
A Generalized Birthday Problem
(extended abstract)

David Wagner

University of California at Berkeley

Abstract. We study a k-dimensional generalization of the birthday
problem: given k lists of n-bit values, find some way to choose one el-
ement from each list so that the resulting k values xor to zero. For
k = 2, this is just the extremely well-known birthday problem, which
has a square-root time algorithm with many applications in cryptogra-
phy. In this paper, we show new algorithms for the case k > 2: we show
a cube-root time algorithm for the case of k = 4 lists, and we give an
algorithm with subexponential running time when k is unrestricted.
We also give several applications to cryptanalysis, describing new subex-
ponential algorithms for constructing one-more forgeries for certain blind
signature schemes, for breaking certain incremental hash functions, and
for finding low-weight parity check equations for fast correlation attacks
on stream ciphers. In these applications, our algorithm runs in O(22

√
n)

time for an n-bit modulus, demonstrating that moduli may need to be
at least 1600 bits long for security against these new attacks. As an
example, we describe the first-known attack with subexponential com-
plexity on Schnorr and Okamoto-Schnorr blind signatures over elliptic
curve groups.

1 Introduction

One of the best-known combinatorial tools in cryptology is the birthday problem:

Problem 1. Given two lists L1, L2 of elements drawn uniformly and indepen-
dently at random from {0, 1}n, find x1 ∈ L1 and x2 ∈ L2 such that x1⊕ x2 = 0.

(Here the ⊕ symbol represents the bitwise exclusive-or operation.) The birthday
problem is well understood: A solution x1, x2 exists with good probability once
|L1| × |L2| À 2n holds, and if the list sizes are favorably chosen, the complex-
ity of the optimal algorithm is Θ(2n/2). The birthday problem has numerous
applications throughout cryptography and cryptanalysis.

In this paper, we explore a generalization of the birthday problem. The above
presentation suggests studying a variant of the birthday problem with an arbi-
trary number of lists. In this way, we obtain the following k-dimensional ana-
logue, which we call the k-sum problem:

Problem 2. Given k lists L1, . . . , Lk of elements drawn uniformly and indepen-
dently at random from {0, 1}n, find x1 ∈ L1, . . . , xk ∈ Lk such that x1 ⊕ x2 ⊕
· · · ⊕ xk = 0.

A Generalized Birthday Problem 289

We allow the lists to be extended to any desired length, and so it may aid the
intuition to think of each element of each list as being generated by a random
(or pseudorandom) oracle Ri, so that the j-th element of Li is Ri(j). It is easy
to see that a solution to the k-sum problem exists with good probability so long
as |L1| × · · · × |Lk| À 2n. However, the challenge is to find a solution x1, . . . , xk

explicitly and efficiently.
This first half of this paper is devoted to a theoretical study of this problem.

First, Section 2 describes a new algorithm, called the k-tree algorithm, that
allows us to solve the k-sum problem with lower complexity than previously
known to be possible. Our algorithm works only when one can extend the size of
the lists freely, i.e., in the special case where there are sufficiently many solutions
to the k-sum problem. For example, we show that, for k = 4, the k-sum problem
can be solved in O(2n/3) time using lists of size O(2n/3). We also discuss a
number of generalizations of the problem, e.g., to operations other than xor.
Next, in Section 3, we study the complexity of the k-sum problem and give
several lower bounds. This theoretical study provides a tool for cryptanalysis
which we will put to use in the second half of the paper.

The k-sum problem may not appear very natural at first sight, and so it may
come as no surprise that, to our knowledge, this problem has not previously
been stated or studied in full generality. Nonetheless, we show in the second half
of this paper a number of cases where the k-sum problem has applications to
cryptanalysis of various systems: in Section 4, we show how to break various
blind signature schemes, how to attack several incremental hash functions, and
how to find low-weight parity checks. Other examples may be found in the
full version of this paper [36]. We do not claim that this is an exhaustive list
of possible applications; rather, it is intended to motivate the relevance of this
problem to cryptography.

Finally, we conclude in Sections 5 and 6 with several open problems and final
remarks.

2 Algorithms

The classic birthday problem. We recall the standard technique for finding so-
lutions to the birthday problem (with 2 lists). We define a join operation ./ on
lists so that S ./ T represents the list of elements common to both S and T .
Note that x1 ⊕ x2 = 0 if and only if x1 = x2. Consequently, a solution to the
classic (2-list) birthday problem may be found by simply computing the join
L1 ./ L2 of the two input lists L1, L2. We represent this algorithm schematically
in Figure 1.

The join operation has been well-studied in the literature on database query
evaluation, and several efficient methods for computing joins are known. A
merge-join sorts the two lists, L1, L2, and scans the two sorted lists, return-
ing any matching pairs detected. A hash-join stores one list, say L1, in a hash
table, and then scans through each element of L2 and checks whether it is
present in the hash table. If memory is plentiful, the hash-join is very efficient:

290 D. Wagner

./

L2L1

L1 ./ L2

Fig. 1. An abstract representation of the standard algorithm for the (2-list) birthday
problem: given two lists L1, L2, we use a join operation to find all pairs (x1, x2) such
that x1 = x2 and x1 ∈ L1 and x2 ∈ L2. The thin vertical boxes represent lists, the
arrows represent flow of values, and the ./ symbol represents a join operator.

it requires |L1| + |L2| simple steps of computation and min(|L1|, |L2|) units of
storage. A merge-join is slower in principle, running in O(n log n) time where
n = max(|L1|, |L2|), but external sorting methods allow computation of merge-
joins even when memory is scarce.

The consequence of these observations is that the birthday problem may be
solved with square-root complexity. In particular, if we operate on n-bit values,
then the above algorithms will require O(2n/2) time and space, if we are free to
choose the size of the lists however we like. Techniques for reducing the space
complexity of this algorithm are known for some important special cases [25].

The birthday problem has many applications. For example, if we want to
find a collision for a hash function h : {0, 1}∗ → {0, 1}n, we may define the j-th
element of list Li as h(i, j). Assuming that h behaves like a random function,
the lists will contain an inexhaustible supply of values distributed uniformly and
independently at random, so the premises of the problem statement will be met.
Consequently, we can expect to find a solution to the corresponding birthday
problem with O(2n/2) work, and any such solution immediately yields a collision
for the hash function [38].

The 4-list birthday problem. To extend the above well-known observations, con-
sider next the 4-sum problem. We are given lists L1, . . . , L4, and our task is to
find values x1, . . . , x4 that xor to zero. (Hereafter xi ∈ Li holds implicitly.) It
is easy to see that a solution should exist with good probability if each list is of
length at least 2n/4. Nonetheless, no good algorithm for explicitly finding such a
solution was previously known: The most obvious approaches all seem to require
2n/2 steps of computation.

We develop here a more efficient algorithm for the 4-sum problem. Let low`(x)
denote the least significant ` bits of x, and define the generalized join operator

A Generalized Birthday Problem 291

./`

L1 L2 L3 L4

L3 ./` L4L1 ./` L2

./

{〈x1, x2, x3, x4〉 :

x1 ⊕ · · · ⊕ x4 = 0}

./`

Fig. 2. A pictorial representation of our algorithm for the 4-sum problem.

./` so that L1 ./` L2 contains all pairs from L1 × L2 that agree in their ` least
significant bits. We will use the following basic properties of the problem:

Observation 1 We have low`(xi ⊕ xj) = 0 if and only if low`(xi) = low`(xj).

Observation 2 Given lists Li, Lj , we can easily generate all pairs 〈xi, xj〉 sat-

isfying xi ∈ Li, xj ∈ Lj, and low`(xi ⊕ xj) = 0 by using the join operator

./`.

Observation 3 If x1 ⊕ x2 = x3 ⊕ x4, then x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0.

Observation 4 If low`(x1⊕x2) = 0 and low`(x3⊕x4) = 0, then we necessarily

have low`(x1⊕x2⊕x3⊕x4) = 0, and in this case Pr[x1⊕x2⊕x3⊕x4 = 0] = 2`/2n.

These properties suggest a new algorithm for the 4-sum problem. First, we
extend the lists L1, . . . , L4 until they each contain about 2` elements, where ` is
a parameter to be determined below. Then, we apply Observation 2 to generate
a large list L12 of values x1 ⊕ x2 such that low`(x1 ⊕ x2) = 0. Similarly, we
generate a large list L34 of values x3 ⊕ x4 where low`(x3 ⊕ x4) = 0. Finally,
we search for matches between L12 and L34. By Observation 3, any such match
will satisfy x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0 and hence will yield a solution to the 4-sum
problem. See Figure 2 for a visual depiction of this algorithm.

292 D. Wagner

The complexity of this algorithm may be analyzed as follows. We have
Pr[low`(x1 ⊕ x2) = 0] = 1/2` when x1, x2 are chosen uniformly at random.
Thus, by the birthday paradox (or by linearity of expectation),

E[|L12|] = |L1| × |L2|/2` = 22`/2` = 2`.

Similarly, L34 has expected size 2`. Moreover, Observation 4 ensures that any
pair of elements from L12×L34 yields a match with probability 2`/2n. Therefore,
a second invocation of the birthday paradox shows that the expected number of
elements in common between L12 and L34 is about |L12|×|L34|/2n−`. The latter

is at least 1 when ` ≥ n/3. Consequently, if we set `
def

= n/3 as the beginning
of the above procedure, we expect to find a solution to the 4-sum problem with
non-trivial probability. Since the size of all lists is around 2n/3, the resulting
algorithm can be implemented with O(2n/3) time and space.

Extensions. The above algorithm finds only solutions with a special property,
namely, x1⊕x2 and x3⊕x4 are zero in their low ` bits. However, this restriction
was made merely for ease of presentation, and it can be eliminated. To sample
randomly from the set of all solutions, pick a random `-bit value α, and look for
pairs (x1, x2) and (x3, x4) whose low ` bits xor to α. In other words, compute
(L1 ./` (L2 ⊕ α)) ./ (L3 ./` (L4 ⊕ α)).

Also, the value 0 in x1⊕· · ·⊕xk = 0 is not essential, and can be replaced by
any other constant c without increasing the complexity of the problem. This may

be easily seen as follows: if we replace Lk with L′
k = Lk⊕c def

= {xk⊕c : xk ∈ Lk},
then any solution to x1⊕· · ·⊕xk−1⊕x′k = 0 will be a solution to x1⊕· · ·⊕xk = c
and vice versa. Consequently, we may assume (without loss of generality) that
c = 0.

As a corollary, when k > k′ the complexity of the k-sum problem can be
no larger than the complexity of the k′-sum problem. This can be proven us-
ing a trivial list-elimination trick. We pick arbitrary values xk′+1, . . . , xk from

Lk′+1, . . . , Lk and fix this choice. Then, we set c
def

= xk′+1 ⊕ · · · ⊕ xk and use
a k′-sum algorithm to find a solution to the equation x1 ⊕ · · · ⊕ xk′ = c. For
instance, this shows that we can solve the k-sum problem with complexity at
most O(2n/3) for all k ≥ 4.

More interestingly, we can use the above ideas to solve the k-sum problem
even faster than cube-root time for larger values of k. We extend the 4-list tree
algorithm above as follows. When k is a power of two, we replace the complete
binary tree of depth 2 in Figure 2 with a complete binary tree of depth lg k. At
internal nodes of height h, we use the join operator ./`h

(where `h = hn/(1 +
lg k)), except that at the root we use the full join operator ./. Each element
x of an internal list Li...j contains back-pointers to elements x′ and x′′ of the
two child lists used to form Li...j , such that x = x′ ⊕ x′′. In this way we will
obtain an algorithm for the k-sum problem that requires O(k · 2n/(1+lg k)) time
and space and uses lists of size O(2n/(1+lg k)). The complexity of this algorithm
improves only slowly as k increases, though, so this does not seem to yield large
improvements unless k becomes quite large.

A Generalized Birthday Problem 293

We can also obtain an algorithm for the general k-sum problem when k is

not a power of two. We take k′
def

= 2blg kc to be the largest power of two less
than k, and we use the list-elimination trick above. However, the results are
less satisfying: The algorithm obtained in this way runs essentially no faster for
k = 2i + j than for k = 2i.

Operations other than xor. The k-sum problem has so far been described over
the group (GF (2)n,⊕), but it is natural to wonder whether these techniques will
apply over other groups as well.

We note first that the tree algorithm above transfers immediately to the

additive group (Z/2n
Z,+). In particular, we compute L12

def

= L1 ./` −L2, L34
def

=

L3 ./` −L4, and finally L12 ./ −L34, where −L def

= {−x mod 2n : x ∈ L}. The
result will be a set of solutions to the equation x1 + · · ·+ xk ≡ 0 (mod 2n). The
reason this works is that a ≡ b (mod 2`) implies (a+c mod 2n) ≡ (b+c mod 2n)
(mod 2`): the carry bit propagates in only one direction.

We can also apply the tree algorithm to the group (Z/mZ,+) where m is

arbitrary. Let [a, b]
def

= {x ∈ Z/mZ : a ≤ x ≤ b} denote the interval of elements
between a and b (wrapping modulom), and define the join operation L1 ./[a,b] L2

to represent the solutions to x1 + x2 ∈ [a, b] with xi ∈ Li. Then we may solve
a 4-sum problem over Z/mZ by computing (L1 ./[a,b] L2) ./ (L3 ./[a,b] L4)

where [a, b] = [−m/2`+1,m/2`+1 − 1] and ` = 1
3 lgm. In general, one can adapt

the k-tree algorithm to work in (Z/mZ,+) by replacing each ./` operator with
./[−m/2`+1,m/2`+1−1], and this will let us solve k-sum problems modulo m about
as quickly as we can for xor.

Finding many solutions. In some applications, it may be useful to find many
solutions to the k-sum problem. It is not too hard to see1 that we can find α3

solutions to the 4-sum problem with about α times the work of finding a single
solution, so long as α ≤ 2n/6. Similarly, we can find α1+blg kc solutions to the
k-sum problem with α times as much work as finding a single solution, as long
as α ≤ 2n/(blg kc·(1+blg kc)).

Reducing the space complexity. As we have described it so far, these algorithms
require a lot of memory. Since memory is often more expensive than computing
time, this may be a barrier in practice. While we have not extensively studied the
memory complexity of the k-sum problem, we note that in some cases a trivial
technique can greatly reduce the space complexity of our k-tree algorithm. In
particular, when k À 2, we can evaluate the tree in postfix order, discarding
lists when they are no longer needed. In this way, we will need storage for only
about lg k lists. For example, if we take k = 2

√
n−1, then the k-tree algorithm

will run in approximately 22
√

n time and
√
n2

√
n space using this optimization,

a significant improvement over naive implementations.

1 Simply use lists L1, . . . , L4 of size α · 2n/3, and filter on `′ = n/3 + lgα bits at the
lower level of the tree.

294 D. Wagner

Related work. The idea of using a priority queue to generate pairwise sums
x1 + x2 in sorted order (for x1 ∈ L1, x2 ∈ L2 with lists L1, L2 given as input)
first appeared in Knuth, exercise 5.2.3-29, and was credited to W.S. Brown [20,
p.158].

Later, Schroeppel and Shamir showed how to generate 4-wise sums x1+ · · ·+
x4 in sorted order using a tree of priority queues [30, 31]. In particular, given 4
lists of integers and a n-bit integer c, they considered how to find all solutions
to x1 + · · · + x4 = c, and they gave an algorithm running in Θ(2n/2) time
and Θ(2n/4) space when the lists are of size Θ(2n/4). In contrast, the problem
we consider differs in four ways: we relax the problem to ask only for a single
solution rather than all solutions; we allow an arbitrary number of lists; we
consider other group operations; and, most importantly, our main goal in this
paper is to break the Θ(2n/2) running time barrier. When looking for only a
single solution, it is possible to beat Schroeppel and Shamir’s algorithm—using
Floyd’s cycle-finding algorithm, distinguished points cycling algorithms [24], or
parallel collision search [25], one can often achieveΘ(2n/2) time andΘ(1) space—
but there was previously no known algorithm with running time substantially
better than 2n/2. Consequently, Schroeppel and Shamir’s result is not directly
applicable to our problem, but their idea of using tree-based algorithms can be
seen as a direct precursor of our k-tree algorithm.

Bernstein has used similar techniques in the context of enumerating solutions
in the integers to equations such as a3 + 2b3 + 3c3 − 4d3 = 0 [3].

Boneh, Joux and Nguyen have used Schroeppel and Shamir’s algorithm for
solving integer knapsacks to reduce the space complexity of their birthday at-
tacks on plain RSA and El Gamal [6]. They also used (a version of) our The-
orem 3 to transform a 4-sum problem over ((Z/pZ)∗,×) to a knapsack (i.e.,
4-sum) problem over (Z/qZ,+), which allowed them to apply Schroeppel and
Shamir’s techniques.

Bleichenbacher used similar techniques in his attack on DSA [4].

Chose, Joux, and Mitton have independently discovered a space-efficient algo-
rithm for finding all solutions to x1⊕· · ·⊕xk = 0 and shown how to use it to speed
up search for parity checks for stream cipher cryptanalysis [11]. For k = 4, their
approach runs in O(2n/2) time and O(2n/4) space if |L1| = · · · = |L4| = 2n/4 and
all values are n bits long, and so their scheme is in a similar class as Schroeppel
and Shamir’s result. Interestingly, the algorithm of Chose, et al., is essentially
equivalent to repeatedly running our 4-list tree algorithm once for each possible
predicted value of α = lowl(x1 ⊕ x2), taking ` = n/4. Thus, their work is com-
plementary to ours: their algorithm does not beat the square-root barrier, but it
takes a different point in the tradeoff space, thereby reinforcing the importance
of the k-sum problem to cryptography.

Joux and Lercier have used related ideas to reduce the space complexity of
a birthday step in point-counting algorithms for elliptic curves [19].

Blum, Kalai, andWasserman previously have independently discovered some-
thing closely related to the k-tree algorithm for xor in the context of their work
on learning theory [5]. In particular, they use the existence of a subexponential

A Generalized Birthday Problem 295

algorithm for the k-sum problem when k is unrestricted to find the first known
subexponential algorithm for the “learning parity with noise” problem. We note
that any improvement in the k-tree algorithm would immediately lead to im-
proved algorithms for learning parity with noise, a problem that has resisted
algorithmic progress for many years. Others in learning theory have since used
similar ideas [37], and the hardness of this problem has even been proposed as
the basis for a human-computer authentication scheme [17].

Ajtai, Kumar, and Sivakumar have used Blum, Kalai, and Wasserman’s al-
gorithm as a subroutine to speed up the shortest lattice vector problem from
2O(n log n) to 2O(n) time [1].

Bellare, et al., showed that the k-sum problem over (GF (2)n,⊕) can be solved
in O(n3 + kn) time using Gaussian elimination when k ≥ n [2, Appendix A].

Wagner and Goldberg have shown how to efficiently find solutions to x1 =
x2 = · · · = xk (where xi ∈ Li) using parallel collision search [35]. This is an
alternative way to generalize the birthday problem to higher dimensions, but
the techniques do not seem to carry over to the k-sum problem.

There is also a natural connection between the k-sum problem over (Z/mZ,+)
and the subset sum problem over Z/mZ. This suggests that techniques known
for the subset sum problem, such as LLL lattice reduction, may be relevant to
the k-sum problem. We have not explored this direction, and we leave it to future
work.

Summary. We have shown how to solve the k-sum problem (for the xor opera-
tion) in O(k · 2n/(1+blg kc)) time and space, using lists of size O(2n/(1+blg kc)). In
particular, for k = 4, we can solve the 4-sum problem with complexity O(2n/3).
If k is unrestricted, we obtain a subexponential algorithm running in O(22

√
n)

time by setting k = 2
√

n−1.

3 Lower bounds

In this section we study how close to optimal the k-tree algorithm is. This section
may be safely skipped on first reading.

Information-theoretic bounds. We can easily use information-theoretic argu-
ments to bound the complexity of the k-sum problem as follows.

Theorem 1. The computational complexity of the k-sum problem is Ω(2n/k).

Proof. For the k-sum problem to have a solution with constant probability, we
need |L1| × · · · × |Lk| = Ω(2n), i.e., maxi |Li| = Ω(2n/k). The bound follows
easily.

This bound applies to the k-sum problem over all groups.
However, this gives a rather weak bound. There is a considerable gap be-

tween the information-theoretic lower bound Ω(2n/k) and the constructive up-
per bound O(k · 2n/(1+blg kc)) established in the previous section. Therefore, it is

296 D. Wagner

natural to wonder whether this gap can be narrowed. In the general case, this
seems to be a difficult question, but we show next that the lower bound can be
improved in some special cases.

Relation to discrete logs. There are close connections to the discrete log problem,
as shown by the following observation from Wei Dai [12].

Theorem 2 (W. Dai). If the k-sum problem over a cyclic group G = 〈g〉 can

be solved in time t, then the discrete logarithm with respect to g can be found in

O(t) time as well.

Proof. We describe an algorithm for finding the discrete logarithm logg y of a
group element y ∈ G using any algorithm for the k-sum problem in G. Each list
will contain elements of the form gw for w chosen uniformly at random. Then
any solution to x1 × · · · × xk = y with xi ∈ Li will yield a relation of the form
gw = y, where w = w1 + · · · + wk, and this reveals the discrete log of y with
respect to g, as claimed.

This immediately allows us to rule out the possibility of an efficient generic
algorithm for the k-sum problem over any group G with order divisible by any
large prime. Recall that a generic algorithm is one that uses only the basic
group operations (multiplication, inversion, testing for equality) and ignores the
representation of elements of G.

Corollary 1. Every generic algorithm for the k-sum problem in a group G has

running time Ω(
√
p), where p denotes the largest prime factor of the order of G.

Proof. Any generic algorithm for the discrete log problem in a group of prime
order p has complexity Ω(

√
p) [23, 33]. Now see Theorem 2.

Moreover, Theorem 2 shows that we cannot hope to find a polynomial-time
algorithm for the k-sum problem over any group where the discrete log problem
is hard. For example, finding a solution to x1×· · ·×xk ≡ 1 (mod p) is as hard as
taking discrete logarithms in (Z/pZ)∗, and thus we cannot expect any especially
good algorithm for this problem.

The relationship to the discrete log problem goes both ways:

Theorem 3. Suppose the discrete log problem in a multiplicative group G = 〈g〉
of order m can be solved in time t. Suppose moreover that the k-sum problem

over (Z/mZ,+) with lists of size ` can be solved in time t′. Then the k-sum

problem over G with lists of size ` can be solved in time t′ + k`t.

Proof. Let L′
i = {logg x : x ∈ Li}; then any solution to the k-sum problem over

(Z/mZ,+) with lists L′
1, . . . , L

′
k yields a solution to the k-sum problem over G

with lists L1, . . . , Lk.

As we have seen earlier, there exists an algorithm for solving the k-sum problem
over (Z/mZ,+) in time t′ = O(k ·m1/(1+blg kc)) so long as each list has size at
least ` ≥ t′/k. As a consequence, there are non-trivial algorithms for solving the
k-sum problem in any group where the discrete log problem is easy.

A Generalized Birthday Problem 297

4 Attacks and applications

Blind signatures. Schnorr has recently observed that the security of several
discrete-log-based blind signature schemes depends not only on the hardness of
the discrete log but also on the hardness of a novel algorithmic problem, called
the ROS problem [28]. This observation applies to Schnorr blind signatures and
Okamoto-Schnorr blind signatures, particular when working over elliptic curve
groups and other groups with no known subexponential algorithm for the dis-
crete log.

We recall the ROS problem. Suppose we are working in a group of prime
order q. Let F : {0, 1}∗ → GF (q) represent a cryptographic hash function, e.g.,
a random oracle. The goal is to find a singular k × k matrix M over GF (q)
satisfying two special conditions. First, the entries of the matrix should satisfy

Mi,k = F (Mi,1,Mi,2, . . . ,Mi,k−1) for i = 1, . . . , k.

Second, there should be a vector in the kernel of M whose last component is
non-zero: in other words, there should exist v = (v1, . . . , vk)

T ∈ GF (q)k with
Mv = 0 and vk = −1.

Any algorithm to solve the ROS problem immediately leads to a one-more
forgery attack using k − 1 parallel interactions with the signer. Previously, the
best algorithm known for the ROS problem required Θ(q1/2) time.

We show that the ROS problem can be solved in subexponential time using
our k-tree algorithm. To illustrate the idea, we first show how to solve the ROS
problem in cube-root time for the case k = 4. Consider matrices of the following
form:

M =









w1 0 0 F (w1, 0, 0)
0 w2 0 F (0, w2, 0)
0 0 w3 F (0, 0, w3)
w4 w4 w4 F (w4, w4, w4)









,

where w1, . . . , w4 vary over GF (q)∗. We note that M is of the desired form if
the unknowns w1, . . . , w4 satisfy the equation

F (w1, 0, 0)/w1 + F (0, w2, 0)/w2+

+F (0, 0, w3)/w3 − F (w4, w4, w4)/w4 ≡ 0 (mod q).

Thus, this can be viewed as an instance of a 4-sum problem over GF (q): we
fill list L1 with candidates for the first term of the equation above, i.e., with
values of the form F (w1, 0, 0)/w1, and similarly for L2, L3, L4; then we search
for a solution to x1 + · · · + x4 ≡ 0 (mod q) with xi ∈ Li. Applying our 4-list
tree algorithm lets us break Schnorr and Okamoto-Schnorr blind signatures over
a group of prime order q in Θ(q1/3) time and using 3 parallel interactions with
the signer.

Of course, the above attack can be generalized to any number k > 4 of lists.
As a concrete example, if we consider an elliptic curve group of order q ≈ 2160,
then there is a one-more forgery attack using k−1 = 29−1 parallel interactions,

298 D. Wagner

225 work, and 212 space. Compare this to the conjectured 280 security level that
seems to be usually expected if one assumes that the best attack is to compute
the discrete log using a generic algorithm. We see that the k-tree algorithm yields
unexpectedly devastating attacks on these blind signature schemes.

In the general case, we obtain a signature forgery attack with subexponential
complexity. If we take k = 2

√
lg q−1, the k-tree algorithm runs in roughly 22

√
lg q

time, requires 2
√

lgq−1
√
lg q space, and uses 2

√
lg q−1−1 parallel interactions with

the signer. Consequently, it seems that we need a group of order q À 21600 if we
wish to enjoy 80-bit security. In other words, the size of the group order in bits
must be an order of magnitude larger than one might otherwise expect from the
best currently-known algorithms for discrete logs in elliptic curve groups.

NASD incremental hashing. One proposal for network-attached secure disks
(NASD) uses the following hash function for integrity purposes [13, 14]:

H(x)
def

=

k
∑

i=1

h(i, xi) mod 2256.

Here x denotes a padded k-block message, x = 〈x1, . . . , xk〉. We reduce inverting
this hash to a k-sum problem over the additive group (Z/2256

Z,+).
The inversion attack proceeds as follows. Generate k lists L1, . . . , Lk, where

Li consists of yi = h(i, xi) with xi ranging over many values chosen at random.
Then any solution to y1 + · · · + yk ≡ c (mod 2256) with yi ∈ Li reveals a pre-
image of the digest c. If we take k = 128, for example, we can find a 128-block
message that hashes to a desired digest using the k-tree algorithm and about
240 work.

The attack can be further improved by exploiting the structure of h, which
divides its one-block input xi into two halves yi, zi and then computes

h(i, 〈yi, zi〉) def

= (SHA(2i, yi)¿ 96)⊕ SHA(2i+ 1, zi).

Our improved attack proceeds as follows. First, we find values z1, . . . , zk satis-
fying SHA(3, z1) + SHA(5, z2) + · · ·+ SHA(2k + 1, zk) ≡ 0 (mod 296). If we set
k = 128, this can be done with about 220 work using the k-tree algorithm. We fix
the values z1, . . . , zk obtained this way, and then we search for values y1, . . . , yk

such that h(1, 〈y1, z1〉)+ · · ·+h(k, 〈yk, zk〉) ≡ 0 (mod 2256). Due to the structure
of h, the left-hand side is guaranteed to be zero modulo 296, so 96 bits come for
free and we have a k-sum problem over only 160 bits. The latter problem can be
solved with about 228 work using a second invocation of the k-tree algorithm.

This allows an adversary to find a pre-image with 228 work. Similar tech-
niques can be used to find collisions in about the same complexity. We conclude,
therefore, that the NASD hash should be considered thoroughly broken.

AdHash. The NASD hash may be viewed as a special case of a general incre-
mental hashing construction proposed by Bellare, et al., and named AdHash

A Generalized Birthday Problem 299

[2]:

H(x)
def

=

k
∑

i=1

h(i, xi) mod m,

where the modulus m is public and chosen randomly. However, Bellare, et al.,
give no concrete suggestions for the size of m, and so it is no surprise that some
implementors have used inadequate parameters: for instance, NASD used a 256-
bit modulus [13, 14], and several implementations have used a 128-bit modulus
[8, 9, 32]. Our first attack on the NASD hash applies to AdHash as well, so
we find that AdHash’s modulus m must be very large indeed: the asymptotic
complexity of the k-sum problem is as low as O(22

√
lg m) if we take k = 2

√
lg m−1,

so we obtain an attack on AdHash with complexity O(22
√

lg m).

To our knowledge, this appears to be the first subexponential attack on
AdHash. As a consequence of this attack, we will need to ensure that mÀ 21600

if we want 80-bit security. The need for such a large modulus may reduce or
negate the performance advantages of AdHash.

The PCIHF hash. We next cryptanalyze the PCIHF hash construction, proposed
recently for incremental hashing [15]. PCIHF hashes a padded n-block message
x as follows:

H(x)
def

=

n−1
∑

i=1

SHA(xi, xi+1) mod 2160 + 1.

Our attack on AdHash does not apply directly to this scheme, because the blocks
cannot be varied independently: changing xi affects two terms in the above sum.
However, it is not too difficult to extend our attack on AdHash to apply to
PCIHF as well.

We first show how to compute pre-images. Let us fix every other block of x,
say x2 = x4 = x6 = · · · = 0, and vary the remaining blocks of x. Then the hash
computation takes the form

H(x) =

b(n+1)/2c
∑

j=1

h(x2j−1) mod 2160+1 where h(w)
def

= SHA(0, w)+SHA(w, 0).

Now we may apply the AdHash attack to this equation, and if we take n = 255
and apply the 128-list tree algorithm, we can find a 255-block preimage of H
with about 228 work.

Similarly, it is straightforward to adapt the attack to find collisions for
PCIHF. The above ideas can be used to find a pair of 127-block messages that
hash to the same digest, after about 228 work. These results demonstrate that
PCIHF is highly insecure as proposed. Though the basic idea underlying PCIHF
may be sound, it seems that one must choose a much larger modulus, or some
other combining operation with better resistance to subset sum attacks.

300 D. Wagner

Low-weight parity checks. Let p(x) be an irreducible polynomial of degree n over
GF (2). A number of attacks on stream cipher begin by solving an instance of
the following problem:

The parity-check problem. Given an irreducible polynomial p(x), find a
multiple m(x) of p(x) so that m(x) has very low weight (say, 3 or 4 or
5) and so that the degree of m(x) is not too large (say, 232 or so).

Here, the weight of a polynomial is defined as the number of non-zero coefficients
it has. Recently, there has been increased interest in finding parity-check equa-
tions of weight 4 or 5 [7, 18, 10, 22], and the cost of the precomputation for finding
parity checks has been identified as a significant barrier in some cases [10]. Effi-
cient solutions for finding low-weight multiples of p(x) provide low-weight parity
checks and thereby enable fast correlation attacks on stream ciphers, so stream
cipher designers are understandably interested in the complexity of this problem.

We show a new algorithm for the parity-check problem that is faster on some

problem instances than any previously known technique. Let F
def

= GF (2)[t]/(p(t))
be the finite field of size 2n induced by p(t), and let ⊕ denote addition in
F. We generate k lists L1, . . . , Lk, each containing values from F of the form
ta mod p(t) ∈ F where a ranges over many small integer values. Then any so-
lution of the form u1 ⊕ · · · ⊕ uk = 1 with ui ∈ Li, i.e., ui = tai mod p(t) ∈ F,

yields a non-trivial low-weight multiple m(x)
def

= xa1 + · · ·+ xak+1 of p(x): it is
a multiple of p(x) since m(t) = ta1 ⊕ · · · ⊕ tak ⊕ 1 = 0 in F and hence m(x) ≡ 0
(mod p(x)), it is non-trivial since it is very unlikely to find fully repeated ui’s,
and it has weight at most k + 1. If we ensure that a ∈ {1, 2, . . . , A} for every a
used in any list Li, then m(x) will also be guaranteed to have degree at most A,
so we have a parity check with our desired properties. With our k-tree algorithm,
we will typically need to take A ≈ 2n/(1+lg k) to find the first parity check.

Consequently, we obtain an algorithm to find a parity check of weight k + 1
and degree about 2n/(1+blg kc) after about k · 2n/(1+blg kc) work. If we wish to
obtain many parity checks, about d1/(1+blg kc) times as much work will suffice to
find d parity checks, as long as d ≤ 2n/blg kc. This algorithm is an extension of
previous techniques which used the (2-list) birthday problem [16, 21, 27, 18].

As a concrete example, if p(x) represents a polynomial of degree 120, we can
find a multiple m(x) with degree 240 and weight 5 after about 242 work by using
the 4-tree algorithm. Compare this to previous birthday-based techniques, which
can find a multiple with degree 230 and weight 5, or a multiple with degree 260

and weight 3, in both cases using 261 work. Thus, our k-tree algorithm runs
faster than previous algorithms, but the multiples it finds have higher degrees
or larger weights, so where previous techniques for finding parity-checks are
computationally feasible, they are likely to be preferable. However, our algorithm
may make it feasible to find non-trivial parity checks in some cases that are
intractible for the previously known birthday-based methods.

Interestingly, Penzhorn and Kühn also gave a totally different cubic-time
algorithm [26], using discrete logarithms in GF (2n). Their method finds a parity
check with weight 4 and degree 2n/3 in O((1+α) ·2n/3) time, where α represents

A Generalized Birthday Problem 301

the time to compute a discrete log in GF (2n). Using batching, they predict α will
be a small constant. Also, they can obtain d times as many parity checks with
about d1/2 times as much work. Hence, when finding only a single parity check,
their method improves on our algorithm: it reduces the weight from 5 to 4, while
all other parameters remain comparable. However, when finding multiple parity
checks, our method may be competitive. Further implementation work may be
required to determine which of these algorithms performs better in practice.

5 Open problems

Other values of k. We have shown improved algorithms only for the case where
k is a power of two. An open question is whether this restriction can be removed.
A case of particular interest might be where k = 3: is there any group operation
+ where we can find solutions to x1 + x2 + x3 = 0 more efficiently than a
naive square-root birthday search? It would also be nice to have more efficient
algorithms for the case where k is large: our techniques provide only very modest
improvements as k increases, yet the existence of other approaches (such as the
Gaussian elimination trick of Bellare, et al. [2]) inspires hope for improvements.

Other combining operations. We can ask for other operations + where the k-sum
problem x1 + x2 + · · ·+ xk = c has efficient solutions. For example, for modular
addition modulo n, can we find better algorithms using lattice reduction or other
methods?

Golden solutions. Suppose there is a single “golden” solution to x1 + · · · +
xk = 0 that we wish to find, hidden amongst many other useless solutions. How
efficiently can we find the golden solution for various group operations? Similarly,
how efficiently can we find all solutions to x1 + · · · + xk = 0? Better answers
would have implications for some attacks [6, 18].

Memory and communication complexity. We have not put much thought into
optimizing the memory consumption of our algorithms. However, in practice, N
bytes of memory often cost much more than N steps of computation, and so it
would be nice to know whether the memory requirements of our k-tree algorithm
can be reduced. Another natural question to ask is whether the algorithm can
be parallelized effectively without enormous communication complexity. Over
the past two decades, researchers have found clever ways (e.g., Pollard’s rho,
distinguished points [24], van Oorschot & Wiener’s parallel collision search [25])
to dramatically reduce the memory and parallel complexity of standard (2-list)
birthday algorithms, so improvements are not out of the question. In the mean-
time, we believe it would be prudent for cryptosystem designers to assume that
such algorithmic improvements may be forthcoming: for example, in the absence
of other evidence, it appears unwise to rely on the large memory consumption
of our algorithms as the primary defense against k-list birthday attacks.

302 D. Wagner

Lower bounds. Finally, since the security of a number of cryptosystems seems to
rest on the hardness of the k-sum problem, it would be very helpful to have better
lower bounds on the complexity of this problem. As it stands, the existing lower
bounds are very weak when k À 2. Lacking provable lower bounds, we hope
the importance of this problem will motivate researchers to search for credible
conjectures regarding the true complexity of this problem.

6 Conclusions

We have introduced the k-sum problem, shown new algorithms to solve it more
efficiently than previously known to be possible, and discussed several appli-
cations to cryptanalysis of various cryptosystems. We hope this will motivate
further work on this topic.

Acknowledgements

I thank Wei Dai for Theorem 2. Also, I would like to gratefully acknowledge
helpful comments from Dan Bernstein, Avrim Blum, Wei Dai, Shai Halevi, Nick
Hopper, Claus Schnorr, Luca Trevisan, and the anonymous reviewers.

References

1. M. Ajtai, R. Kumar, D. Sivakumar, “A Sieve Algorithm for the Shortest Lattice
Vector Problem,” STOC 2001 , pp.601–610, ACM Press, 2001.

2. M. Bellare, D. Micciancio, “A New Paradigm for Collision-free Hashing: Incremen-
tality at Reduced Cost,” EUROCRYPT’97, LNCS 1233, Springer-Verlag, 1997.

3. D. Bernstein, “Enumerating solutions to p(a) + q(b) = r(c) + s(d),” Math. Comp.,
70(233):389–394, AMS, 2001.

4. D. Bleichenbacher, “On the generation of DSA one-time keys,” unpublished
manuscript, Feb. 7, 2002.

5. A. Blum, A. Kalai, H. Wasserman, “Noise-Tolerant Learning, the Parity Problem,
and the Statistical Query Model,” STOC 2000 , ACM Press, 2000.

6. D. Boneh, A. Joux, P.Q. Nguyen, “Why Textbook ElGamal and RSA Encryption
are Insecure,” ASIACRYPT 2000, LNCS 1976, Springer-Verlag, pp.30–44, 2000.

7. A. Canteaut, M. Trabbia, “Improved Fast Correlation Attacks Using Parity-Check
Equations of Weight 4 and 5,” EUROCRYPT 2000, LNCS 1807, Springer-Verlag,
pp.573–588, 2000.

8. M. Casto, B. Liskov, “Practical Byzantine Fault Tolerance,” Proc. 3rd OSDI (Op-
erating Systems Design & Implementation), Usenix, Feb. 1999.

9. M. Casto, B. Liskov, “Proactive Recovery in a Byzantine-Fault-Tolerant System,”
Proc. 4th OSDI (Operating Systems Design & Implementation), Usenix, Oct. 2000.

10. V.V. Chepyzhov, T. Johansson, B. Smeets, “A Simple Algorithm for Fast Correla-
tion Attacks on Stream Ciphers,” FSE 2000, LNCS 1978, Springer-Verlag, 2001.

11. P. Chose, A. Joux, M. Mitton, “Fast Correlation Attacks: an Algorithmic Point of
View,” EUROCRYPT 2002, LNCS 2332, Springer-Verlag, 2002.

12. W. Dai, personal communication, Aug. 1999.

A Generalized Birthday Problem 303

13. H. Gobioff, “Security for a High Performance Commodity Storage Subsystem,”
Ph.D. thesis, CS Dept., Carnegie Mellon Univ., July 1999.

14. H. Gobioff, D. Nagle, G. Gibson, “Embedded Security for Network-Attached Stor-
age,” Tech. report CMU-CS-99-154, CS Dept., Carnegie Mellon Univ., June 1999.

15. B.-M. Goi, M.U. Siddiqi, H.-T. Chuah, “Incremental Hash Function Based on Pair
Chaining & Modular Arithmetic Combining,” INDOCRYPT 2001, LNCS 2247,
Springer-Verlag, pp.50–61, 2001.

16. J. Golić, “Computation of low-weight parity-check polynomials,” Electronics Let-

ters, 32(21):1981–1982, 1996.
17. N.J. Hopper, M. Blum, “Secure Human Identification Protocols,” ASIACRYPT

2001, LNCS 2248, Springer-Verlag, pp.52–66, 2001.
18. T. Johansson, F. Jönsson, “Fast Correlation Attacks Through Reconstruction of

Linear Polynomials,” CRYPTO 2000, LNCS 1880, Springer-Verlag, 2000.
19. A. Joux, R. Lercier, “‘Chinese & Match’, an alternative to Atkin’s ‘Match and

Sort’ method used in the SEA algorithm,” Math. Comp., 70(234):827–836, AMS,
2001.

20. D.E. Knuth, The Art of Computer Programming, vol 3, Addison-Wesley, 1973.
21. W. Meier, O. Staffelbach. “Fast correlation attacks on certain stream ciphers,” J.

Cryptology, 1(3):159–167, 1989.
22. M.J. Mihalević, M.P.C. Fossorier, H. Imai, “A Low-Complexity and High-

Performance Algorithm for the Fast Correlation Attack,” FSE 2000, LNCS 1978,
Springer-Verlag, pp.196–212, 2001.

23. V.I. Nechaev, “Complexity of a determinate algorithm for the discrete logarithm,”
Math. Notes, 55(2):165–172, 1994.

24. J.-J. Quisquater, J.-P. Delescaille, “How easy is collision search? Application
to DES (Extended summary),” EUROCRYPT’89, LNCS 434, Springer-Verlag,
pp.429–434, 1990.

25. P.C. van Oorschot, M.J. Wiener, “Parallel Collision Search with Cryptanalytic
Applications,” Journal of Cryptology, 12(1):1–28, 1999.

26. W.T. Penzhorn, G.J. Kühn, “Computation of Low-Weight Parity Checks for
Correlation Attacks on Stream Ciphers,” Cryptography and Coding, LNCS 1024,
Springer, pp.74–83, 1995.

27. M. Salmasizadeh, J. Golic, E. Dawson, L. Simpson. “A Systematic Procedure for
Applying Fast Correlation Attacks to Combiners with Memory,” SAC’97 (Selected
Areas in Cryptography).

28. C.P. Schnorr, “Security of Blind Discrete Log Signatures against Interactive At-
tacks,” ICICS 2001, LNCS 2229, Springer-Verlag, pp.1–12, 2001.

29. C.P. Schnorr, S. Vaudenay, “Black box cryptanalysis of hash networks based on
multipermutations,” EUROCRYPT’94, LNCS 950, Springer-Verlag, 1994.

30. R. Schroeppel, A. Shamir, “A TS2 = O(2n) Time/Space Tradeoff for Certain
NP-Complete Problems,” FOCS ’79 , pp. 328–336, 1979.

31. R. Schroeppel, A. Shamir, “A T = O(2n/2), S = O(2n/4) Algorithm for Certain
NP-Complete Problems,” SIAM J. Comput., 10(3):456–464, 1981.

32. L. Shrira, B. Yoder, “Trust but Check: Mutable Objects in Untrusted Cooperative
Caches,” Proc. POS8 (Persistent Object Systems), Morgan Kaufmann, pp.29–36,
Sept. 1998.

33. V. Shoup, “Lower Bounds for Discrete Logarithms and Related Problems,” EU-

ROCRYPT’97, LNCS 1233, Springer-Verlag, pp.256–266, 1997.
34. S. Vaudenay, “On the need for multipermutations: Cryptanalysis of MD4 and

SAFER.” FSE’94, LNCS 1008, Springer-Verlag, pp.286–297, 1994.

304 D. Wagner

35. D. Wagner, I. Goldberg, “Parallel Collision Search: Making money the
old-fashioned way—the NOW as a cash cow,” unpublished report, 1997.
http://www.cs.berkeley.edu/˜daw/papers/kcoll97.ps

36. D. Wagner, “A Generalized Birthday Problem,” Full version at
http://www.cs.berkeley.edu/˜daw/papers/genbday.html.

37. K. Yang, “On Learning Correlated Functions Using Statistical Query,” ALT’01

(12th Intl. Conf. Algorithmic Learning Theory), LNAI 2225, Springer-Verlag, 2001.
38. G. Yuval, “How to Swindle Rabin,” Cryptologia, 3(3):187–189, 1979.

