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Abstract. Non-committing encryption enables the construction of mul-
tiparty computation protocols secure against an adaptive adversary in the
computational setting where private channels between players are not as-
sumed. While any non-committing encryption scheme must be secure in
the ordinary semantic sense, the converse is not necessarily true. We pro-
pose a construction of non-committing encryption that can be based on
any public-key system which is secure in the ordinary sense and which
has an extra property we call simulatability. This generalises an earlier
scheme proposed by Beaver based on the Diffie-Hellman problem, and we
propose another implementation based on RSA. In a more general set-
ting, our construction can be based on any collection of trapdoor permu-
tations with a certain simulatability property. This offers a considerable
efficiency improvement over the first non-committing encryption scheme
proposed by Canetti et al. Finally, at some loss of efficiency, our scheme
can be based on general collections of trapdoor permutations without the
simulatability assumption, and without the common-domain assumption
of Canetti et al. In showing this last result, we identify and correct a bug
in a key generation protocol from Canetti et al.

1 Introduction

The problem of multiparty computation dates back to the papers by Yao [20]
and Goldreich et al. [15]. What was proved there was basically that a collection
of n players can efficiently compute the value of an n-input function, such that
everyone learns the correct result, but no other new information. More precisely,
these protocols can be proved secure against a polynomial time bounded ad-
versary who can corrupt a set of less than n/2 players initially, and then make
them behave as he likes. Even so, the adversary should not be able to prevent
the correct result from being computed and should learn nothing more than the
result and the inputs of corrupted players. Because the set of corrupted players
is fixed from the start, such an adversary is called static or non-adaptive.
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There are several different proposals on how to define formally the security
of such protocols [19, 3, 8], but common to them all is the idea that security
means that the adversary’s view can be simulated efficiently by a machine that
has access to only those data that the adversary is entitled to know. Proving
correctness of a simulation in the case of [15] requires a complexity assump-
tion, such as existence of trapdoor permutations. Later, unconditionally secure
MPC protocols were proposed by Ben-Or et al. and Chaum et al.[6, 10], in the
model where private channels are assumed between every pair of players. These
protocols are in fact secure, even if the adversary is adaptive, i.e. can choose dy-
namically throughout the protocol who to corrupt, as long as the total number
of corruptions is not too large. It is widely accepted that adaptive adversaries
model realistic attacks much better than static ones. Thus it is natural to ask
whether adaptive security can also be obtained in the computational setting?

If one is willing to trust that honest players can erase sensitive information
such that the adversary can find no trace of it, should he break in, then such
adaptive security can be obtained quite efficiently [5]. Such secure erasure can
be too much to hope for in realistic scenarios, and one would like to be able to
do without them. But without erasure, protocols such as the one from [15] is not
known to be adaptively secure. The original simulation based security proof for
[15] fails completely against an adaptive adversary.

However, in [9], Canetti et al. introduce a new concept called non-committing
encryption and observe that if one replaces messages on the secure channels used
in [6, 10] by non-committing encryptions sent on an open network, one obtains
adaptively secure MPC in the computational setting. They also showed how to
implement non-committing encryption based on so called common-domain trap-
door permutations. The special property of non-committing encryption (which
ordinary public-key encryption lacks) is the following: although a normal cipher-
text determines a plaintext uniquely, encrypted communication can nevertheless
be simulated with an indistinguishable distribution such that the simulator can
later ”open” a ciphertext to reveal any plaintext it desires. In an MPC setting,
this is what allows to simulate the adversary’s view before and after a player is
corrupted. The scheme from [9] has expansion factor at least k2, i.e., it needs to
send Ω(k2) bits for each plaintext bit communicated.

Subsequently, Beaver [4] proposed a much simpler scheme based on the Deci-
sional Diffie-Hellman assumption (DDH) with expansion factor O(k). Recently,
Jarecki and Lysyanskaya [17] have proposed an even more efficient scheme also
based on DDH with constant expansion factor, which however is only non-
committing if the receiver of a message is later corrupted. This is sufficient for
their particular application to threshold cryptography, but not for constructing
adaptively secure protocols in general.

2 Our Results

In this paper, we first present a definition of simulatable public-key systems. This
captures some essential properties allowing for construction of non-committing
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encryption schemes based on ordinary semantically secure public-key encryp-
tion. Roughly speaking, a public-key scheme is simulatable if, in addition to
the normal key generation procedure, there is an algorithm to generate a public
key, without getting to know the corresponding secret key. Moreover, it must be
possible to sample efficiently a random ciphertext without getting to know the
corresponding plaintext (we give precise definitions later in the paper)

We then describe a general way to build non-committing encryption from sim-
ulatable and semantically secure public-key encryptions schemes. Our method
offers a major improvement over [9] in the number of bits we need to send. It
may be seen as a generalisation of Beaver’s plug-and-play approach from [4].
Beaver pointed out that it should be possible to generalise his approach to more
general assumptions than DDH. But no such generalisation appears to have been
published before.

The idea that it could be useful to generate a public key without knowing the
secret key is not new. It seems to date back to De Santis et al.[12] where it was
used in another context. The idea also appears in [9], but was only used there
to improve the key generation procedure is some special cases (namely based on
discrete logarithms and factoring). Here, we show the following

– From any semantically secure and simulatable public-key system, one can
construct a non-committing encryption scheme.

– The scheme requires 3 messages to communicate k encrypted bits, where k is
the security parameter. The total amount of communication is O(k) public
keys, O(k) encryptions of a k-bit plaintext (in the original scheme), and k
bits.

– Only the final k bits of communication depend on the actual message to be
sent, and hence nearly all the work needed can be done in a preprocessing
phase.

As mentioned, the DDH assumption is sufficient to support this construction.
We propose an alternative implementation based on the RSA assumption, which
is somewhat slower than the DDH solution1.

We then look at general families of trapdoor permutations. We call such a
family simulatable if one can efficiently generate a permutation in the family
without getting to know the trapdoor, and if the domain can be sampled in an
invertible manner. Invertible sampling is a technical condition which we discuss
in more detail later. All known examples of trapdoor permutations have invert-
ible sampling. Although this condition seems to be necessary for all applications
of the type discussed in [9, 4] and here, it does not seem to have been identified
explicitly before.

We show that such a simulatable family implies immediately a simulatable
public-key system with no further assumptions. The non-committing encryption
scheme we obtain from this requires per encrypted bit communicated that we
send O(1) descriptions of a permutation in the family and O(k) bits (where the

1 A proposal with a similar idea for the key generation but with a less efficient en-
cryption operation was made in [9].
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hidden constant only has to be larger than 2, and where all bits except one
can be sent in a preprocessing phase). With the same assumption, the scheme
from [9] requires Ω(1) permutation descriptions and Ω(k2) bits. Moreover, the
Ω(k2) bits depend on the message communicated and so cannot be pushed into
a preprocessing phase. On the other hand it should be noted that the scheme
from [9] needs only 2 messages (rather than 3 as in our scheme). It is not known
if the same improvement in bandwidth can be obtained with only 2 messages.

Our final main result is an implementation of non-committing encryption
based on any family of trapdoor permutations, assuming only invertible sam-
pling, i.e., without assuming full simulatability or the common-domain assump-
tion of [9].

At first sight, this seems to follow quite easily from the results we already
mentioned, if we use as subroutine a key generation protocol from [9]. This
protocol is based on oblivious transfer and can easily be modified to work based
on any family of trapdoor permutations, assuming only invertible sampling. The
protocol was intended to establish a situation where a player knows the trapdoor
for one out of two public trapdoor permutations, without revealing which one
he knows. It turns out that our scheme can start from this situation and work
with no extra assumptions.

However, as we explain later, we have identified a bug in the key generation
protocol of [9] causing it to be insecure. Basically, there is a certain way to de-
viate from the protocol which will enable the adversary to find out which of the
two involved trapdoors is known to an honest player. We suggest a modification
that solves this problem. While the modification is very simple and just consists
of having players prove correctness of their actions by standard zero-knowledge
protocols, it is perhaps somewhat surprising that it works. Standard rewindable
zero-knowledge often cannot be used against an adaptive adversary: the simula-
tor can get stuck when rewinding if the adversary changes its mind about who
to corrupt. However, in our case, we show that the simulator will never need to
rewind.

We note that the key generation of [9] needs invertible sampling in any case,
and thus our assumption of existence of trapdoor permutations with invertible
sampling is the weakest known assumption sufficient for non-committing encryp-
tion.

3 A Quick and Dirty Explanation

Before going into formal details, we give a completely informal description of
some main ideas. Let R,S be the two players who want to communicate in a
non-committing way.

First S chooses a bit c and generates a pair of public keys (P0, P1) such
that he only knows the secret Sc key corresponding to Pc. He sends (P0, P1)
to R. Then R chooses a bit d at random and sends to S two pairs of cipher-
text/plaintext (C0,M0), (C1,M1). This is done such that only one pair is valid,
i.e., Cd is an encryption of Md under Pd, whereas C1−d is a random ciphertext
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for which R does not know the plaintext, andM1−d is a random plaintext chosen
independently.

Now S can decrypt Cc and test whether the result equals Mc. This with
almost certainty determines d. Finally, S sends a bit s = c⊕ d to R telling him
whether c = d. If c = d, the parties will use this secret bit to communicate
message bit m securely as f = m ⊕ c. If c 6= d, we say that this attempt to
communicate a bit has failed, and none of the bits c, d are used later.

The intuition now is that successful attempts can be faked by a simulator
that chooses to know all secret keys and plaintexts involved, generates only valid
ciphertext/plaintext pairs but leaves c undefined for the moment. Then, if for
instance S is later corrupted, the simulator can choose to reveal the secret key
corresponding to either P0 or P1 depending on the value it wants for c at that
point. It will then be clear that the pair (Cc,Mc) is valid — the other pair is
valid too, but the adversary cannot see this if the simulator can convincingly
claim that P1−c was chosen without learning the corresponding secret key.

A main part of the following is devoted to showing that if we define appropri-
ately what it means to generate public keys and ciphertexts with no knowledge
of the corresponding secrets, then this intuition is good.

4 Simulatable Public-Key Systems

Throughout the paper we will use the following notation. For a probabilistic
algorithm A we will by RA denote a sufficiently large set {0, 1}l from which
the random bits for A are drawn. We let r ← RA denote a r drawn uniformly
random from RA, let a← A(x, r) denote the result a of evaluating A on input x
using random bits r, and denote by a← A(x) a value a drawn from the random
variable A(x) describing A(x, r) when r is uniform over RA.

We now want to define a public-key encryption scheme where one can gener-
ate a public key without getting to know the matching secret key. So in addition
to the normal key generation algorithm K that outputs a public and secret key
(P, S), we assume that there is another algorithm which we call the oblivious
public-key-generator K̃ which outputs only a public key P with a distribution
similar to public keys produced by K. However, this condition is not sufficient to
capture what we want. K̃ could satisfy it by just running the same algorithm as
K but output only P . We therefore also ask that based only on a public key P ,
there is an efficient algorithm K̃−1 that comes up with a set of random choices r′

for K̃ such that P = K̃(r′) and that P, r′ cannot be distinguished from a normal
set of random choices and resulting output from K̃. This ensures that whatever
side information you get from producing P using K̃, you could also compute
efficiently from only P itself. In a similar way we can define what it means to
produce a random ciphertext with no knowledge of the plaintext.

The property of being able to reconstruct the random bits used by an algo-
rithm, we call invertible sampling. We define this notion first.

Definition 1 (Invertible sampling). Let A : X×{0, 1}∗ → Y be a PPT algo-
rithm. We say that A has invertible sampling and that A is a PPTIS algorithm, if
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there exists a PPT random-bits-faking-algorithm A−1 : Y ×X → {0, 1}∗ such that
for all input x ∈ X, uniformly random bits r ← RA, output value y ← A(x, r),
and fake random bits r′ ← A−1(y, x) the random variables (x, y, r′) and (x, y, r)
are computationally indistinguishable.

Invertible sampling seems to be closely connected to non-committing encryp-
tion and adaptively secure computation in the non-erasure model.

As will be discussed further in chapter 6.2, the security of the non-committing
encryption scheme in [9] relies on a invertible sampling property of the domains
of the permutation. Also, the non-committing encryption scheme in [4], although
not treated explicitly there, relies on the fact that you can invertible sample a
quadratic residue in a specific group.

Invertible sampling is closely connected to adaptive security in models, where
security is defined by requiring that an adversary’s view of a real-life execution of
a protocol can be simulated given just the data the adversary is entitled to, and
where erasures are not allowed. Consider the protocol, where a party P1 receives
input x, computes y ← f(x, r), where r is some uniformly random string, and
outputs x. Assume that all other parties do nothing. After a corruption of P1

a real-life adversary sees the input x, the output y, and the random bits r. By
definition of security there exists an ideal-evaluation adversary S, that given
just x and y will output the same view, i.e. compute r′ such that (x, y, r′) are
computationally indistinguishable from (x, y, r). Since S is a PPT algorithms it
then follows that the protocol is secure iff f has invertible sampling. Why it is
indeed meaningful to deem such a protocol insecure if f does not have invertible
sampling, even though the protocol only has local computations, will not be
discussed here.

Definition 2 (Simulatable public-key system). Let (K, E ,D,M) be a public-
key system with key-generator K, encryption algorithm E, decryption algorithm
D, message-generatorM, and security parameter k (1k is implicitly given as in-
put to all algorithms in the following.) We say that (K, E ,D,M) is a simulatable

public-key system if besides fulfilling the usual requirements there exists PPTIS
algorithms K̃ and C, called the oblivious public-key-generator resp. the oblivious

ciphertext-generator such that the following holds.

Oblivious public-key generation For (P, S) ← K and P̃ ← K̃ the random
variables P and P̃ are computationally indistinguishable.

Oblivious ciphertext generation For (P, S)← K, C1 ← CP and M ←MP ,
C2 ← EP (M), the random variables (P,C1) and (P,C2) are computationally
indistinguishable.

Semantic security For (P, S) ← K, and for i = 0, 1: Mi ← MP , Ci ←
EP (Mi), the random variables (P,M0,M1, C0) and (P,M0,M1, C1) are com-
putationally indistinguishable.
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5 Non-Committing Encryption

Non-committing encryption was defined in [9] as the problem of communicat-
ing a bitstring from a party S to party R in a n-party network with insecure
authenticated channels between all parties. It is required that the protocol for
doing this is secure against an adaptive adversary, who can corrupt up to n− 1
parties.

We introduce and provide examples of protocols adhering to a stronger notion
of non-committing encryption which is resilient against a corruption of all parties
and which involves only the communicating parties.

Definition 3 (Strong non-committing encryption). Let f(m, ε) = (ε,m)
be the two-party function for communicating a message m ∈ {0, 1}∗. Let π be a
two-party protocol. We say that π is a strong non-committing encryption scheme
if it 2-adaptively securely computes f .

A reason for preferring a protocol meeting definition 3 is first of all that a
protocol meeting the strong notion allows two parties to communicate indepen-
dently of the other parties. We can think of such a protocol as a channel between
two parties maintained by just these parties. This provides more flexibility for
use in sparse network topologies and with arbitrary adversary structures.

Many proposals for the definition of secure multiparty computation has ap-
peared in the literature presently culminating in the proposal of [8] which as the
first definition allows for general security preserving modular composition of pro-
tocols in the computational setting. We will use this model of secure multiparty
computation.

In general the model defines an ideal-evaluation of a function f and re-
quires that whatever a PPT real-life adversary A might obtain from attacking
a real-life execution of the protocol π a corresponding ideal-evaluation adversary

S could obtain from attacking only the ideal-evaluation.
In our case the ideal-evaluation is functionally as follows. There are three

active parties, all PPT algorithms. The sender S, the receiver R, and the ad-
versary S. The sender and receiver shares a secure channel and S simply sends
the message m to R. The adversary sees no communication, but can corrupt the
parties adaptively. If so he learns m (either as the senders input or the receivers
output) and can control the corrupted party for the remaining evaluation. I.e. if
S is corrupted before sending m the adversary might send a different message.

In the real-life execution the adversary A sees all communication, and if he
corrupts a party he receives that parties input and output (here m) and that
parties random bits. All communication, inputs values, and all random bits are
enough that the adversary can reconstruct the entire execution history of the
corrupted party. This is what captures the non-erasure property of the model.

We then define security by requiring that for any real-life adversary A there
exists an ideal-evaluation adversary S, such that the collective output of all
uncorrupted parties and S after attacking an ideal-evaluation of sending m is
distributed computationally indistinguishable from the collective output of all
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uncorrupted parties and A after attacking a real-life execution of the protocol
with input m.

A complete definition and a summary of previous definitional work appears in
[8]. A sketch of the part of the model used in this paper appears in our technical
report [11].

5.1 The Main Idea

S R

c← {0, 1} d← {0, 1}
rc ← RK ed ← RE
r1−c ←RK̃ e1−d ←RC
(Pc, Sc)← K(rc)

P1−c ← K̃(r1−c)
P0,P1−−−−−−−−−→

Md ←MPd

M1−d ←MP1−d

Cd ← EPd
(Md, ed)

C1−d ← CPd
(e1−d)

M0,M1←−−−−−−−−−−
C0,C1

s←

{

0 if DSc(Cc) = Mc

1 otherwise
s

−−−−−−→

output

{

⊥ if s = 1

c otherwise
output

{

⊥ if s = 1

d otherwise

Fig. 1. One attempt to establish a shared random bit.

The main idea in the protocol is — like in all previous proposals — that
we have our parties learn less information than is actually possible. This opens
the possibility that a simulator can choose to learn full information and exploit
this to its advantage. The main building block of the protocol, which we call an
attempt, is sketched in Fig. 1.

Let rS and rR be the random inputs of S resp. R. We write the values
obtained by an attempt as

Attempt(rS , rR) = (rc, Pc,Mc, ec, Cc), Sc, (r1−c, P1−c,M1−c, e1−c, C1−c), (c, d, s)

Let Attempt denote the random variable describing Attempt(rS , rR) when rS

and rR are chosen uniformly random. Let Attempti for i = 0, 1 denote the
distribution of Attempt under the condition that s = i. An attempt where
s = 0 is called a successful attempt and an attempt where s = 1 is called a
failed attempt.
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For later use in the simulator and for illustration of the main idea we now
show how we can produce a distribution computationally indistinguishable from
that of Attempt0, but where the common value b = c = d of the shared secret
bit can later be changed. We say that the simulation is non-committing to b.

Let SimSuccess be the values produced as follows: s← 0, i = 0, 1 : ri ← RK,
(Pi, Si)← K(ri),Mi ←M, ei ← RE , Ci ← EPi

(Mi, ei). The only difference com-
pared to Attempt0 is that in SimSuccess, we choose to learn the corresponding
private key of P1−c, choose C1−d as an encryption ofM1−d, and do not fix c and
d yet.

For patching successful attempts we define the function Patch(A, b), which
for an element A drawn from SimSuccess and a bit b ∈ {0, 1} produces values
similar to those in Attempt0 by computing c and d as c← b, d← b, and patching
r1−c and e1−d by r

′
1−c ← K̃

−1(P1−c), e
′
1−d ← C

−1(C1−d, P1−d).
Let Patch = (rc, Pc,Mc, ec, Cc), Sc, (r

′
1−c, P1−c,M1−c, e

′
1−c, C1−c), (c, d, s) de-

note the random variable describing Patch(A, b) when A is drawn randomly from
SimSuccess and b is chosen uniformly random from {0, 1}.

Lemma 1. The distribution of Patch is computationally indistinguishable from
the distribution of Attempt0.

Proof: Let b denote the common value of c and d and observe that Pr[b = 0]
and Pr[b = 1] is negligible close to 1

2 in both Patch and Attempt0. It is therefore
enough to show that the conditional distributions under b = 0 and b = 1 are
computationally indistinguishable.

For fixed b the variables c, d, and s are constants and has the same val-
ues in the two distributions, so we can exclude them from the analysis. Further
more (rc, Pc,Mc, ec, Cc), Sc can be seen to have the same distribution in the two
distributions and is independent of (r1−c, P1−c,M1−c, e1−c, C1−c), so all that
remains is to show that these (1− c)-values are distributed computationally in-
distinguishable in Attempt0 and Patch. In Attempt0 these values are distributed
as

(r̃ ← RK̃, P̃ ← K̃(r̃),M ←MP̃ , e← RC , C ← CP̃ (e)) (1)

and in Patch they are distributed as

(r′, P,M ←MP , e
′, C ← EP (M, e)) (2)

where r ← RK, (P, S)← K(r), r
′ ← K̃−1(P ) and e← RE , e

′ ← C−1(C,P ). That
these distributions are computationally indistinguishable follows by a hybrids
argument, going from (1) to (2) using (in this order) the oblivious public-key
generation including the invertible sampling of K̃, the oblivious ciphertext gen-
eration including the invertible sampling of C, and finally the semantic security.
For more details see the technical report [11]. ¥

Why Failed Attempts Cannot be Simulated without Committing Con-
sider the situation where c 6= d. The secret key Sc is always known by S. If this
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key becomes known to the adversary by corrupting S, he can check whether
DSc

(C1−d) 6= M1−d, as it should be with high probability. The simulator can
therefore pick at most one message/encryption pair such that C is an encryp-
tion of M . On the other hand the adversary when corrupting R expects to see
a value d and random bits ed such that Cd ← EPd

(Md, ed). Thus at least one
message/encryption pair should be correct. All in all exactly one pair is correct,
which commits the simulator to d (and thus c).

5.2 The Full Protocol

We will here analyse the protocol in Fig. 2, where we execute attempts in se-
quence until we have a successful one and then use the shared secret value b of
c and d to communicate a message bit m as f = m⊕ b.

Each attempt hasS R
input m ∈ {0, 1} input ε
b← Attempt b← Attempt
if b = ⊥ then retry if b = ⊥ then retry
f ← b⊕m

f
−−−−−−→

output ε output f ⊕ b

Fig. 2. Sequential 1-bit protocol.

probability 1
2 of being

successful, so the ex-
pected number of at-
tempts is two.

To prove security
of the protocol we con-
struct a simulator.

5.3 The Simulator

Let A be any real-life adversary. We construct a corresponding ideal-evaluation
adversary I(A) as follows. The ideal-evaluation adversary I(A) initialises A with
a sufficiently large random string rA. The real-life adversary A will now start
attacking. It expects to attack a real-life execution, but I(A) is attacking an
ideal-evaluation. We describe how to handle this.

The Basic Simulation As long as A does not corrupt any parties I(A) pro-
ceeds as follows. Before simulating each attempt decide whether the attempt
should be a success or should fail by drawing s uniformly random from {0, 1}.

If s = 1 then start by preprocessing values to be revealed toA. Simply execute
the protocol for a failed attempt. I.e. draw c uniformly random from {0, 1}, set
d = 1 − c, and then execute the attempt protocol in Fig. 1. This provides the
values (rc, Pc,Mc, ec, Cc), Sc, (rc−1, Pc−1,Mc−1, ec−1, Cc−1), (c, d = 1−c, s = 1).
The adversary expects to see all communication in a real-life execution, so show
him (P0, P1), (M0,M1, C0, C1), and s, in that order — we will later deal with
the issue of how I(A) should act on corruption requests from A.

If s = 0, then I(A) simulates a successful attempt. Again values for the com-
munication is preprocessed. This time by running the algorithm A← SimSuccess.
This provides values for all communication except f . We pick f uniformly ran-
dom from {0, 1} and reveal the communication to A as above.
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When a successful attempt has been simulated the actual simulation is over,
but I(A) keeps interacting with A, which might still corrupt more parties —
we do return to this right ahead. At some point A terminates with some output
value, which we take to be the output value of I(A).

Dealing with Corruption Requests Below we describe how to handle the
first corruption request. We look at two points, where the first corruption might
take place. During the failed attempts and during the successful attempt. We
prove that in either case I(A) can patch the internal simulated state of S and
R and simulate the corruption such that the entire state of S, R, and A is
computationally indistinguishable from the state that would have been produced
by running a real-life execution on the same input with adversary A.

From this it follows that the simulator can then complete the simulation by
just running the remaining honest party according to the real-life protocol with
the simulated state as a starting point. Since the starting point is computa-
tionally indistinguishable from that of a real-life execution at the same point of
execution and all participating algorithms are PPT it follows directly from the
definition of computational indistinguishability that the final output of A, and
thereby I(A), will be computationally indistinguishable from the output of A
produce by an execution of the real-life protocol 2.

If A corrupts a party during the simulation of a failed attempt I(A) corrupts
the corresponding party in the ideal-evaluation and learns m. Observe that the
simulated communication values and all preprocessed internal values in failed
attempts are distributed identically to the values produced by a real-life execu-
tion. Therefore after obtaining m the simulator I(A) can just pass this along to
A and the obtained global state is distributed identically to that of a real-life
execution.

If A corrupts a party during the simulation of a successful attempt, we again
have a number of cases as there is three rounds of communication. We first look
at the case where the corruption occurs after s and f have been communicated.
Here I(A) again corrupts the same party in the ideal-evaluation, obtains m, and
passes it on to A. Now I(A) must decide on values for c and d. We pick the
common value b ← m ⊕ f . This value is consistent with all other values since
with c = b and d = b we have that f = m ⊕ c and m = f ⊕ d as required. The
simulator now patches the preprocessed values using Patch(A,m⊕f) and hands
out the patched values thus produced to A. Observe that m ⊕ f is uniformly
distributed over {0, 1} as we picked f uniformly random. It then follows directly
from lemma 1 and the fact that c and d is chosen consistent with f and m that
the global state of S, R, and A is computationally indistinguishable from that

2 Note that what allows this simple argument is that in contrast to simulators for more
involved protocols not only have we obtained that the values revealed to A up to the
first corruption is computationally indistinguishable from those of a real-life execu-
tion. We have managed to produce a complete global state of communication and the
state of corrupted and uncorrupted parties that is computationally indistinguishable
from that of a real-life execution.
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which would have been produced from an execution of the real-life protocol on
the same inputs.

If the corruption occurs before f is revealed to A, just obtain m as before
and patch the preprocessed values with a uniformly random common value b
for c and d. The value of f will then be given by the real-life protocol when
I(A) starts the execution of the remaining honest party. Earlier corruptions are
handled similarly.

Theorem 1. If simulatable public-key systems exist, then the protocol in Fig. 2
is a strong non-committing encryption scheme for communication one bit.

Proof: We have to prove that for all real-life adversaries A there exists an
ideal-evaluation adversary S such that the output of A after attacking the real-
life protocol is computationally indistinguishable from the output of S after
attacking an ideal-evaluation of the same inputs.

Given A we simply set S = I(A) an the claim follows from the above analysis
of I(A). ¥

Theorem 2. If simulatable public-key systems exist, then strong non-committing
encryption schemes exist. The scheme requires 3 messages to communicate k en-
crypted bits, where k is the security parameter. The total amount of communi-
cation is O(k) public keys, O(k) encryptions of a k-bit plaintext (in the original
scheme), and k bits.

Proof: It follows directly from the Markov inequality that a = 4k parallel
attempts will give k successful ones for communication except with probability
exp(−k

2 ), which is certainly negligible in k. This protocol uses three rounds
for the attempts and we can communicate f in round three together with s.
We thereby obtain the claimed round complexity. The claimed communication
complexity is trivially correct.

Since the simulator for attempts does not rewind the real-life adversary A,
we can obtain a simulator for the parallel protocol by simply running a ’copies’
of the simulator for the attempts in parallel. See the technical report [11] for
more details. ¥

6 Implementations

The following theorem provides the first example of a simulatable public-key
system.

Theorem 3. The ElGamal public-key system is simulatable assuming that it it
semanticly secure.

Proof: Recall that a public key is a triple (p, g, h), where p is a prime such that
the discrete log problem in Z

∗
p is intractable, 〈g〉 = Z

∗
p, and h = gx for some

random x, which is the private key. Now simply let the oblivious public-key-
generator pick h directly in Z

∗
p without learning its discrete log base g and let
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K̃−1(p, g, h) = (rp, rg, rh), where rp, rg, and rh are random bits similar to those
used to pick p, g, resp. h.

How to reconstruct rp depends of course on the algorithm used to pick p. For
simplicity, say that we pick p by drawing random numbers in some interval I
until we get a number that tests to primality by some probabilistic test. We will
then have to reconstruct, from p, a distribution similar to the prefix of numbers
that were not primes. This can trivially be done by drawing random numbers in
I until a prime is found and use the prefix of non-primes and the random bits
used to test them non-prime. The value rp is set to be these bits, p, and bits
used to test p prime using the primality test. This value rp is trivially distributed
computationally indistinguishable from the bits originally used to pick p. The
oblivious public-key generation is then trivially fulfilled. The values rg and rh

are trivial to reconstruct if g and h is chosen in a natural way.
A message x ∈ Z

∗
p is encrypted as (g

k, xhk), where k is chosen uniformly
random in Zp−1. It is obvious, that a ciphertext can be generated obliviously as
(y1, y2), where y1 and y2 are picked uniformly random and independent in Z

∗
p.

Invertible sampling is trivial. ¥

6.1 Trapdoor Permutations

Before presenting the next example of a simulatable public-key system, we define
the concept of a simulatable collection of trapdoor permutations and prove that
the existence of such a collection implies the existence of simulatable public-key
systems.

We first recall the standard definition of collections of trapdoor permutations:

Definition 4 (Collection of trapdoor permutations). We call (I, F,G,X )
a collection of trapdoor permutations with security parameter k, if I is an infinite
index set, F = {fi : Di → Di}i∈I is a set of permutations, the index/trapdoor-
generator G and the domain-generator X are PPT algorithms, and the following
hold:

Easy to generate and compute G generates pairs of indices and trapdoors,
(i, ti) ← G(1k), where i ∈ I ∩ {0, 1}p(k) for some fixed polynomial p(k).
Furthermore, there is a polynomial time algorithm which on input i, x ∈ Di

computes fi(x).
Easy to sample domain X samples elements in the domains of the permuta-

tions, i.e. x← X (i), where x is uniformly random in Di.
Hard to invert For (i, ti) ← G(1

k), x ← X (i), and for any PPT algorithm A
the probability that A(i, fi(x)) = x is negligible in k.

But easy with trapdoor There is a polynomial time algorithm which on input
i, ti, fi(x) computes x, for all x ∈ Di.

The next definition, of simulatable collections, is built along the lines of the
definition of simulatable public-key systems. It basically defines a collection of
trapdoor permutations where in addition it is easy to generate a permutation f in
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the collection without getting to know the trapdoor. Further more we need that
the domain of the trapdoors has invertible sampling. This is to allow oblivious
ciphertext generation.

Invertible sampling is trivial if the domain of f is, for instance, the set of
k-bit strings and sampling is done in the natural way. But it may in general be
an extra requirement which, however, seems to be necessary for any application
of the kind we consider here. It is easy to construct artificial domains without
invertible sampling, but all collections of trapdoor permutations we know of have
domains with invertible sampling.

Definition 5 (Simulatable collection of trapdoor permutations). Let
(I, F,G,X ) be a collection of trapdoor permutations with security parameter k.
We say that (I, F,G,X ) is a simulatable collection of trapdoor permutations with
oblivious index-generator G̃, if G̃ and X are PPTIS algorithm and the random
variables i and ĩ are computationally indistinguishable, where (i, ti) ← G and
ĩ← G̃.

Given F a collection of trapdoor permutations one can construct a seman-
tically secure public-key system using the construction in [7]. We review the
construction here and observe that it preserves simulatability.

Let B be a hard-core predicate of the collection of trapdoor permutations. If
no such B is known one can construct a new simulatable collection of trapdoor
permutations following the construction in [7]. The key-generator is set to be
K = G, i.e. for (i, ti) ← G we set (P, S) = (i, ti). The message space can be set
toM = {0, 1}p(k) for any polynomial p(k) and the ciphertext space for P = i is
M×Di, where Di is the domain of fi.

Let X(i, x, n) = B(x)B(fi(x))B(f
2
i (x)) . . . B(f

n−1
i (x)) be the usual pseudo-

random string generated from x. Then the encryption of m ∈ M under i is

(m⊕X(i, x, |m|), f
|m|
i (x)) for random x← X (i). The decryption is trivial given

ti. To pick such a ciphertext obliviously for a given key P generate m←M and
x ← X (i) and let C = (m,x). This will be distributed exactly as C ← EP (m

′)
for m′ ←M. Invertible sampling is given by C−1(i,m, x) = (m,X−1(i, x)).

The oblivious public-key generation is given by setting K̃ = G̃ and K̃−1 = G̃−1

and the semantic security is proven in [7].

Theorem 4. Let F = (I, F,G,X ) be a simulatable collection of trapdoor per-
mutations and let EF = (K, E ,D,M) be the public-key system described above.
Then EF is simulatable.

We proceed to construct a simulatable collection of trapdoor permutations
based on RSA. We cannot use the standard collection of RSA-trapdoors as it has
not been proven to have oblivious public-key generation. If the oblivious public-
key generation learns the factorisation of n, the random-bits-faking-algorithm
would have to factor n, which is hopefully hard. If the oblivious public-key
generation does not learn the factorisation of n it would have to test in PPT
whether n is a factor of two large primes, which we do not know how to do. We
therefore need a modification.



447

Assumption 1 Let I = {(n, e)|n = pqr, p, q are primes and |p|, |q| ≥ k, |n| =
k log k, and n < e < 2n is a prime}. Here, k is as usual the security parameter.
For (n, e) ∈ I let t(n,e) = d where ed = 1 mod φ(n). Let f(n,e) : Z

∗
n → Z

∗
n, x 7→

xemodn. Then F = {fi}i∈I is a collection of trapdoor permutations.

Observe, that there is a non-negligible chance that a random integer n con-
tains two large primefactors. I.e. if we pick n at random and e as a prime larger
than n, then x 7→ xemodn is a weak trapdoor permutation over Z

∗
n (relative to

assumption 1.) The same observation was used in [9], where they refer to general
amplification results[21, 13] to obtain a collection of strong trapdoor permuta-
tions from this collection of weak ones. Here we apply an explicit amplification
procedure, which is slightly more efficient, and prove that it gives us a simulat-
able collection of trapdoor permutations.

Let l be an amplification parameter, which we fix later.
An index with corresponding trapdoor is given by i = (e, n1, . . . , nl) and

ti = (d1, . . . , dl), where e is a (k log k)-bit random prime and for j = 1, . . . , l the
number nj is a uniformly random (k log k)-bit number and dj = e−1 mod φ(nj).
To compute dj the key-generator G must generate uniformly (or indistinguish-
ably close to uniformly) random nj in such a way that φ(nj) is known. In [2] it
was shown how to do this.

An oblivious index (e, n1, . . . , nl) ← G̃ is simply generated by picking e as
before and picking the nj uniformly random. The only problem for G̃

−1 in faking
bits for the index (e, n1, . . . , nl) is the prime e. On how to do this see the proof
of theorem 3.

The domain for the index i = (e, n1, . . . , nl) will be Di =
∏l

j=1 Z
∗
nj
and the

corresponding permutation will be f(e,n1,... ,nl)(x1, . . . , xl) = (xe
1modn1, . . . ,

xe
l modnl). Since e is relatively prime to all nj our functions are indeed permuta-
tions and are invertible in PPT using the trapdoor information ti = (d1, . . . , dl).

We pick a uniformly random element x from Di by picking a uniformly
random element xj from eachZ

∗
nj
. These elements should be chosen in a way that

allows X−1 to reconstruct the random bits used. One way is to pick uniformly
random elements from Znj

until an element from Z
∗
nj
is found. This gives us

X−1 by following the construction for primes — see the proof of theorem 3.
What remains is to prove the one-wayness of our collection. In [18] the prob-

ability that the i’th largest primefactor of a random number n is larger than
nc for a given constant c is investigated. It is shown to approach a constant
as n approaches infinity. In particular, the probability that the second largest
primefactor is smaller than nc is approximately linear for small c, in fact it is
about 2c for c ≤ 0.4. It follows that the probability that a number of length
k log k bits has its second largest prime factor shorter than k bits is O(1/ log k).
If we set l to log k, we then have that the probability that there does not exist
j ∈ {1, . . . , l} such that (nj , e) ∈ I, where I is the index set of assumption 1, is
O(( 1

log k
)log k) and so is negligible. So we have:

Theorem 5. Under assumption 1, the set SRSA = {fi : Di → Di} is a simu-
latable collection of trapdoor permutations.
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We note that ( 1
log k

)log k is only slightly below what is needed to be negligible.

To obtain a security preserving[13] amplification we could use k k-bit moduli.
Another approach would be to remove the need for amplification by finding an
invertible way to produce integers with two large primefactors and use just one
such modulus for encryption.

6.2 Doing without Oblivious Index Generation

We now proceed to prove that one can do without the oblivious index generation.
We basicly remove the oblivious index generation assumption by using the

key generation protocol from [9] applying a fix and a twist. The fix is necessary
as we have found an attack against the protocol used in [9]. The twist is applied
to remove the common-domain assumption which is needed by the construction
in [9].

The Key Generation Protocol In [9] a non-committing encryption scheme
was built consisting of two phases. The first phase is a key generation protocol
which is intended to create a situation, where players S and R share two trapdoor
permutations from what is called a common-domain trapdoor system. Moreover,
S knows exactly one of the corresponding trapdoors, and if S remaines honest
in this phase, a simulator is able to make a simulated computation, where both
trapdoors are learned and which can later (in case S is corrupted) be convincingly
patched to look as if either of the trapdoors were known to S. One immediate
consequence is that the adversary must not know which of the two trapdoors is
known to S, before corrupting S.

The key generation requires participation of all n parties of the protocol and
proceeds as follows: Each player Pi chooses at random two permutations (g

i
0, g

i
1)

and send these to S. Next S chooses c = 0 or 1 at random, and execute the
oblivious transfer (OT) protocol of [14] with Pi as sender using the trapdoors of
(gi

0, g
i
1) as input and S as receiver using c as input, and such that S receives the

trapdoor of gi
c. The OT protocol of [14] has a non-binding property that allows a

simulator to learn both trapdoors when it is playing S’s part and later to claim
that either trapdoor was received.

In the above, there is no guarantee that Pi really uses the trapdoors of (g
i
0, g

i
1)

as input to the OT, but, as pointed out in [9] one may assume that the trapdoor
of a permutation consists of all inputs required to generate it so that S can verify
what he receives. Finally, S publishes the subset A of players from whom he got
correct trapdoors, and we define f0 to be the composition of the permutations
{gi

0}i∈A in some canonical order, and similarly for f1.

The Attack and a Fix We describe an attack against the above key generation
protocol. If S is still honest, but Pi is corrupt, the adversary may choose to let Pi

use as inputs to the OT a correct trapdoor for gi
a but garbage for g

i
b. When the

adversary sees the set A he can then determine the value of c. If i 6∈ A the sender
must have chosen c = b and detected Pis fraud. If i ∈ A then the sender must



449

have chosen c = a. In any case the adversary learns c and in 1
2 of the cases even

without being detected. But this is a piece of information that the adversary
should not be able to get. The simulator’s freedom to set c after corruption is
exactly what makes the simulation go through.

We solve this by requiring that a sender in an OT always proves in zero-
knowledge to the receiver he inputs correct information to the OT. I.e. prove
that there exists r such that (g, tg) = G(r) and that there exists a bitstring r

′ such
that (g, tg, r

′) is the inputs to the OT (r′ being the random bits used in the OT.)
Since this is an NP statement and R knows both witnesses r and r′, this is always
possible to prove[14]. This will imply that except with negligible probability, Pi

will have to supply correct trapdoors to both permutations or be disqualified.
Normally, the use of such ZK proofs leads to problems against adaptive adver-
saries because of the rewinding needed to simulate the proofs. However, in this
protocol, it happens to be the case that the simulator never needs to ”prove” a
statement for which it doesn’t know a witness, and so rewinding is not needed.

The Twist Having executed all the OT’s, S would in the protocol from [9]
compose the permutations from honest parties to obtained two permutations,
one with a known trapdoor and one with an unknown trapdoor. This requires
and produces common-domain trapdoors. Instead of composing we simply con-
catenate.

Let g1
c , . . . , g

l
c be the permutations that was correctly received and for which

the corresponding trapdoor was received. From these permutations S defines
a new permutation fc, where fc(x

1, . . . , xl) = (g1
c (x

1), . . . , gl
c(x

l)). Let B be
a hard-core predicate for the collection of trapdoor permutations used. Then
B(x1, . . . , xl) =

⊕l

i=1 B(x
i) is a hard-core predicate for fc. Let x

1, . . . , xl be
random and let X(gi, xi, n) = B(xi)B(gi(xi))B((gi)2(xi)) . . . B((gi)n−1(xi)) be
the usual pseudo-random string generated from xi. Then the encryption of m ∈
{0, 1}∗ under fc using the above hard-core predicate is seen to be ((g

1)|m|(x1),
. . . , (gl)|m|(xl)),m⊕X(g1, x1, |m|)⊕ . . .⊕X(gl, xl, |m|). Similar for f1−c.

In the following we call the (g1, . . . , gl) tuples public keys and the (tg1
, . . . , tgl

)
tuples private keys to distinguish from the individual permutations and trap-
doors.

Using the Key Generation in Our Protocol After an execution of the
key generation protocol an honest S has two public keys where he knows the
private key to exactly one of them, but where the adversary cannot tell which
one he knows. This is exactly the scenario that the first round of our protocol
described earlier creates. Thus, one attempt to exchange a secret key can be done
by running the key generation protocol followed by our communication phase.
Our technical report [11] contains an analysis of the security. We sketch it here.

As before all failed attempts are simulated by simply following the real-life
protocol. In the simulation of the successful attempt the simulator makes sure
that it knows both private keys by learning all involved trapdoors: for each OT,
if the sender is honest it chooses the trapdoors itself, if not, it chooses to learn
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both trapdoors during the OT (this succeeds except with negligible probability
by the ZK proofs we introduced.) On corruption the simulator can patch the
view of S to be consistent with either private key being learned.

To show this simulation is indistinguishable from a real execution we observe
that the only event in which there is a difference between the distributions is
when R or S are corrupted after the message is sent. Here, the adversary will
see a message/ciphertext pair which is valid w.r.t. to a given public key in the
simulation but is invalid in a real execution. Since the adversary cannot corrupt
all players, there is at least one involved trapdoor he does not know, so he should
not be able to tell the difference. To prove this, we can take a permutation f with
unknown trapdoor, and choose a random player Pi. We then run the simulation
pretending that Pi chose f as one of its inputs to the OT and hoping that
the adversary will not corrupt Pi but will corrupt S or R later. If simulation
and execution can be distinguished at all, this must happen with non-negligible
probability. It now follows that a successful distinguisher must be able to break
encryption using f as public key.

Theorem 6. If there exist collections of trapdoor permutations for which the
domains have invertible sampling, then non-committing encryption schemes ex-
ist.

We note that the OT protocol which we use as an essential tool is itself based
on trapdoor permutations. Moreover, in order for the OT to be non-committing,
the domain of permutations must have invertible sampling. This property is also
necessary in the original key generation protocol from [9], where also a common-
domain property was needed, so assuming only invertible sampling is a weaker
assumption. Further more, the discussion in chapter 4 of invertible sampling
might indicate, that a protocol using ideas similar to those presented in this
paper will need the invertible sampling property of crucial domains sampled or
use a n-party protocol for sampling the domains, as we did for the key space in
this chapter.
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