
New Paradigms for Constructing

Symmetric Encryption Schemes

Secure Against Chosen-Ciphertext Attack

Anand Desai

Department of Computer Science & Engineering,
University of California at San Diego,

9500 Gilman Drive, La Jolla, California 92093, USA.
adesai@cs.ucsd.edu

Abstract. The paradigms currently used to realize symmetric encryp-
tion schemes secure against adaptive chosen ciphertext attack (CCA) try
to make it infeasible for an attacker to forge “valid” ciphertexts. This
is achieved by either encoding the plaintext with some redundancy be-
fore encrypting or by appending a MAC to the ciphertext. We suggest
schemes which are provably secure against CCA, and yet every string is a
“valid” ciphertext. Consequently, our schemes have a smaller ciphertext
expansion than any other scheme known to be secure against CCA. Our
most efficient scheme is based on a novel use of “variable-length” pseudo-
random functions and can be efficiently implemented using block ciphers.
We relate the difficulty of breaking our schemes to that of breaking the
underlying primitives in a precise and quantitative way.

1 Introduction

Our goal in this paper is to design efficient symmetric (ie. private-key) encryp-
tion schemes that are secure against adaptive chosen-ciphertext attack (CCA).
Rather than directly applying the paradigm used in designing public-key encryp-
tion schemes secure against CCA, we develop new ones which take advantage
of the peculiarities of the symmetric setting. As a result we manage to do what
may not have been known to be possible: constructing encryption schemes secure
against CCA wherein every string of appropriate length is a “valid” ciphertext
and has a corresponding plaintext. The practical significance of this is that our
schemes have a smaller ciphertext expansion than that of any other scheme
known to be secure against CCA.

1.1 Privacy under Chosen-Ciphertext Attack

The most basic goal of encryption is to ensure that an adversary does not learn
any useful information from the ciphertexts. The first rigorous formalizations of
this goal were described for the public-key setting by Goldwasser and Micali [15].
Their goal of indistinguishability for public-key encryption has been considered

396

under attacks of increasing severity: chosen-plaintext attack, and two kinds of
chosen-ciphertext attacks [20, 23]. The strongest of these attacks, due to Rack-
off and Simon, is known as the adaptive chosen-ciphertext attack (referred to
as CCA in this work). Under this attack, the adversary is given the ability to
obtain plaintexts of ciphertexts of its choice (with the restriction that it not ask
for the decryption of the “challenge” ciphertext itself). The combination of the
goal of indistinguishability and CCA gives rise to a very strong notion of privacy,
known as IND-CCA. A second goal, called non-malleability, introduced by Dolev,
Dwork and Naor [13], can also be considered in this framework. This goal formal-
izes the inability of an adversary given a challenge ciphertext to modify it into
another, in such a way that the underlying plaintexts are somehow “meaning-
fully related”. The notion of indistinguishability under chosen-plaintext attack
was adapted to the symmetric setting by Bellare, Desai, Jokipii and Rogaway
[2]. Their paradigm of giving the adversary “encryption oracles” can be used
to “lift” any of the notions for the public-key setting to the symmetric setting.
Studies on relations among the various possible notions have established that
IND-CCA implies all these other notions in the public-key setting [3, 13], as well
as, in the symmetric setting [16].

Symmetric encryption schemes are widely used in practice and form the
basis of many security protocols used on the Internet. The use of schemes secure
in the IND-CCA sense is often mandated by the way they are to be used in
these protocols. Consequently, there has been an increasing focus on designing
encryption schemes that are secure in this strong sense. A commonly used privacy
mechanism is to use a public-key encryption scheme to send session keys and
then use these keys and a symmetric encryption scheme to actually encrypt
the data. This method is attractive since symmetric encryption is significantly
more efficient than its public-key counterpart. The security of such “hybrid”
encryption schemes is as weak as its weakest link. In particular, if we want a
hybrid encryption scheme secure in the IND-CCA sense, then we must use a
symmetric encryption scheme that is also secure in the IND-CCA sense.

Barring a few exceptions, most of the recent work on encryption has concen-
trated on the public-key setting alone. The prevailing intuition seems to be that
the ideas from the public-key setting “extend” to the symmetric setting. Indeed
there are many cases where this is true, and there are often paradigms in one
setting that have a counterpart in the other. However, this viewpoint ignores
the important differences in the settings and we usually pay for this in terms
of efficiency. We take a direct approach to the problem of designing symmetric
encryption schemes secure in the IND-CCA sense. For practical reasons, we are
particularly interested in block-cipher-based schemes (ie. encryption modes).

1.2 Our Paradigms

We describe two new paradigms for realizing symmetric encryption schemes
secure against CCA: the Unbalanced Feistel paradigm and the Encode-then-
Encipher paradigm.

397

Unbalanced Feistel. Our first paradigm is described in terms of “variable-
length” pseudorandom functions. These extend the notion of “fixed-length”
pseudorandom functions (PRFs) introduced by Bellare, Kilian and Rogaway
[4] so as to model block ciphers. A variable-length input pseudorandom function
(VI-PRF) is a function that takes inputs of any pre-specified length or of variable
length and produces an output of some fixed length. A variable-length output
pseudorandom function (VO-PRF), on the other hand, is a function whose out-

put can be of some pre-specified length or of variable length. The input consists
of a fixed-length part and a part specifying the length of the required output.

Our paradigm is illustrated in Figure 2. It is interesting that there is a simi-
larity between our scheme and the “simple probabilistic encoding scheme” used
by Bellare and Rogaway in their OAEP scheme [7]. Their encoding scheme is
defined as: M⊕G(r)‖r⊕H(M⊕G(r)), where M is the message to be encrypted,
r is a randomly chosen quantity, G is a “generator” random oracle and H is a
“hash function” random oracle. They show that applying a trapdoor permuta-
tion, such as RSA, to such an encoded string constitutes asymmetric encryption
secure against chosen-plaintext attack. One can view our scheme as the above
“encoding scheme” with G replaced by a VO-PRF and H replaced by a VI-PRF.
We show that this alone constitutes symmetric encryption secure against CCA.

Constructions for VI-PRFs and VO-PRFs could be based on one-way or
trapdoor functions. For practical reasons, we are more interested in constructions
that can be based on more efficient cryptographic primitives. Some efficient
constructions of VI-PRFs based on PRFs are the CBC-MAC variant analyzed
by Petrank and Rackoff [22] and the “three-key” variants of Black and Rogaway
[10]. We give a simple and efficient construction of a VO-PRF from a PRF. See
Figure 1. There could be many other ways of instantiating VO-PRFs using ideas
from the constructions of VI-PRFs and “key-derivation” functions.

We give a quantitative analysis of our scheme to establish its security against
CCA. Our analysis relates the difficulty of breaking the scheme to that of break-
ing the underlying VI-PRF and VO-PRF. We also give a quantitative security
analysis of our VO-PRF example. The security of the VI-PRF examples have
already been established by similar analyses, as discussed earlier.

We give a concrete example instantiating the Unbalanced Feistel paradigm
using a block cipher. The encryption is done in two steps. In the first step, we
encrypt the plaintext M to a string C‖r using a modified form of the counter
mode of encryption. Here the “counter” r is picked to be random and we have
|C| = |M |. In the second step, we mask r by XORing it with a modified form of
a CBC-MAC on C to get a string σ. The ciphertext output is C‖σ.

Encode-then-Encipher. This is a rather well-known (but not particularly
well-understood) method of encrypting. Recent work by Bellare and Rogaway
[8] has tried to remedy this by giving a precise treatment of this idea. Encryption,
in this paradigm, is a process in which the plaintext is first “encoded” and then
sent through a secret-keyed length-preserving permutation in a process known
as “enciphering”. The privacy of the resulting encryption schemes for different
security interpretations of “encoding” and “enciphering” are given in [8]. We

398

concentrate in this paper on one particular combination of the encoding and en-
ciphering interpretations that was not considered in [8]. We consider “encoding”
of a message to be simply the message with some randomness appended to it.
We take “enciphering” to mean the application of a variable-length input super-
pseudorandom permutation (VI-SPRP). We show that with these meanings, the
Encode-then-Encipher paradigm yields symmetric encryption schemes that are
secure against CCA. Note that a super-pseudorandom permutation (SPRP) [18]
alone will not do since we need a permutation that can work with variable and
arbitrary length inputs. Also, the very efficient constructions of Naor and Rein-
gold [19] cannot be used here since they are not “full-fledged” VI-SPRPs. The
problem of constructing VI-SPRPs has been explored by Bleichenbacher and
Desai [11] and Patel et al. [21]. See Section 4 for more details. The encryption
schemes resulting from this paradigm are quite practical, but given the current
state-of-art, this approach does not match the Unbalanced Feistel paradigm for
efficiency.

1.3 Related Work and Discussion

The idea behind the paradigms currently used in practice for designing encryp-
tion schemes secure in the IND-CCA sense is to make it infeasible to create a
“valid” ciphertext (unless the ciphertext was created by encrypting some known
plaintext). The intuition is that doing this makes the decryption access abil-
ity all but useless. There are a couple of different methods used in symmetric
encryption based on this idea.

Alternate Paradigms. The most commonly used approach of getting security
in the IND-CCA sense is to authenticate ciphertexts using a message authen-
tication code (MAC). Bellare and Namprempre have shown that of the various
possible ways of composing a generic MAC and a generic symmetric encryption
scheme, the one consisting of first encrypting the plaintext and then appending
to the result a MAC of the result, is the only one that is secure in the IND-CCA
sense [5]. Another approach is to add some known redundancy to the plaintext
before encrypting. The idea is that most strings of the length of the ciphertext
will be “invalid” and that they will be recognized as such, since their “decryp-
tion” will not have the expected redundancy. A recently suggested encryption
mode, the RPC mode of Katz and Yung [17], uses this idea. Yet another ap-
proach that uses this idea is to apply a VI-SPRP to plaintexts that are encoded
with randomness and redundancy [8].

Comparisons. An unavoidable consequence of the paradigms used by the meth-
ods above is that the ciphertexts generated are longer than those possible using
schemes that are only secure against chosen-plaintext attack. In particular, they
are longer by the size of the output of the MAC or by the amount of redun-
dancy used. To begin with, we have that any secure encryption scheme will be
length-increasing. For short plaintexts these increases in the length of the ci-
phertext can be a significant overhead. Avoiding any overhead other than that
absolutely necessary would also be useful in any environment where bandwidth

399

is at a premium. In our approach, we avoid the part of the overhead due to the
MAC or redundancy. The ciphertext expansion due to the randomness used is
unavoidable in the model we consider (ie. where the sender and receiver do not
share any state other than the key).
We point out that the methods above achieve something more than privacy

against CCA. They achieve privacy as well as integrity. There are many levels of
integrity that one can consider (see [5, 17]). The strongest one exactly coincides
with the idea used by the methods above. Namely, that it be infeasible to create
a “valid” (new) ciphertext. This is clearly not achievable by our method or by
any other where every string of appropriate length corresponds to some plain-
text. A slightly weaker form of integrity requires that it be infeasible to create
a (new) ciphertext such that something may be known about the underlying
plaintext. Our methods can be shown to have this integrity property. Should the
strongest integrity property be required, we could encode the plaintexts with
some redundancy and then apply our paradigm. This would mean losing some
of its advantages but it would still be a competitive alternative. These claims
are substantiated in the full version of this paper [12].

2 Preliminaries

We adopt a standard notation with respect to probabilistic algorithms and sets.
If A(·, ·, . . .) is a probabilistic algorithm then x ← A(x1, x2, . . .) denotes the
experiment of running A on inputs x1, x2, . . . and letting x be the outcome.
Similarly, if A is a set then x ← A denotes the experiment of selecting a point
uniformly from A and assigning x this value.

Symmetric Encryption. A symmetric encryption scheme, Π = (E ,D,K), is
a three-tuple of algorithms where:

– K is a randomized key generation algorithm. It returns a key a; we write
a← K.

– E is a randomized or stateful encryption algorithm. It takes the key a and a
plaintext x and returns a ciphertext y; we write y ← Ea(x).

– D is a deterministic decryption algorithm. It takes a key a and string y

and returns either the corresponding plaintext x or the symbol ⊥; we write
x← Da(y) where x ∈ {0, 1}

∗ ∪ ⊥.

We require that Da(Ea(x)) = x for all x ∈ {0, 1}∗.

Security Against Chosen-Ciphertext Attack. The formalization we give
is an adaptation of the “find-then-guess” definition of Bellare et al. [2] so as
to model adaptive chosen-ciphertext attack in the sense of Rackoff and Simon
[23]. In the indistinguishability of encryptions under chosen-ciphertext attack the
adversary A is imagined to run in two phases. In the find phase, given adaptive
access to an encryption and decryption oracle, A comes up with a pair of mes-
sages x0, x1 along with some state information s to help in the second phase. In
the guess phase, given the encryption y of one of the messages and s, it must

400

identify which of the two messages goes with y. A may not use its decryption
oracle on y in the guess phase.

Definition 1. [IND-CCA] Let Π = (K, E ,D) be a symmetric encryption sch-

eme. For an adversary A and b = 0, 1 define the experiment

Experiment Expind-cca
Π (A, b)

a← K; (x0, x1, s)← AEa,Da(find); y ← Ea(xb); d← AEa,Da(guess, y, s);
Return d.

It is mandated that |x0| = |x1| above and that A does not query Da(·) on cipher-

text y in the guess phase. Define the advantage of A and the advantage function

of Π respectfully, as follows:

Advind-cca
Π (A) = Pr[Expind-cca

Π (A, 0) = 0]− Pr[Expind-cca
Π (A, 1) = 0]

Advind-cca
Π (t, qe, qd, µ, ν) = max

A
{Advind-cca

Π (A) }

where the maximum is over all A with “time-complexity” t, making at most qe
encryption oracle queries and at most qd decryption oracle queries, these together

totalling at most µ bits and choosing |x0| = |x1| = ν bits.

Here the “time-complexity” is the worst case total execution time of experiment
Expind-cca

Π (A, b) plus the size of the code of A, in some fixed RAM model of
computation. This convention is used for other definitions in this paper, as well.

3 Unbalanced Feistel Encryption

We begin with a block-cipher-based instantiation of the Unbalanced Feistel
paradigm. A reader interested in seeing the paradigm first may skip this example
and go to Section 3.2, without any loss of understanding. A security analysis for
this paradigm is given in Section 3.3.

3.1 A Concrete Example

Our starting point is a block cipher F : {0, 1}k × {0, 1}l 7→ {0, 1}l. The scheme
Π[F] = (K, E ,D) has a key generation algorithm K that specifies a key K =
(K1‖K2‖K3‖K4)← {0, 1}4k, partitioned into 4 equal pieces. We have:

Algorithm EK1‖K2‖K3‖K4(M)

(1) Let r ← {0, 1}l be a random initial vector.

(2) Let s = FK1(r).

(3) Let P be the first |M | bits of FK2(s+ 1)‖FK2(s+ 2)‖FK2(s+ 3)‖ · · ·.

(4) Let C = P⊕M .

(5) Let pad = 10m such that m is the smallest integer making |C| + |pad|
divisible by l.

401

(6) Parse C‖pad as C1 . . . Cn such that |Ci| = l for all 1 ≤ i ≤ n.

(7) Let C ′
0 = 0

l, and let C ′
i = FK3(C

′
i−1⊕Ci) for all 1 ≤ i ≤ n− 1.

(8) Let σ = r⊕FK4(C
′
n−1⊕Cn)

(9) Return ciphertext C‖σ.

Algorithm DK1‖K2‖K3‖K4(C
′′)

(1) Parse C ′′ as C‖σ such that |σ| = l.

(2) Let pad = 10m such that m is the smallest integer making |C| + |pad|
divisible by l.

(3) Parse C‖pad as C1 . . . Cn such that |Ci| = l for all 1 ≤ i ≤ n.

(4) Let C ′
0 = 0

l, and let C ′
i = FK3(C

′
i−1⊕Ci) for all 1 ≤ i ≤ n− 1.

(5) Let r = σ⊕FK4(C
′
n−1⊕Cn)

(6) Let s = FK1(r).

(7) Let P be the first |C| bits of FK2(s+ 1)‖FK2(s+ 2)‖FK2(s+ 3)‖ · · ·.

(8) Let M = P⊕C.

(9) Return plaintext M .

This example can be seen as having two stages. In the first stage we encrypt
the plaintext M to a string C‖r using a modified form of the counter mode.
Here r is the randomness used to encrypt and |C| = |M |, even though |M | may
not be an integral multiple of the block length l. In the second stage we run C
through a modified form of the CBC-MAC and XOR this value with r to get σ.
The ciphertext is defined to be C‖σ. Although we do not make r a part of the
ciphertext, it is still possible to retrieve it if the secret key is known. Thus the
scheme is invertible. While the other counter mode variants can easily be shown
to be insecure against CCA, the claim is that “masking” r in this manner, makes
our mode secure against CCA.

The difference between the standard (randomized) counter mode, analyzed
by Bellare et al. [2], and the variant we use here is that instead of using r directly,
we use a block-cipher “encrypted” value of r. This has the effect of neutralizing
simple attacks where there may be some “control” over r. We cannot use the
standard “one-key” CBC-MAC in our construction, given that it is known to be
secure only on fixed-length messages (with this length being an integral multiple
of the block length) [4]. Instead we use a “two-key” CBC-MAC, wherein the last
block of the message is processed by the block cipher with an independent key.
This is a variant of a construction analyzed by Petrank and Rackoff [22] which
first computes a regular CBC-MAC on the entire message and then applies a
block-cipher with an independent key to the output of the CBC-MAC. We also
use a standard padding method with our MAC, since |M | (and hence |C|) may
not be an integral multiple of the block length. Note that we use the padding
method in a way that does not cause an increase in the length of the ciphertext.

402

3.2 The General Approach

We begin with a description of the primitives used to realize the general scheme
and some definitions to understand the security claims.

Fixed-Length Pseudorandom Functions. A fixed-length (finite) function
family is a keyed multi-set F of functions where all the functions have the same
domain and range. To pick a function f from family F means to pick a key a,
uniformly from the key space of F , and let f = Fa. A family F has input
length l and output length L if each f ∈ F maps {0, 1}l to {0, 1}L. We let
Func(l) denote a reference family consisting of all functions with input length l
and output length l. A function f ← Func(l) is defined as follows: for each
M ∈ {0, 1}l, let f(M) be a random string in {0, 1}l.

A finite function family F is pseudorandom if the input-output behavior of Fa

is indistinguishable from the behavior of a random function of the same domain
and range. This is formalized via the notion of distinguishers [14]. Our concrete
security formalization is that of [4].

Definition 2. [PRF] Let F : K × {0, 1}l 7→ {0, 1}l be a function. For a distin-

guisher A and b = 0, 1 define the experiment

Experiment Expprf
F (A, b)

a← K; O0 ← Fa; O1 ← Func(l); d← AOb ; Return d.

Define the advantage of A and the advantage function of F respectfully, as fol-

lows:

Advprf
F (A) = Pr[Exp

prf
F (A, 0) = 0]− Pr[Exp

prf
F (A, 1) = 0]

Advprf
F (t, q) = max

A
{Advprf

F (A) }

where the maximum is over all A with time complexity t and making at most q

oracle queries.

Variable-Length Input Pseudorandom Functions. These functions take
an input of variable and arbitrary length and produce a fixed-length output. We
define a reference family VI-Func(l). A random variable-length input function
h← VI-Func(l) is defined as follows: for eachM ∈ {0, 1}∗, let h(M) be a random
string in {0, 1}l.

Definition 3. [VI-PRF] Let H : K × {0, 1}∗ 7→ {0, 1}l be a function. For a

distinguisher A and b = 0, 1 define the experiment

Experiment Expvi-prf
H (A, b)

a← K; O0 ← Ha; O1 ← VI-Func(l); d← AOb ; Return d.

Define the advantage of A and the advantage function of H respectfully, as fol-

lows:

Advvi-prf
H (A) = Pr[Expvi-prf

H (A, 0) = 0]− Pr[Expvi-prf
H (A, 1) = 0]

Advvi-prf
H (t, q, µ) = max

A
{Advvi-prf

H (A) }

403

where the maximum is over all A with time complexity t and making at most q

oracle queries, these totalling at most µ bits.

Many of the variable-length input MAC constructions are VI-PRFs. Our “two-
key” CBC-MAC, discussed earlier, is such an example. The security of this
construction follows from that of the CBC-MAC variant analyzed by Petrank
and Rackoff [22]. Black and Rogaway have suggested several constructions of
VI-PRFs that are computationally more efficient than this one [10]. There are
efficient variable-length input MAC constructions, such as the protected counter
sum construction of Bernstein [9] and the cascade construction of Bellare et al.
[1] that are not strictly VI-PRF due to their probabilistic nature, but which
could be used in their place in our paradigm.

Variable-Length Output Pseudorandom Functions. These are functions

M

FK2 FK2 FK2

c3

1 2 3

C1 C2 c3

C1 C2

FK1

Fig. 1. The XORG function.

that can generate an output of arbitrary and variable length. We think of a
function from a VO-PRF family as taking two inputs: a fixed-length binary
string and a unary string, and producing an output of a size specified by the
unary input. We define a reference family VO-Func(l). A random variable-length
output function g ← VO-Func(l) is defined as follows. For each M ∈ {0, 1}l let
Rl(M) be a random string in {0, 1}

∞. Then for each M ∈ {0, 1}l and L ∈ 1∗,
let g(M‖L) be the first |L| bits of Rl(M). One can think of a “random variable-
length output function” as a process that answers a query M‖L as follows: if
M is “new” then return a random element C ∈ {0, 1}|L|; if M has already
appeared in a past query M‖L′ (to which the response was C) and |L′| ≤ |L|
then return the first |L′| bits of C; and if M has already appeared in a past
query M‖L′ (to which the response was C) and |L′| > |L| then return C‖C ′

where C ′ ← {0, 1}|L
′|−|L|.

Definition 4. [VO-PRF] Let G : K× {0, 1}l × 1∗ 7→ {0, 1}∗ be a function. For

a distinguisher A and b = 0, 1 define the experiment

Experiment Expvo-prf
G (A, b)

a← K; O0 ← Ga; O1 ← VO-Func; d← AOb ; Return d.

404

Define the advantage of A and the advantage function of G respectfully, as fol-

lows:

Advvo-prf
G (A) = Pr[Expvo-prf

G (A, 0) = 0]− Pr[Expvo-prf
G (A, 1) = 0]

Advvo-prf
G (t, q, µ) = max

A
{Advvo-prf

G (A) }

where the maximum is over all A with time complexity t and making at most q

queries, these totalling at most µ bits.

A somewhat similar (but weaker) primitive is implicit in the counter mode
of operation. Hence this is a good starting point for constructing full-fledged
VO-PRFs. The result is a construction we call XORG. See Figure 1 for a pic-
ture. Let F be a block cipher and a = (K1‖K2) be a key specifying permuta-
tions FK1 and FK2. Then for any L ∈ 1

∗ and M ∈ {0, 1}l, the output of XORG
is defined as the first |L| bits of FK2(M

′ + 1)‖FK2(M
′ + 2)‖FK2(M

′ + 3)‖ · · ·,
where M ′ = FK1(M). A security analysis of XORG is given in Section 3.3.

The UFE Scheme.We now describe our general scheme UFE[G,H] = (K, E ,D)

C σ

M r

VI-PRF

VO-PRF

a2

a1

Fig. 2. The UFE scheme.

where G : Kvo-prf × {0, 1}
l × 1∗ 7→ {0, 1}∗ is a VO-PRF and H : Kvi-prf ×

{0, 1}∗ 7→ {0, 1}l is a VI-PRF. The key generation algorithm K = Kvo-prf×Kvi-prf

specifies a key a = a1‖a2 where a1 ← Kvo-prf ; a2 ← Kvi-prf . The encryption and
decryption algorithms are defined as:

Algorithm Ea1‖a2
(M)

r ← {0, 1}l

C ←M⊕Ga1
(r)

σ ← r⊕Ha2
(C)

return C‖σ

Algorithm Da1‖a2
(C ′)

parse C ′ as C‖σ where |σ| = l

r ← σ⊕Ha2
(C)

M ← C⊕Ga1
(r)

return M

A picture for the UFE scheme is given in Figure 2. We analyze the security of
this scheme in Section 3.3.

405

3.3 Analysis

We begin with an analysis of our VO-PRF example. See Figure 1. The theorem
says that XORG is secure as a VO-PRF as long as the underlying PRF is secure.

Theorem 1. [Security of XORG] Let G = XORG[F] where F = PRF(l).
Then,

Advvo-prf
G (t, q, µ) ≤ 2 · Advprf

F (t
′, q′) +

2(q − 1)(q + µ
l
)

2l

where t′ = t+O(q + µ+ l) and q′ =
⌈

µ
l

⌉

+ q.

Proof. Let A be an adversary attacking G in the VO-PRF sense, and let t, q, µ
be the resources associated with Expvo-prf

G (A, b). Let Kprf be the key generation
algorithm of F .

We assume without loss of generality that A does not repeat queries. (A query
consists of a string M ∈ {0, 1}l and a string L ∈ 1∗. Our assumption is that A
picks a different M for each query). We consider various probabilities related to
running A under different experiments:

p1 = Pr[K1,K2← Kprf : A
GK1‖K2 = 1]

p2 = Pr[f ← Func(l); K2← Kprf : A
G
f
K2 = 1]

p3 = Pr[f, h← Func(l) : A
Gf,h = 1]

p4 = Pr[g ← VO-Func(l) : A
g = 1]

The notation above is as follows: In the experiment defining p2, A’s oracle,
on query M and L ∈ 1∗ responds by returning the first |L| bits of FK2(M

′ +
1)‖FK2(M

′+2)‖FK2(M
′+3)‖ · · ·, whereM ′ = f(M). In the experiment defining

p3, A’s oracle, on query M and L ∈ 1∗ responds by returning the first |L| bits
of h(M ′ + 1)‖h(M ′ + 2)‖h(M ′ + 3)‖ · · ·, where M ′ = f(M).

We want to upper bound Advvo-prf
G (A) = p1 − p4. We do this in steps.

Our first claim is that p1 − p2 ≤ Advprf
F (t

′, q).

Consider the following distinguisher D for F . It has an oracle O : {0, 1}l 7→
{0, 1}l. It picks K2← Kprf and runs A. When A makes a query M and L ∈ 1∗,
it returns GO

K2(M) as the answer. D outputs whatever A outputs at the end. It

is clear that Advprf
F (D) = p1 − p2. The claim follows.

Next we show that p2 − p3 ≤ Advprf
F (t

′, q′).

Consider the following distinguisher D for F . It has an oracle O : {0, 1}l 7→
{0, 1}l. It simulates f ← Func and runs A. When A makes a query M and
L ∈ 1∗, it returns Gf,O(M) as the answer. For any query Mi‖Li of A, D must
make

⌈

Li
l

⌉

queries to O. D outputs whatever A outputs at the end. It follows

that Advprf
F (D) = p2 − p3.

406

Finally, we show that p3 − p4 ≤
2(q−1)·(q+µ

l
)

2l
.

We introduce some more notation to justify this. For any integer t let [t] =
{1, · · · , t}. Let (M1, C1), . . . , (Mq, Cq) be the transcript of A’s interaction with
its oracle, where for i ∈ [q], (Mi, Ci) represents an oracle query Mi (such that
|Mi| = l) and Li ∈ 1

∗ and the response Ci (such that |Ci| = |Li|). Let ni =
⌈

Li
l

⌉

for i ∈ [q]. Let AC (Adversary is Correct) be the event that A correctly guesses
whether the oracle is Gf,h or g, where these are as defined in the experiments
underlying p3 and p4. In answering the i-th query Mi‖Li, the oracle computes
ri ← f(Mi) and applies a random function h to the ni strings ri+1, . . . , ri+ni ∈
{0, 1}l. We call these strings the i-th sequence, and ri + k is the k-th point in
this sequence, where k ∈ [ni].

Let Bad be event that (ri + k = rj + k′) for some (i, k) 6= (j, k′), and (i, j ∈
[q])∧ (k ∈ [ni])∧ (k

′ ∈ [nj]). That is Bad is the event that there are overlapping
sequences. We have

Pr[AC] = Pr[AC |Bad] · Pr[Bad] + Pr[AC |Bad] · Pr[Bad]

≤ Pr[AC |Bad] + Pr[Bad]

Given the event Bad, we have that, in replying toMi‖Li, the output is randomly
and uniformly distributed over {0, 1}|Li|. It follows that Pr[AC |Bad] = 1

2 .

Next, we bound Pr[Bad]. For i ∈ [q], let Badi be the event that ri causes
event Bad. We have

Pr[Bad] ≤ Pr[Bad1] +
∑q

i=2 Pr
[

Badi | Badi−1

]

. By definition, Pr[Bad1] = 0.

Since we are assuming thatMi 6=Mj for any (i 6= j)∧(i, j ∈ [q]), we have that ri
is randomly and uniformly distributed in {0, 1}l. We observe that the chance of
overlapping sequences is maximized if all the i − 1 previous queries resulted in
i− 1 sequences that were no less than ni− 1 blocks apart. We have a collision if
the i-th sequence begins in a block that is ni−1 blocks before any other previous
query j or in a block occupied by that sequence j. We have that for i > 1,

Pr
[

Badi | Badi−1

]

≤

∑i−1
j=1(nj + ni − 1)

2l
=
(i− 1)(ni − 1) +

∑i−1
j=1 nj

2l

Continuing,

Pr[Bad] ≤

q
∑

i=2

Pr
[

Badi | Badi−1

]

≤

q
∑

i=2

(i− 1)(ni − 1) +
∑i−1

j=1 nj

2l
≤
(q − 1)(q + µ

l
)

2l

p3 − p4 ≤ 2 · Pr[AC]− 1 ≤ 2 · Pr[Bad] ≤
2(q − 1)(q + µ

l
)

2l

Using the above bounds and that Advvo-prf
G (A) = p1 − p4 = (p1 − p2) + (p2 −

p3) + (p3 − p4), we get the claimed result.

407

We next turn to the security of our general scheme. We first establish the
security of UFE assuming the underlying primitives are ideal.

Lemma 1. [Upper bound on insecurity of UFE using random functions]
Let Π = (K, E ,D) be the scheme UFE[G,H] where G = VO-Func(l) and H =
VI-Func(l). Then for any t, µ, ν,

Advind-cca
Π (t, qe, qd, µ, ν) ≤ δΠ

def
=

(qe + qd)(qe + qd + 1)

2l

Proof. Let A be an adversary attacking Π in the IND-CCA sense, and let
t, qe, qd, µ, ν be the resources associated with Expind-cca

Π (A, b). We show that,

Advind-cca
Π (A)

def
= 2 · Pr[Expind-cca

Π (A, b) = b]− 1 ≤
(qe + qd)(qe + qd + 1)

2l

We refer to the event Expind-cca
Π (A, b) = b as event AC (Adversary is Correct). In

the rest of the proof we will freely refer to random variables from Expind-cca
Π (A, b).

Let g ← G and h ← H be the variable-length output function and variable-
length input function, respectively, specified by the key a in the experiment.

We assume without loss of generality that A does not make “redundant” decryp-
tion oracle queries. That is, we are assuming that A does not ask a decryption
query v if it had already made the query v to its decryption oracle, or if it had
obtained v in response to some earlier encryption oracle query. Note that since
encryption is probabilistic, A may want to repeat encryption oracle queries.

Let q be the total number of distinct plaintext-ciphertext pairs resulting from A’s
interaction with its oracles. The following inequality holds: q ≤ qe+ qd. For sim-
plicity, we assume that this is an equality. That is each query results in a unique
plaintext-ciphertext pair. We are interested in an upper bound for Pr[AC], and
this assumption only increases this probability.

For any integer t let [t] = {1, · · · , t}.

Let (M1, C1‖σ1), . . . , (Mk, Ck‖σk), . . . , (Mq+1, Cq+1‖σq+1) be plaintext and ci-
phertext pairs, such that for (i ∈ [q + 1]) ∧ (i 6= k), (Mi, Ci‖σi) represents
an oracle query and the corresponding response. We have that A picks plain-
texts x0, x1 such that |x0| = |x1| = ν at the end of the find stage and receives
y ← Ea(xb) for some b ∈ {0, 1}. Let Mk = xb and Ck‖σk = y where |σk| = l.

Let ri be the l-bit IV associated to (Mi, Ci‖σi), for i ∈ [q + 1].

Let Bad be event that ri = rj for some (i, j ∈ [q + 1]) ∧ (i 6= j). We have

Pr[AC] = Pr[AC |Bad] · Pr[Bad] + Pr[AC |Bad] · Pr[Bad]

≤ Pr[AC |Bad] + Pr[Bad]

Given the event Bad, we have that, in computing y, the output of G is randomly
and uniformly distributed over {0, 1}ν . Since this value is XORed with xb, it
follows that Pr[AC |Bad] = 1

2 . Next, we turn to a bound for Pr[Bad].

408

For i ∈ [q + 1], let Badi be the event that ri causes event Bad. We have

Pr[Bad] ≤ Pr[Bad1] +
∑q+1

i=2 Pr
[

Badi | Badi−1

]

. By definition, Pr[Bad1] = 0.

We will consider A’s view just before it makes its i-th query, for i ∈ [q + 1]. (If
i = k, then we take the “query” to be an encryption query xb). Let us assume that
this includes the knowledge that the event Badi−1 holds. Now depending on the
nature of A’s i-th query, there are two cases we can consider: either (Mi, Ci‖σi)
results from an encryption query Mi or from a decryption query Ci‖σi.

First we consider the case of the i-th query being an encryption query. The IV ri,
in this case, will be randomly and uniformly distributed in {0, 1}l. We have that
the chance of a collision is at most i−1

2l
. Next we consider the case of the i-th

query being a decryption query.

For (i ∈ [q + 1]) ∧ (i > 1), consider A’s view just before it makes its i-th query.
We know that this includes (M1, C1‖σ1), . . . , (Mi−1, Ci−1‖σi−1). However, given
Badi−1, we claim that h(Cj), for any 1 ≤ j < i, is information theoretically
hidden in A’s view. With Badi−1, the only potential ways A can learn something
about h(Cj) is through σj or rj . However we have that rj never becomes a part
of A’s view (the IV is not returned in a decryption query). And we have σj =
rj⊕h(Cj). Since rj is unknown, we have that σj does not leak any information
about h(Cj).

There are two sub-cases we can consider (when the i-th query is a decryption
query). The first sub-case is that Ci 6= Cj , for all 1 ≤ j < i. Since h is being
invoked on a “new” string, the value h(Ci) will be randomly and uniformly
distributed in {0, 1}l. Consequently, ri will also be randomly and uniformly
distributed in {0, 1}l. As in the previous case, we have for i > 1, the chance of
a collision to be at most i−1

2l
.

The other sub-case is that Ci = Cj , for some 1 ≤ j < i. We want to bound the
probability of A picking a σi that causes Badi. We know that A cannot pick σi =
σj , since we are assuming that it does not make redundant queries. Moreover,
we know that in A’s view, the value of h(Ck) is information theoretically hidden,
for any 1 ≤ k < i. Hence A’s only strategy in picking a σi that causes a collision
(other than choosing the value σj) can be to guess a value. It follows that A’s
chances of causing a collision are smaller in this sub-case than if it had picked
a new Ci. So here too, we have for i > 1, the chance of a collision to be at
most i−1

2l
.

Continuing,

Pr[Bad] ≤

q+1
∑

i=2

Pr
[

Badi | Badi−1

]

≤

q+1
∑

i=2

i− 1

2l
≤

q(q + 1)

2 · 2l

Using this in the bound for Pr[AC] and doing a little arithmetic we get the
claimed result.

The actual security of UFE is easily derived given Lemma 1.

409

Theorem 2. [Security of UFE] Let Π = (K, E ,D) be the encryption scheme

UFE[G,H] where G = VO-PRF(l) and H = VI-PRF(l). Then,

Advind-cca
Π (t, qe, qd, µ, ν) ≤ Advvo-prf

G (t′, q′, µ′) + Advvi-prf
H (t′, q′, µ′) + δΠ

where t′ = t + O(µ + ν + lqe + lqd) and q′ = qe + qd and µ′ = µ + ν and

δΠ
def
= (qe+qd)(qe+qd+1)

2l
.

Proof. Lemma 1 says that Π[VO-Func,VI-Func] is secure. The intuition is that
this implies that Π[G,H] is secure, since otherwise it would mean that G is not
secure as a VO-PRF or that H is not secure as a VI-PRF. Formally, we prove
it using a contradiction argument.

Let A be an adversary attackingΠ[G,H] in the IND-CCA sense. Let t, qe, qd, µ, ν
be the resources associated with Expind-cca

Π (A, b).

We will run A under different experiments. We will refer to these experiments
as Expind-cca

Π1
(A, b) and Expind-cca

Π2
(A, b) and Expind-cca

Π3
(A, b) where Π1 = Π[G,H]

and Π2 = Π[VO-Func, H] and Π3 = Π[VO-Func,VI-Func]. We will also refer
to the corresponding advantage functions, which will follow the natural nota-
tion and interpretation, given the above. We are interested in an upper bound
for Advind-cca

Π1
(t, qe, qd, µ, ν). We do this in steps.

Our first claim is

Advind-cca
Π1

(t, qe, qd, µ, ν) ≤ Advind-cca
Π2

(t, qe, qd, µ, ν) + Advvo-prf
G (t′, q′, µ′)

Consider the following distinguisher D for G. It has an oracle O : {0, 1}l×1∗ 7→
{0, 1}∗. It first picks a key for H that specifies a function h. It then runs A
answering A’s oracle queries as follows. If Amakes an encryption oracle queryM ,
then it picks a random r ∈ {0, 1}l and makes a query r‖1|M | to O. It then
takes the response P and computes C = M⊕P . It returns to A as its response
the string C‖(r⊕h(C)). Similarly to a decryption query C‖σ, it returns the
string C⊕O(σ⊕h(C)). Note that it is important that D is able to correctly
do the encryption and decryption using its oracle. It simulates the experiment
defining the advantage of A. If A is successful in the end, then it guesses that O
was from VO-Func, otherwise it guesses that it was from VO-PRF.

We get Advvo-prf
G (D) = Advind-cca

Π1
(A) − Advind-cca

Π2
(A). One can check that the

number of queries q′ made by D is at most qe + qd. Also the length µ
′ of all of

D’s queries is at most the sum of the length µ of all the queries of A and the
length ν of the challenge that D has to prepare for A. This proves the claim.

The next claim is

Advind-cca
Π2

(t, qe, qd, µ, ν) ≤ Advind-cca
Π3

(t, qe, qd, µ, ν) + Advvi-prf
H (t′, q′, µ′)

We can construct a distinguisher D for H along similar lines as above. The
main difference is that D must simulate a random function from VO-Func in its
simulation for A. We omit the details to prove this claim.

Combining our claims and substituting the bound for Advind-cca
Π3

(t, qe, qd, µ, ν)
from Lemma 1, we get the claimed result.

410

4 Encode-then-Encipher Encryption

Bellare and Rogaway show that if messages are encoded with randomness and
redundancy and then enciphered with a VI-SPRP then the resulting scheme is
secure in a sense that implies security in the IND-CCA sense [8]. We show in
this section that to achieve security in just the IND-CCA sense, the redundancy
is unnecessary.

Variable-length Input Super-Pseudorandom Permutations. These are
permutations that take an input of variable and arbitrary length and produce
an output of the same length. We define a reference family VI-Perm. A random
variable-length input permutation (f, f−1) ← VI-Perm is defined as follows:
for each number i, let fi be a random permutation on {0, 1}i, and for each
M ∈ {0, 1}∗, let f(M) = fi(M), where i = |M |. Let f

−1 be the inverse of f .

Definition 5. [VI-SPRP] Let S : K × {0, 1}∗ 7→ {0, 1}∗ be a permutation. For

a distinguisher A and b = 0, 1 define the experiment

Experiment Expvi-sprp
S (A, b)

a← K; O0,O
−1
0 ← Sa, S

−1
a ; O1,O

−1
1 ← VI-Perm; d← AOb,O

−1

b ; Return d.

Define the advantage of A and the advantage function of S respectfully, as fol-

lows:

Advvi-sprp
S (A) = Pr[Expvi-sprp

S (A, 0) = 0]− Pr[Expvi-sprp
S (A, 1) = 0]

Advvi-sprp
S (t, qe, qd, µ) = max

A
{Advvi-sprp

S (A) }

where the maximum is over all A with time complexity t and making at most qe
queries to Sa and qd queries to S−1

a , these together totalling at most µ bits.

Constructions of these “full-fledged” pseudorandom permutations are relatively
rare. Naor and Reingold show how to efficiently construct an SPRP that can
work with any large input-length given an SPRP (or a PRF) of some fixed
smaller input-length [19]. However, their constructions cannot work with inputs
of arbitrary and variable length, and it is unclear how they can be extended to
do so. Bleichenbacher and Desai suggest a construction for a VI-SPRP using a
block cipher (modeled as an SPRP) that has a cost of about three applications
of the block cipher per message block [11]. Patel, Ramzan and Sundaram have
a construction that is computationally less expensive than this but wherein the
key-length varies with the message-length [21].

The EEE Scheme. We now describe the scheme EEE[S] = (K, E ,D) where
S : Kvi-sprp×{0, 1}

∗ 7→ {0, 1}∗ is a VI-SPRP. The key generation algorithm K =
Kvi-sprp specifies a key a. For any positive integer l, the encryption and decryp-
tion algorithms are defined as:

Algorithm Ea(M)
r ← {0, 1}l

C ← Sa(M‖r)
return C

Algorithm Da(C)
if |C| ≤ l then M ← ⊥ else
(M‖r)← S−1

a (C) where |r| = l

return M

411

We give the security of this scheme next.

Theorem 3. [Security of EEE] Let Π = (K, E ,D) be the encryption scheme

EEE[S] where S = VI-SPRP. Then,

Advind-cca
Π (t, qe, qd, µ, ν) ≤ 2 · Adv

vi-sprp
S (t′, q′e, q

′
d, µ

′) +
2(qe + qd)

2l

where t′ = t+O(µ+ ν + lqe + lqd) and q′e = qe + 1 and q′d = qd and µ′ = µ+ ν.

Proof. Let A be an adversary attacking Π in the IND-CCA sense, and let
t, qe, qd, µ, ν be the resources associated with Expind-cca

Π (A, b).

We assume without loss of generality that A does not make “redundant” queries
to its decryption oracle. That is, we are assuming that A does not ask a decryp-
tion oracle query v if it had already made the query v to its decryption oracle,
or if it had obtained v in response to some earlier encryption oracle query.

Our goal is to bound Advind-cca
Π (A, b). To this end we introduce an algorithm D.

Algorithm D is a distinguisher for S. It is given oracles for permutations f, f−1

that are either from a VI-SPRP family or from the random family VI-Perm.
It runs A, answering A’s queries as follows: If A makes an encryption oracle
query M then D picks r ← {0, 1}l and computes C ← f(M‖r). It returns C as
the response to the query. If A makes a decryption oracle query C then D first
checks if |C| ≤ l. If it is then D returns “invalid” as its response. Otherwise it
computes (M‖r) ← f−1(C) (where |r| = l) and returns M as the response to
the query. A eventually stops (at the end its find stage) and outputs (x0, x1, s).
D then chooses d ← {0, 1} and r0 ← {0, 1}

l and computes y ← f(xd‖r0). (If
D has already queried on this point before or ever received this in response to
some previous decryption oracle query, then it does not have to use its oracle
to compute y). D then runs A with the parameters (guess, y, s), answering A’s
oracle queries as before. When A terminates, D checks to see if it was correct.
If it was, then D guesses that its oracles were “real”, otherwise it guesses that
they were “random”.

We develop some notation to simplify the exposition of the analysis. Let Pr1[·]
denote a probability in the probability space where the oracles given to D are
“real”. Similarly, let Pr0[·] denote a probability in the probability space where
the oracles given to D are “random”. We will suppress showing explicit access
to the oracles since they will be obvious from context. We have

Advvi-sprp
S (D)

def
= Pr1[D = 1]− Pr0[D = 1]

From the description of D, we see that Pr1[D = 1] is exactly the probability of
A being correct in an experiment defining the advantage in the IND-CCA sense.
Thus we get,

Pr1[D = 1] =
1

2
+
1

2
· Advind-cca

Π (A)

412

Next we upper bound Pr0[D = 1]. Let Coll be the event that there is a collision
of one of the nonces resulting from A’s queries with the one in the challenge.
More precisely, Coll is the event that ∃i ∈ [qe + qd] : ri = r0.

Pr0[D = 1] = Pr0 [D = 1 | Coll] · Pr0[Coll] + Pr0
[

D = 1 | Coll
]

· Pr0[Coll]

≤ Pr0[Coll] + Pr0
[

D = 1 | Coll
]

Since the permutations underlying Pr0[·] are “random”, we get

Pr0[Coll] ≤
qe + qd

2l
; Pr0

[

D = 1 | Coll
]

=
1

2

Using the above to lower bound the advantage ofD and completing the argument
in the standard way, we get the claimed result.

Acknowledgements

This paper benefited a great deal from help and advice received from Mihir Bel-
lare. Many of the ideas and motivation for the problem considered here came
out of collaboration with Daniel Bleichenbacher. I would also like to thank Sara
Miner, Chanathip Namprempre, Bogdan Warinschi and the CRYPTO 2000 pro-
gram committee for their very helpful comments.
The author was supported in part by Mihir Bellare’s 1996 Packard Foun-

dation Fellowship in Science and Engineering and NSF CAREER Award CCR-
9624439.

References

1. M. Bellare, R. Canetti and H. Krawczyk, “Pseudorandom functions revis-
ited: The cascade construction and its concrete security,” Proceedings of the 37th

Symposium on Foundations of Computer Science, IEEE, 1996.
2. M. Bellare, A. Desai, E. Jokipii and P. Rogaway, “A concrete security treat-
ment of symmetric encryption,” Proceedings of the 38th Symposium on Founda-

tions of Computer Science, IEEE, 1997.
3. M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, “Relations among
notions of security for public-key encryption schemes,” Advances in Cryptology -

Crypto ’98, LNCS Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.
4. M. Bellare, J. Kilian and P. Rogaway, “The security of the cipher block
chaining message authentication code,” Advances in Cryptology - Crypto ’94,
LNCS Vol. 839, Y. Desmedt ed., Springer-Verlag, 1994.

5. M. Bellare and C. Namprempre, “Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm,” Report 2000/025,
Cryptology ePrint Archive, http://eprint.iacr.org/, May 2000.

6. M. Bellare and P. Rogaway, “Entity authentication and key distribution,”
Advances in Cryptology - Crypto ’93, LNCS Vol. 773, D. Stinson ed., Springer-
Verlag, 1993.

413

7. M. Bellare and P. Rogaway, “Optimal asymmetric encryption: How to en-
crypt with RSA,” Advances in Cryptology - Eurocrypt ’95, LNCS Vol. 921,
L. Guillou and J. Quisquater ed., Springer-Verlag, 1995.

8. M. Bellare and P. Rogaway, “Encode-then-encipher encryption: How to ex-
ploit nonces or redundancy in plaintexts for efficient cryptography,” Manuscript,
December 1998, available from authors.

9. D. Bernstein, “How to stretch random functions: The security of protected
counter sums,” J. of Cryptology, Vol. 12, No. 3, 1999.

10. J. Black and P. Rogaway, “CBC MACs for Arbitrary Length Messages: The
Three-Key Constructions,” Advances in Cryptology - Crypto ’00, LNCS Vol. ??,
M. Bellare ed., Springer-Verlag, 2000.

11. D. Bleichenbacher and A. Desai, “A construction of a super-pseudorandom
cipher,” Manuscript, May 1999, available from authors.

12. A. Desai, “New paradigms for constructing symmetric encryption schemes se-
cure against chosen-ciphertext attack,” Full version of this paper, available via:
http://www-cse.ucsd.edu/users/adesai/.

13. D. Dolev, C. Dwork and M. Naor, “Non-malleable cryptography,” SIAM J. of

Computing, to appear. Preliminary version in Proceedings of the 23rd Annual

Symposium on the Theory of Computing, ACM, 1991.
14. O. Goldreich, S. Goldwasser and S. Micali, How to construct random

functions. Journal of the ACM, Vol. 33, N0. 4, 1986, pp. 210-217.
15. S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer

and System Science, Vol. 28, 1984, pp. 270–299.
16. J. Katz and M. Yung, “Complete characterization of security notions for prob-

abilistic private-key encryption,” Proceedings of the 32nd Annual Symposium on

the Theory of Computing, ACM, 2000.
17. J. Katz and M. Yung, “Unforgeable Encryption and Adaptively Secure Modes

of Operation,” Fast Software Encryption ’00, LNCS Vol. ??, B. Schneier ed.,
Springer-Verlag, 2000.

18. M. Luby and C. Rackoff, “How to construct pseudorandom permutations from
pseudorandom functions,” SIAM J. Computing, Vol. 17, No. 2, April 1988.

19. M. Naor and O. Reingold, “On the construction of pseudorandom permuta-
tions: Luby-Rackoff revisited,” J. of Cryptology, Vol. 12, No. 1, 1999.

20. M. Naor and M. Yung, “Public-key cryptosystems provably secure against
chosen-ciphertext attackss,” Proceedings of the 22nd Annual Symposium on the

Theory of Computing, ACM, 1990.
21. S. Patel, Z. Ramzan, and G. Sundaram, “Efficient Variable-Input-Length

Cryptographic Primitives,” Manuscript, 2000.
22. E. Petrank and C. Rackoff, “CBC MAC for Real-Time Data Sources,” Di-

macs Technical Report, 97-26, 1997.
23. C. Rackoff and D. Simon, “Non-interactive zero-knowledge proof of knowl-

edge and chosen-ciphertext attack,” Advances in Cryptology - Crypto ’91, LNCS
Vol. 576, J. Feigenbaum ed., Springer-Verlag, 1991.

