and also immediately yields (via a standard hybrid argument)
that AdvKE−fs

P (t, qex) ≤ 2qex|P|ε(t). A proof of the stronger result stated in the
theorem can be obtained using random self-reducibility properties of the DDH
problem (following [30]), and will appear in the full version.
Since there are no public keys in the protocol, we may ignore Corrupt queries.

Assume an adversary A making a single query Execute(U1, . . . , Un) (we stress
that the number of parties n is chosen by the adversary; however, since the
protocol is symmetric and there are no public keys the identities of the parties
are unimportant). The distribution of the transcript T and the resulting session
key sk is given by:

Real
def
=





r1, . . . , rn ← Zq; z1 = gr1 , z2 = gr2 , . . . , zn = grn

X1 =
gr2r1

grnr1
, X2 =

gr3r2

gr1r2
, . . . , Xn =

gr1rn

grn−1rn

T = (z1, . . . , zn, X1, . . . , Xn)
sk = (gr1r2)n · (X2)

n−1 · · ·Xn

: (T, sk)




.

Consider the following modified distribution:

Fake1
def
=





w1,2, r1, . . . , rn ← Zq; z1 = gr1 , z2 = gr2 , . . . , zn = grn

X1 =
g

w1,2

(gr1)rn
, X2 =

(gr2)r3

g
w1,2 , . . . , Xn =

(gr1)rn

grn−1rn

T = (z1, . . . , zn, X1, . . . , Xn)
sk = (gw1,2)n · (X2)

n−1 · · ·Xn

: (T, sk)




.

A standard argument shows that for any algorithm A′ running in time t we have:

|Pr[(T, sk)← Real : A′(T, sk) = 1]− Pr[(T, sk)← Fake1 : A
′(T, sk) = 1]| ≤ ε(t).

We next make the following additional modification:

Fake2
def
=





w1,2, w2,3, r1, . . . , rn ← Zq; z1 = gr1 , z2 = gr2 , . . . , zn = grn

X1 =
g

w1,2

gr1rn , X2 =
g

w2,3

g
w1,2 , . . . , Xn =

gr1rn

grn−1rn

T = (z1, . . . , zn, X1, . . . , Xn)
sk = (gw1,2)n · (X2)

n−1 · · ·Xn

: (T, sk)




,

where, again, a standard argument shows that:

|Pr[(T, sk)← Fake1 : A
′(T, sk) = 1]− Pr[(T, sk)← Fake2 : A

′(T, sk) = 1]| ≤ ε(t).

Continuing in this way, we obtain the distribution:

Faken
def
=





w1,2, w2,3, . . . , wn−1,n, wn,1, r1, . . . , rn ← Zq

X1 =
g

w1,2

g
wn,1 , X2 =

g
w2,3

g
w1,2 , . . . , Xn =

g
wn,1

g
wn−1,n

T = (gr1 , . . . , grn , X1, . . . , Xn)
sk = (gw1,2)n · (X2)

n−1 · · ·Xn

: (T, sk)




,

124 J. Katz and M. Yung

such that, for any A′ running in time t we have (via standard hybrid argument):

|Pr[(T, sk)← Real : A′(T, sk) = 1]− Pr[(T, sk)← Faken : A
′(T, sk) = 1]|

≤ n · ε(t). (1)

In experiment Faken, the values w1,2, . . . , wn,1 are constrained by T according
to the following n equations

loggX1 = w1,2 − wn,1

...

loggXn = wn,1 − wn−1,n,

of which only n − 1 of these are linearly independent. Furthermore, sk may be
expressed as gw1,2+w2,3+···+wn,1 ; equivalently, we have

logg sk = w1,2 + w2,3 + · · ·+ wn,1.

Since this final equation is linearly independent from the set of equations above,
the value of sk is independent of T. This implies that, for any adversary A:

Pr[(T, sk0)← Faken; sk1 ← G; b← {0, 1} : A(T, skb) = b] = 1/2,

which — combined with Equation (1) and the fact that n ≤ |P| — yields the
desired result AdvKE−fs

P (t, 1) ≤ 2|P|ε(t).

References

1. S.S. Al-Riyami and K.G. Paterson. Tripartite Authenticated Key Agreement Pro-
tocols from Pairings. Available at http://eprint.iacr.org/2002/035/.

2. G. Ateniese, M. Steiner, and G. Tsudik. Authenticated Group Key Agreement and
Friends. ACM CCCS ’98.

3. G. Ateniese, M. Steiner, and G. Tsudik. New Multi-Party Authentication Services
and Key Agreement Protocols. IEEE Journal on Selected Areas in Communica-

tions, 18(4): 628–639 (2000).
4. M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and
Analysis of Authentication and Key Exchange Protocols. STOC ’98.

5. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. Eurocrypt 2000.

6. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Crypto
’93.

7. M. Bellare and P. Rogaway. Provably-Secure Session Key Distribution: the Three
Party Case. STOC ’95.

8. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung.
Systematic Design of Two-Party Authentication Protocols. IEEE J. on Selected

Areas in Communications, 11(5): 679–693 (1993). A preliminary version appeared
in Crypto ’91.

9. C. Boyd. On Key Agreement and Conference Key Agreement. ACISP ’97.

Scalable Protocols for Authenticated Group Key Exchange 125

10. C. Boyd and J.M.G. Nieto. Round-Optimal Contributory Conference Key Agree-
ment. PKC 2003.

11. E. Bresson, O. Chevassut, and D. Pointcheval. Provably Authenticated Group
Diffie-Hellman Key Exchange — The Dynamic Case. Asiacrypt 2001.

12. E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Diffie-Hellman Key
Exchange under Standard Assumptions. Eurocrypt 2002.

13. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably Authen-
ticated Group Diffie-Hellman Key Exchange. ACM CCCS 2001.

14. M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution
System. Eurocrypt ’94.

15. R. Canetti and H. Krawczyk. Key-Exchange Protocols and Their Use for Building
Secure Channels. Eurocrypt 2001.

16. R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange
and Secure Channels. Eurocrypt 2002.

17. R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. Crypto 2002.

18. Y. Desmedt. Personal communication (including a copy of the pre-proceedings
version of [14]), March 2003.

19. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions

on Information Theory, 22(6): 644–654 (1976).
20. W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key

Exchanges. Designs, Codes, and Cryptography, 2(2): 107–125 (1992).
21. M. Fischer, N. Lynch, and M. Patterson. Impossibility of Distributed Consensus

with One Faulty Process. J. ACM 32(2): 374–382 (1985).
22. I. Ingemarsson, D.T. Tang, and C.K. Wong. A Conference Key Distribution Sys-

tem. IEEE Transactions on Information Theory, 28(5): 714–720 (1982).
23. A. Joux. A One Round Protocol for Tripartite Diffie Hellman. ANTS 2000.
24. M. Just and S. Vaudenay. Authenticated Multi-Party Key Agreement. Asiacrypt

’96.
25. H. Krawczyk. SKEME: A Versatile Secure Key-Exchange Mechanism for the In-

ternet. Proceedings of the Internet Society Symposium on Network and Distributed

System Security, Feb. 1996, pp. 114–127.
26. H.-K. Lee, H.-S. Lee, and Y.-R. Lee. Multi-Party Authenticated Key Agreement

Protocols from Multilinear Forms. Available at http://eprint.iacr.org/2002/166/.
27. H.-K. Lee, H.-S. Lee, and Y.-R. Lee. An Authenticated Group Key Agreement

Protocol on Braid groups. Available at http://eprint.iacr.org/2003/018/.
28. A. Mayer and M. Yung. Secure Protocol Transformation via “Expansion”: From

Two-Party to Groups. ACM CCCS ’99.
29. O. Pereira and J.-J. Quisquater. A Security Analysis of the Cliques Protocol Suites.

IEEE Computer Security Foundations Workshop, June 2001.
30. V. Shoup. On Formal Models for Secure Key Exchange. Draft, 1999. Available at

http://eprint.iacr.org/1999/012.
31. M. Steiner, G. Tsudik, and M. Waidner. Key Agreement in Dynamic Peer Groups.

IEEE Trans. on Parallel and Distributed Systems 11(8): 769–780 (2000). A pre-
liminary version appeared in ACM CCCS ’96.

32. W.-G. Tzeng. A Practical and Secure Fault-Tolerant Conference Key Agreement
Protocol. PKC 2000.

33. W.-G. Tzeng and Z.-J. Tzeng. Round Efficient Conference Key Agreement Proto-
cols with Provable Security. Asiacrypt 2000.

