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Abstract. The Full Domain Hash (FDH) scheme is a RSA-based signa-
ture scheme in which the message is hashed onto the full domain of the
RSA function. The FDH scheme is provably secure in the random oracle
model, assuming that inverting RSA is hard. In this paper we exhibit a
slightly different proof which provides a tighter security reduction. This
in turn improves the efficiency of the scheme since smaller RSA moduli
can be used for the same level of security. The same method can be used
to obtain a tighter security reduction for Rabin signature scheme, Paillier
signature scheme, and the Gennaro-Halevi-Rabin signature scheme.

1 Introduction

Since the discovery of public-key cryptography by Diffie and Hellman [3],
one of the most important research topics is the design of practical and
provably secure cryptosystems. A proof of security is usually a computa-
tional reduction from solving a well established problem to breaking the
cryptosystem. Well established problems include factoring large integers,
computing the discrete logarithm modulo a prime p, or extracting a root
modulo a composite integer. The RSA cryptosystem [9] is based on this
last problem.

A very common practice for signing with RSA is to first hash the mes-
sage, add some padding, and then exponentiate it with the decryption
exponent. This “hash and decrypt” paradigm is the basis of numerous
standards such as PKCS #1 v2.0 [10]. In this paradigm, the simplest
scheme consists in taking a hash function, the output size of which is ex-
actly the size of the modulus : this is the Full Domain Hash scheme (FDH),
introduced by Bellare and Rogaway in [1]. The FDH scheme is provably
secure in the random oracle model, assuming that inverting RSA, i.e. ex-
tracting a root modulo a composite integer, is hard. The random oracle
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methodology was introduced by Bellare and Rogaway in [1] where they
show how to design provably secure signature schemes from any trapdoor
permutation. In the random oracle model, the hash function is seen as an
oracle which produces a random value for each new query.

The seminal work of Bellare and Rogaway in [1] and [2] highlights
the importance, for practical applications of provable security, of taking
into account the tightness of the security reduction. A security reduction
is tight when breaking the signature scheme leads to solving the well
established problem with sufficient probability, ideally with probability
one. In this case, the signature scheme is almost as secure as the well
established problem. On the contrary, if the reduction is “loose”, i.e. the
above probability is too small, the guarantee on the signature scheme can
be quite weak.

In this paper, we exhibit a better security reduction for the FDH
signature scheme, which gives a tighter security bound. The reduction in
[2] bounds the probability ε of breaking FDH in time t by ε′ · (qhash+qsig)
where ε′ is the probability of inverting RSA in time t′ comparable to t
and qhash and qsig are the number of hash queries and signature queries
requested by the forger. The new reduction bounds the probability ε of
breaking FDH by roughly ε′ · qsig with the same running time t and t

′.
This is significantly better in practice since qsig is usually much less than
qhash. Full domain hash is thus more secure than originally foreseen. With
a tighter provable security one can safely use a smaller modulus size, which
in turn improves the efficiency of the scheme.

2 Definitions

2.1 Signature schemes

A digital signature of a message is a bit string dependent on some se-
cret known only to the signer, and on the content of the message being
signed. Signatures must be verifiable : anyone can check the validity of
the signature. The following definitions are based on [5].

Definition 1 (signature scheme). A signature scheme is defined by

the following :

- The key generation algorithm Gen is a probabilistic algorithm which

given 1k, outputs a pair of matching public and secret keys, (pk, sk).
- The signing algorithm Sign takes the message M to be signed and

the secret key sk and returns a signature x = Signsk(M). The signing

algorithm may be probabilistic.
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- The verification algorithm V erify takes a message M , a candidate

signature x′ and the public key pk. It returns a bit V erifypk(M,x′), equal
to 1 if the signature is accepted, and 0 otherwise. We require that if x←
Signsk(M), then V erifypk(M,x) = 1.

Signature schemes most often use hash functions. In the following, the
hash function is seen as a random oracle : the output of the hash function
h is a uniformly distributed point in the range of h. Of course, if the same
input is invoked twice, identical outputs are returned.

2.2 Security of signature schemes

The security of signature schemes was formalized in an asymptotic setting
by Goldwasser, Micali and Rivest [5]. Here we use the definitions of [1]
and [2] which take into account the presence of an ideal hash function, and
give a concrete security analysis of digital signatures. Resistance against
adaptive chosen-message attacks is considered : a forger F can dynami-
cally obtain signatures of messages of its choice and attempts to output
a valid forgery. A valid forgery is a message/signature pair (M,x) such
that V erifypk(M,x) = 1 but the signature of M was never requested by
F .

Definition 2. A forger F is said to (t, qsig, qhash, ε)-break the signature

scheme (Gen, Sign, V erify) if after at most qhash(k) queries to the hash

oracle, qsig(k) signatures queries and t(k) processing time, it outputs a

valid forgery with probability at least ε(k) for all k ∈ N.

Definition 3. A signature scheme (Gen, Sign, V erify) is (t, qsig, qhash,
ε)-secure if there is no forger who (t, qsig, qhash, ε)-breaks the scheme.

2.3 The RSA cryptosystem

The RSA cryptosystem [9] is the most widely used public-key cryp-
tosytem. It can be used to provide both secrecy and digital signatures.

Definition 4 (The RSA cryptosystem). The RSA cryptosystem is a

family of trapdoor permutations. It is specified by :

- The RSA generator RSA, which on input 1k, randomly selects 2
distinct k/2-bit primes p and q and computes the modulus N = p · q.
It randomly picks an encryption exponent e ∈ Z∗

φ(N) and computes the

corresponding decryption exponent d such that e · d = 1 mod φ(N). The
generator returns (N, e, d).
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- The encryption function f : Z∗

N → Z∗

N defined by f(x) = xe mod N .

- The decryption function f−1 : Z∗

N → Z∗

N defined by f−1(y) =
yd mod N .

2.4 Quantifying the security of RSA

We follow the definitions of [2]. An inverting algorithm I for RSA gets
input N, e, y and tries to find f−1(y). Its success probability is the prob-
ability to output f−1(y) when N, e, d are obtained by running RSA(1k)
and y is set to f(x) for an x chosen at random in Z∗

N .

Definition 5. An inverting algorithm I is said to (t, ε)-break RSA if

after at most t(k) processing time its success probability is at least ε(k)
for all k ∈ N.

Definition 6. RSA is said to be (t, ε) secure if there is no inverter which
(t, ε)-breaks RSA.

3 The Full Domain Hash signature scheme

3.1 Definition

The Full Domain Hash (GenFDH, SignFDH, V erifyFDH) signature
scheme [1] is defined as follows. The key generation algorithm, on input 1k,
runs RSA(1k) to obtain (N, e, d). It outputs (pk, sk), where pk = (N, e)
and sk = (N, d). The signing and verifying algorithm have oracle access
to a hash function HFDH : {0, 1}∗ → Z∗

N . Signature generation and
verification are as follows :

SignFDHN,d(M)
y ← HFDH(M)
return yd mod N

V erifyFDHN,e(M,x)
y ← xe mod N ; y′ ← HFDH(M)
if y = y′ then return 1 else return 0.

The concrete security analysis of the FDH scheme is provided by the
following theorem [1] :

Theorem 1. Suppose RSA is (t′, ε′)-secure. Then the Full Domain Hash

signature scheme is (t, ε)-secure where t = t′ − (qhash + qsig + 1) · O(k
3)

and ε = (qhash + qsig) · ε
′.
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As stated in [2], the disadvantage of this result is that ε′ could be
much smaller than ε. For example, if we assume like in [2] that the forger
is allowed to request qsig = 2

30 signatures and computes hashes on qhash =
260 messages, even if the RSA inversion probability is as low as 2−61, then
all we obtain is that the forging probability is at most 1/2, which is not
satisfactory. To obtain an acceptable level of security, we must use a larger
modulus, which will affect the efficiency of the scheme.

To obtain a better security bound, Bellare and Rogaway designed a
new scheme, the probabilistic signature scheme (PSS), which achieves a
tight security reduction : the probability of forging a signature is almost
equally low as inverting RSA (ε ' ε′). Instead, we show in the next section
that a better security bound can be obtained for the original FDH scheme.

3.2 The new security reduction

We exhibit a different reduction which gives a better security bound for
FDH. Namely, we prove the following theorem :

Theorem 2. Suppose RSA is (t′, ε′)-secure. Then the Full Domain Hash

signature scheme is (t, ε)-secure where

t = t′ − (qhash + qsig + 1) · O(k
3)

ε =
1

(1− 1
qsig+1)

qsig+1
· qsig · ε

′

For large qsig,

ε ' exp(1) · qsig · ε
′

Proof. Let F be a forger that (t, qsig, qhash, ε)-breaks FDH. We assume
that F never repeats a hash query or a signature query. We build an
inverter I which (t′, ε′)-breaks RSA.

The inverter I receives as input (N, e, y) where (N, e) is the public key
and y is chosen at random in ZZ∗

N . The inverter I tries to find x = f−1(y)
where f is the RSA function defined byN, e. The inverter I starts running
F for this public key. Forger F makes hash oracle queries and signing
queries. I will answer hash oracle queries and signing queries itself. We
assume for simplicity that when F requests a signature of the message
M , it has already made the corresponding hash query on M . If not, I
goes ahead and makes the hash query itself. I uses a counter i, initially
set to zero.
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When F makes a hash oracle query forM , the inverter I increments i,
setsMi =M and picks a random ri in ZZ

∗

N . I then returns hi = rei mod N
with probability p and hi = y · rei mod N with probability 1 − p. Here p
is a fixed probability which will be determined later.

When F makes a signing query for M , it has already requested the
hash of M , so M =Mi for some i. If hi = rei mod N then I returns ri as
the signature. Otherwise the process stops and the inverter has failed.

Eventually, F halts and outputs a forgery (M,x). We assume that
F has requested the hash of M before. If not, I goes ahead and makes
the hash query itself, so that in any case M = Mi for some i. Then
if hi = y · rei mod N we have x = hdi = yd · ri mod N and I outputs
yd = x/ri mod N as the inverse for y. Otherwise the process stops and
the inverter has failed.

The probability that I answers to all signature queries is at least
pqsig . Then I outputs the inverse of y for f with probability 1 − p. So
with probability at least α(p) = pqsig · (1− p), I outputs the inverse of y
for f . The function α(p) is maximal for pmax = 1− 1/(qsig + 1) and

α(pmax) =
1

qsig

(

1−
1

qsig + 1

)qsig+1

Consequently we obtain :

ε(k) =
1

(1− 1
qsig+1)

qsig+1
· qsig · ε

′(k)

and for large qsig, ε(k) ' exp(1) · qsig · ε
′(k).

The running time of I is the running time of F added to the time
needed to compute the hi values. This is essentially one RSA computa-
tion, which is cubic time (or better). This gives the formula for t.

ut

3.3 Discussion

In many security proofs in the random oracle model (including [2]), the
inverter has to “guess” which hash query will be used by the adversary to
produce its forgery, resulting in a factor of qhash in the success probability.
This paper shows that a better method is to include the challenge y in
the answer of many hash queries so that the forgery is useful to the
inverter with greater probability. This observation also applies to the
Rabin signature scheme [8], the Paillier signature scheme [7] and also the
Gennaro-Halevi-Rabin signature scheme [4], for which the qhash factor in
the random oracle security proof can also be reduced to qsig.
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4 Conclusion

We have improved the security reduction of the FDH signature scheme in
the random oracle model. The quality of the new reduction is independent
from the number of hash calls performed by the forger, and depends only
on the number of signatures queries. This is of practical significance since
in real-world applications, the number of hash calls is only limited by
the computational power of the forger, whereas the number of signature
queries can be deliberately limited : the signer can refuse to sign more
than 220 or 230 messages. However, the reduction is still not tight and
there remains a sizable gap between the exact security of FDH and the
exact security of PSS.
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