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Abstract. In this work we use cryptography to solve a game-theoretic
problem which arises naturally in the area of two party strategic games.
The standard game-theoretic solution concept for such games is that
of an equilibrium, which is a pair of “self-enforcing” strategies making
each player’s strategy an optimal response to the other player’s strategy.
It is known that for many games the expected equilibrium payoffs can
be much higher when a trusted third party (a “mediator”) assists the
players in choosing their moves (correlated equilibria), than when each
player has to choose its move on its own (Nash equilibria). It is natural
to ask whether there exists a mechanism that eliminates the need for
the mediator yet allows the players to maintain the high payoffs offered
by mediator-assisted strategies. We answer this question affirmatively
provided the players are computationally bounded and can have free
communication (so-called “cheap talk”) prior to playing the game.
The main building block of our solution is an efficient cryptographic
protocol to the following Correlated Element Selection problem, which
is of independent interest. Both Alice and Bob know a list of pairs
(a1, b1) . . . (an, bn) (possibly with repetitions), and they want to pick a
random index i such that Alice learns only ai and Bob learns only bi.
Our solution to this problem has constant number of rounds, negligi-
ble error probability, and uses only very simple zero-knowledge proofs.
We then show how to incorporate our cryptographic protocol back into
a game-theoretic setting, which highlights some interesting parallels be-
tween cryptographic protocols and extensive form games.

1 Introduction

The research areas of Game Theory and Cryptography are both extensively
studied fields with many problems and solutions. Yet, the cross-over between
them is surprisingly small: very rarely are tools from one area borrowed to ad-
dress problems in the other. Some examples of using game-theoretic concepts to
solve cryptographic problems include the works of Fischer and Wright [17] and
Kilian [26]. In this paper we show an example in the other direction of how cryp-
tographic tools can be used to address a natural problem in the Game Theory
world.
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1.1 Two Player Strategic Games

The game-theoretic problem that we consider in this work belongs to the general
area of two player strategic games, which is an important field in Game Theory
(see [20, 32]). In the most basic notion of a two player game, there are two players,
each with a set of possible moves. The game itself consists of each player choosing
a move from its set, and then both players executing their moves simultaneously.
The rules of the game specify a payoff function for each player, which is computed
on the two moves. Thus, the payoff of each player depends both on its move and
the move of the other player. A strategy for a player is a (possibly randomized)
method for choosing its move. A fundamental assumption of these games, is that
each player is rational, i.e. its sole objective is to maximize its (expected) payoff.

A pair of players’ strategies achieves an equilibrium when these strategies
are self-enforcing, i.e. each player’s strategy is an optimal response to the other
player’s strategy. In other words, once a player has chosen a move and believes
that the other player will follow its strategy, its (expected) payoff will not increase
by changing this move. This notion was introduced in the classical work of Nash
[31].

In a Nash equilibrium, each player chooses its move independently of the other
player. (Hence, the induced distribution over the pairs of moves is a product
distribution.) Yet, Aumann [2] showed that in many games, the players can
achieve much higher expected payoffs, while preserving the “self-enforcement”
property, if their strategies are correlated (so the induced distribution over the
pairs of moves is no longer a product distribution). To actually implement such a
correlated equilibrium, a “trusted third party” (called a mediator) is postulated.
This mediator chooses the pair of moves according to the right joint distribution
and privately tells each player what its designated move is. Since the strategies
are correlated, the move of one player typically carries some information (not
known a-priori) on the move of the other player. In a correlated equilibrium, no
player has an incentive to deviate from its designated move, even knowing this
extra information about the other player’s move.

1.2 Removing the Mediator

As the game was intended for two players, it is natural to ask if correlated equi-
libria can be implemented without actually having a mediator. In the language of
cryptography, we ask if we can design a two party game to eliminate the trusted
third party from the original game. It is well known that in the standard crypto-
graphic models the answer is positive, provided that the two players can interact,
that they are computationally bounded, and assuming some standard hardness
assumptions ([22, 34]). We show that this positive answer can be carried over
to the Game Theory model as well. Specifically, we consider an extended game,
in which the players first exchange messages (this part is called “cheap talk”
by game theorists and is quite standard; see Myerson [30] for survey), and then
choose their moves and execute them simultaneously as in the original game.



115

The payoffs are still computed as a function of the moves, according to the same
payoff function as in the original game.

It is very easy to see that every Nash equilibrium payoff of the extended game
is also a correlated equilibrium payoff of the original game (the mediator can
simulate the pre-play communication stage). Our hope would be to show that any
Correlated equilibrium payoffs of the original game can always be achieved by
some Nash equilibrium of the extended game. However, Barany [3] showed that
this is generally not true. Namely, that Nash equilibria payoffs of the extended
game are inside the convex hull of the Nash equilibria payoffs of the original
game, which often does not include many correlated equilibria payoffs of the
original game (see Section 2 for an example).

In this work we overcome this difficulty by considering the realistic scenario
where the players are computationally bounded. In other words, while Game
Theory typically assumes that the players have unlimited computational capa-
bilites when they need to make their decisions, we will assume that the players
are restricted to probabilistic polynomial time. Of independent interest to Game
Theory, we will define a new concept of a computational Nash equilibrium as
a pair of efficient strategies where no polynomially bounded player can gain a
non-negligible advantage by not following its strategy (see Section 3 for formal
definitions). Then, we prove the following:

Theorem 1. Let G be any two player strategic game and let G′ be the extended
game of G. If secure two-party protocols exist for non-trivial functions, then for
any correlated equilibrium s of G there exists a computational Nash equilibrium
σ of G′, such that the payoffs for both players are the same in σ and s.

In other words, any correlated equilibrium payoffs of G can be achieved using
a computational Nash equilibrium of G′. Thus, the mediator can be eliminated
if the players are computationally bounded and can communicate prior to the
game.

We stress that although this theorem seem quite natural and almost trivial
from a cryptography point of view, the models of Game Theory and Cryp-
tography are significantly different, and thus proving it in the Game Theory
framework requires some care. In particular, two-party cryptographic protocols
always assume that at least one player is honest, while the other player could
be arbitrarily malicious. In the game-theoretic setting, on the other hand, both
players are selfish and rational: they (certainly) deviate from the protocol if they
benefit from it, and (can be assumed to) follow their protocol otherwise. Also,
it is important to realize that in this setting we cannot use cryptography to
“enforce” honest behavior. This is due to the fact that a “cheating player” who
was “caught cheating” during the protocol, can still choose a move that would
maximizes its profit. We discuss these and some other related issues further in
Section 2.
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1.3 Doing it Efficiently

Although the assumption of Theorem 1 can be proven using tools of generic
two-party computations [22, 34], it would be nice to obtain computational Nash
equilibria (i.e. protocols) which are more efficient than the generic ones. In Sec-
tion 4 we observe that for many cases, the underlying cryptographic problem
reduces to a problem which we call Correlated Element Selection. We believe
that this natural problem has other cryptographic application and is of inde-
pendent interest. In this problem, two players, A and B, know a list of pairs
(a1, b1), . . . , (an, bn) (maybe with repetitions), and they need to jointly choose
a random index i, so that player A only learns the value ai and player B only
learns the value bi.

1 Our final protocol for this problem is very intuitive, has con-
stant number of rounds, negligible error probability, and uses only very simple
zero-knowledge proofs.
Our protocol for Correlated Element Selection uses as a tool a useful primi-

tive which we call blindable encryption (which can be viewed as a counterpart of
blindable signatures [10]). Stated roughly, blindable encryption is the following:
given an encryption c of an (unknown) messagem, and an additional messagem′,
a random encryption of m +m′ can be easily computed. This should be done
without knowing m or the secret key. Examples of semantically secure blind-
able encryption schemes (under appropriate assumptions) include Goldwasser-
Micali [23], ElGamal [15] and Benaloh [5]. (In fact, for our Correlated Element
Selection protocol, it is sufficient to use a weaker notion of blindability, such as
the one in [33].) Aside from our main application, we also observe that blindable
encryption appears to be a very convenient tool for devising efficient two-party
protocols and suggest that it might be used more often. (For example, in the
full version of this paper we show a very simple protocol to achieve 1-out-of-n
Oblivious Transfer protocol from any secure blindable encryption scheme.)

1.4 Related Work

Game Theory. Realizing the advantages of removing the mediator, various pa-
pers in the Game Theory community have been published to try and achieve
this goal. Similarly to our work, Barany [3] shows that the mediator can be
replaced by pre-play communication but he requires four or more players for
this communication, even for a game which is intended for two players. In his
protocol only two players participate as “decision makers” during the pre-play
communication, and (at least two) other players help them to hide information
from each other (as Barany showed, two players do not suffice). Barany’s proto-
col works in an information-theoretic setting (which explains the need for four
players; see [6].) Of course, if one is willing to use a group of players to simulate
the mediator, then the general multiparty computation tools (e.g. [6, 11]) can

1 A special case of Correlated Element Selection when ai = bi is just the standard
coin-flipping problem [7]. However, this is a degenerate case of the problem, since it
requires no secrecy. In particular, none of the previous coin-flipping protocols seem
to extend to solve our problem.
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also be used, even though the solution of [3] is simpler. Forges [18, 19] extends
these results to more general classes of games. The work of Lehrer and Sorin [27]
describes protocols that “reduce” the role of the mediator (the mediator receives
private signals from the players and makes deterministic public announcements).
Mailath et al. [29] show that the set of correlated equilibria of the original game
coincides with the set of Nash equilibria of the so called “local-interaction game”
(where many players are paired up randomly and play the original game). The
distinguishing feature of our work is the observation that placing realistic com-
putational restrictions on the players allows them to achieve results which are
provably impossible when the players are computationally unbounded.

Cryptography. We already mentioned the relation of our work to generic two-
party secure computations [22, 34]. We note that some of our techniques (in par-
ticular, the zero-knowledge proofs) are similar to those used for mixing networks
(see [1, 25] and the references therein), even though our usage and motivation are
quite different. Additionally, encryption schemes with various “blinding proper-
ties” were used for many different purposes, including among others for secure
storage [21], and secure circuit evaluations [33].

2 Background in Game Theory

Two-player Games. Although our results apply to a much larger class of two-
player games, we demonstrate them on the simplest possible class of finite strate-
gic games (with complete information). Such a game G has two players 1 and
2, each of whom has a finite set Ai of possible actions and a payoff function
ui : A1 × A2 7→ R (i = 1, 2), known to both players. The players move simul-
taneously, each choosing an action ai ∈ Ai. The payoff of player i is ui(a1, a2).
The (probabilistic) algorithm that tells player i which action to take is called
its strategy, and a pair of strategies is called a strategy profile. In our case, a
strategy si of player i is simply a probability distribution over its actions Ai,
and a strategy profile s = (s1, s2) is a probability distribution over A1 × A2.
Classical Game Theory assumes that each player is selfish and rational, i.e. only
cares about maximizing its (expected) payoff. As a result, we are interested in
strategy profiles that are self-enforcing. In other words, even knowing the strat-
egy of the other player, each player still has no incentive to deviate from its own
strategy. Such a strategy profile is called an equilibrium.

Nash equilibrium. This is the best known notion of an equilibrium [31]. It cor-
responds to a strategy profile in which players’ strategies are independent. More
precisely, the induced distribution over the pairs of actions, must be a product
distribution, s(A1×A2) = s1(A1)×s2(A2). Deterministic (or pure) strategies are
a special case of such strategies, where si assigns probability 1 to some action.
For strategies s1 and s2, we denote by ui(s1, s2) the expected payoff for player i
when players independently follow s1 and s2.
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Definition 1. A Nash equilibrium of a game G is an independent strategy pro-
file (s∗1, s

∗
2), such that for any a1 ∈ A1, a2 ∈ A2, we have u1(s

∗
1, s

∗
2) ≥ u1(a1, s

∗
2)

and u2(s
∗
1, s

∗
2) ≥ u2(s

∗
1, a2).

In other words, given that player 2 follows s∗2, s
∗
1 is an optimal response of player

1 and vice versa.

Correlated equilibrium. While Nash equilibrium is quite a natural and appealing
notion (since players can follow their strategies independently of each other),
one can wonder if it is possible to achieve higher expected payoffs if one allows
correlated strategies.

In a correlated strategy profile [2], the induced distribution over A1 × A2

can be an arbitrary distribution, not necessarily a product distribution. This
can be implemented by having a trusted party (called mediator) sample a pair
of actions (a1, a2) according to some joint probability distribution s(A1 × A2),
and “recommend” the action ai to player i. We stress that knowing ai, player i
now knows a conditional distribution over the actions of the other player (which
can be different for different ai’s), but knows nothing more. We denote these
distributions by s2(· | a1) and s1(· | a2).

For any a′1 ∈ A1, a
′
2 ∈ A2, let u1(a

′
1, s2 | a1) be the expected value of

u1(a
′
1, a2) when a2 is distributed according to s2(· | a1) (similarly for u2(s1, a

′
2 |

a2)). In other words, u1(a
′
1, s2 | a1) measures the expected payoff of player 1 if

his recommended action was a1 (thus, a2 is distributed according to s2(· | a1)),
but it decided to play a′1 instead. As before, we let ui(s) be the expected value of
ui(a1, a2) when (a1, a2) are drawn according to s. Similarly to Nash equilibrium,
a more general notion of a correlated equilibrium is defined, which ensures that
players have no incentive to deviate from the “recommendation” they got from
the mediator.

Definition 2. A correlated equilibrium is a strategy profile s∗ = s∗(A1×A2) =
(s∗1, s

∗
2), such that for any (a

∗
1, a

∗
2) in the support of s

∗, any a1 ∈ A1 and a2 ∈ A2,
we have u1(a

∗
1, s

∗
2 | a

∗
1) ≥ u1(a1, s

∗
2 | a

∗
1) and u2(s

∗
1, a

∗
2 | a

∗
2) ≥ u2(s

∗
1, a2 | a

∗
2).

Given Nash (resp. Correlated) equilibrium (s∗1, s
∗
2), we say that (s

∗
1, s

∗
2) achieves

Nash (resp. Correlated) equilibrium payoffs [u1(s
∗
1, s

∗
2), u2(s

∗
1, s

∗
2)].

Correlated equilibria of any game form a convex set, and therefore always
include the convex hull of Nash equilibria. However, it is well known that cor-
related equilibria can give equilibrium payoffs outside (and significantly better!)
than anything in the convex hull of Nash equilibria payoffs. This is demon-
strated in the following simple example first observed by Aumann [2], who also
defined the notion of correlated equilibrium. Much more dramatic examples can
be shown in larger games.2

2 For example, there are games with a unique Nash equilibrium s and many Correlated
equilibria giving both players much higher payoffs than s.
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C D
C 4,4 1,5
D 5,1 0,0
“Chicken”

C D
C 1/4 1/4
D 1/4 1/4
Mixed Nash s3

C D
C 1/3 1/3
D 1/3 0
Correlated s∗

Game of “Chicken”. We consider a simple 2 × 2 game,
the so-called game of “Chicken” shown in the table to
the right. Here each player can either “dare” (D) or
“chicken out” (C). The combination (D,D) has a dev-
astating effect on both players (payoffs [0, 0]), (C,C) is
quite good (payoffs [4, 4]), while each player would ide-
ally prefer to dare while the other chickens-out (giving
him 5 and the opponent 1). While the “wisest” pair of
actions is (C,C), this is not a Nash equilibrium, since
both players are willing to deviate to D (believing that
the other player will stay at C). The game is easily seen
to have three Nash equilibria: s1 = (D,C), s2 = (C,D)
and s3 = ( 12 ·D+

1
2 ·C,

1
2 ·D+

1
2 ·C). The respective Nash

equilibrium payoffs are [5, 1], [1, 5] and [ 52 ,
5
2 ]. We see that

the first two pure strategy Nash equilibria are “unfair”,
while the last mixed equilibrium has small payoffs, since
the mutually undesirable outcome (D,D) happens with non-zero probability 1

4
in the product distribution. The best “fair” strategy profile in the convex hull of
the Nash equilibria is the combination 1

2s
1+ 1

2s
2 = ( 12 (C,D)+

1
2 (D,C)), yielding

payoffs [3, 3]. On the other hand, the profile s∗ = ( 13 (C,D)+
1
3 (D,C)+

1
3 (C,C))

is a correlated equilibrium, yielding payoffs [3 1
3 , 3

1
3 ] outside any convex combi-

nation of Nash equilibria.
To briefly see that this is a correlated equilibrium, consider the “row player”

1 (same works for player 2). If it is recommended to play C, its expected payoff
is 1

2 ·4+
1
2 ·1 =

5
2 since, conditioned on a1 = C, player 2 is recommended to play

C and D with probability 1
2 each. If player 1 switched to D, its expected payoff

would still be 1
2 · 5 +

1
2 · 0 =

5
2 , making player 1 reluctant to switch. Similarly, if

player 1 is recommended D, it knows that player 2 plays C (as (D,D) is never
played in s∗), so its payoff is 5. Since this is the maximum payoff of the game,
player 1 would not benefit by switching to C in this case. Thus, we indeed have
a correlated equilibrium, where each player’s payoff is 1

3 (1 + 5 + 4) = 3
1
3 , as

claimed.

3 Implementing the Mediator

In this section we show how to remove the mediator using cryptographic means.
We assume the existence of generic secure two-party protocols and show how to
achieve our goal by using such protocols in the game-theoretic (rather than its
designated cryptographic) setting. In other words, the players remain selfish and
rational, even when running the cryptographic protocol. In Section 4 we give an
efficient implementation for the types of cryptographic protocols that we need.

Extended Games. To remove the mediator, we assume that the players are (1)
computationally bounded and (2) can communicate prior to playing the original
game, which we believe are quite natural and minimalistic assumptions. To for-
mally define the computational power of the players, we introduce an external
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security parameter into the game, and require that the strategies of both players
can be computed in probabilistic polynomial time in the security parameter.3

To incorporate communication into the game, we consider an extended game,
which is composed of three parts: first the players are given the security param-
eter and they freely exchange messages (i.e., execute any two-party protocol),
then each player locally selects its move, and finally both players execute their
move simultaneously.The final payoffs u′i of the extended game are just the corre-
sponding payoffs of the original game applied to the players’ simultaneous moves
at the last step.
The notions of a strategy and a strategy profile are straightforwardly general-

ized from those of the basic game, except that they are full-fledged probabilistic
algorithms telling each player what to do in each situation. We now define the
notion of a computational Nash equilibrium of the extended game, where the
strategies of both players are restricted to probabilistic polynomial time (PPT).
Also, since we are talking about a computational model, the definition must
account for the fact that the players may break the underlying cryptographic
scheme with negligible probability (e.g., by guessing the secret key), thus gaining
some advantage in the game. In the definition and discussion below, we denote
by negl(k) some function that is negligible in k.

Definition 3. A computational Nash equilibrium of an extended game G is an
independent strategy profile (σ∗1 , σ

∗
2), such that

(a) both σ∗1 , σ
∗
2 are PPT computable; and

(b) for any other PPT computable strategies σ′1, σ
′
2, we have

u1(σ
′
1, σ

∗
2) ≤ u1(σ

∗
1 , σ

∗
2) + negl(k) and u2(σ

∗
1 , σ

′
2) ≤ u2(σ

∗
1 , σ

∗
2) + negl(k).

We notice that the new “philosophy” for both players is still to maximize their
expected payoff, except that the players will not change their strategy if their
gain is negligible.
The idea of getting rid of the mediator is now very simple. Consider a cor-

related equilibrium s(A1 × A2) of the original game G. Recall that the job of
the mediator is to sample a pair of actions (a1, a2) according to the distribution
s, and to give ai to player i. We can view the mediator as a trusted party who
securely computes a probabilistic (polynomial-time) function s. Thus, to remove
it we can have the two players execute a cryptographic protocol P that securely
computes the function s. The strategy of each player would be to follow the
protocol P , and then play the action a that it got from P .
Yet, several issues have to be addressed in order to make this idea work. First,

the above description does not completely specify the strategies of the players. A
full specification of a strategy must also indicate what a player should do if the
other player deviates from its strategy (in our case, does not follow the protocol
P ). While cryptography does not address this question (beyond the guarantee
that the other player is likely to detect the deviation and abort the protocol), it is

3 Note that the parameters of the original game (like the payoff functions, the corre-
lated equilibrium distribution, etc.) are all independent of the security parameter,
and thus can always be computed “in constant time”.
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crucial to resolve it in our setting, since “the game must go on”: No matter what
happens inside P , both players eventually have to take simultaneous actions,
and receive the corresponding payoffs (which they wish to maximize). Hence
we must explain how to implement a “punishment for deviation” within the
game-theoretic framework.

Punishment for Deviations. We employ the standard game-theoretic solution,
which is to punish the cheating player to his minmax level. This is the smallest
payoff that one player can “force” the other player to have. Namely, the minmax
level of player 2 is v2 = mins1 maxs2 u2(s1, s2). Similarly, minmax level of player
1 is v1 = mins2 maxs1 u1(s1, s2). To complete the description of our proposed
equilibrium, we let each player punish the other player to its minmax level, if the
other player deviates from P and is “caught”. Namely, if player 2 cheats, player 1
will play in the last stage of the game the strategy s1 achieving the minmax payoff
v2 for player 2 and vice versa. Note that the instances where a player deviates
from P but this is not detected falls under the negligible probability that the
protocol will fail. Note also that in “interesting” games, the minmax payoff would
be strictly smaller than the correlated equilibrium payoffs. Intuitively, in this
case the only potentially profitable cheating strategy is an “honest but curious”
behavior, where a player follows the prescribed protocol but tries nonetheless
to learn additional information about the action of the other player. Any other
cheating strategy would carry an overwhelming probability of “getting caught”,
hence causing a real loss. Thus, we first observe the following simple fact:

Lemma 1. Let s∗ = (s∗1, s
∗
2) be a correlated equilibrium. For any action a1 of

player 1 which occurs with non-zero probability in s∗, denote µ1(a1) = u1(a1, s
∗
2|a1).

That is, µ(a1) is the expected payoff of player 1 when its recommended action is
a1. Similarly, we define for player 2 µ2(a2) = u2(s

∗
1|a2, a2).

Let vi be the minmax payoff of player i, then for every a1, a2 that occur with
non-zero probability in s∗, it holds that µi(ai) ≥ vi.

Theorem 1 now follows almost immediately from Lemma 1 and the security of
P . Intuitively, since (a) a cheating player that “gets caught” is going to lose by
Lemma 1 and (b) the security of P implies that cheating is detected with very
high probability, we get that the risk of getting caught out-weights the benefits
of cheating, and players will not have an incentive to deviate from the protocol
P . (A particular type of cheating in P is “early stopping”. Since the extended
game must always result in players getting payoffs, early stopping is not an issue
in game theory, since it will be punished by the minmax level as well.)
Somewhat more formally, let v1 = u1(s

∗
1, s

∗
2), and consider that 1 is a cheating

player who uses some arbitrary (but PPT computable) strategy s′1 (the analysis
for player 2 is similar). Let the action taken by player 1 in the extended game
be considered its output of the protocol. The output of player 2 is whatever is
specified in its part of the protocol P , which is either an action (if the protocol
runs to completion) or “abort” (if some “cheating” is detected).
According to standard definitions of secure protocols (e.g., the one by Canetti [9]),

P is secure if the above output pair can be simulated in an “ideal model”. This
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“ideal model” is almost exactly the model of the trusted mediator, except that
player 1 may choose to have the mediator abort before it recommends an ac-
tion to player 2 (in which case the output of player 2 in the ideal model is also
“abort”). The security of P implies that the output distribution in the execution
of the protocol in the “real world” is indistinguishable from that of the “ideal
world”.

Consider now the function ũ1(·, ·), which denotes the “payoff of player 1”
in the extended game, given a certain output pair. That is, if the output is a
pair of actions (a1, a2) than ũ1(a1, a2) = u1(a1, a2), and if the output of the
second player is “abort” then ũ1(a1, “abort”) = u1(a1, a2), where a2 is the min-
max move for player 2. Note that in the real world, the function ũ1 indeed
represents the payoff of player 1 using strategy s′1, but note also that this func-
tion is well defined even in the ideal world. Clearly, the expected value of ũ1 in
the real world is at most negligibly higher than in the ideal world. Otherwise,
the output distributions in the two worlds could be distinguished with a non-
negligible advantage by comparing the value of this function to some properly
chosen threshold, contradicting the security of the protocol P .

Therefore, to prove Theorem 1 it is sufficient to show that the expected
value of ũ1 in the ideal world is at most v1 (which is equal to the correlated
equilibrium payoff of player 1 in the original game G). This is where we use
Lemma 1: this lemma tells us that in the ideal world, no matter what action
that is recommended to player 1, this player cannot increase the expected value
of ũ1 by aborting the mediator before it recommends an action to player 2.
Hence, we can upper bound the expected value of ũ1 in the ideal world by
considering a strategy of player 1 that never aborts the mediator. Such strategy
corresponds exactly to a strategy in the original game G (with the mediator),
and so it cannot achieve expected payoff of more than v1. This completes the
proof.

Subgame Perfect Equilibrium. In looking at the computational Nash equilib-
rium we constructed, one may wonder why would a player want to carry out
the “minmax punishment” when it catches the other player cheating (since this
“punishment” may also hurt the “punishing player”). The answer is that the
notion of Nash equilibrium only requires player’s actions to be optimal provided
the other player follows its strategy. Thus, it is acceptable to carry out the pun-
ishment even if this results in a loss for both players. We note that this oddity
(known as an “empty threat” in the game-theoretic literature) is one of the rea-
son the concept of Nash equilibrium is considered weak in certain situations. As
a result, game theorists often consider a stricter version of a Nash equilibrium
for extended games, called a subgame perfect equilibrium.

In the full version we show that Theorem 1 can be broadened to the case
of the subgame perfect equilibrium. Generally stated, we prove that every “in-
teresting” correlated-equilibrium payoff of the game G can be achieved by a
subgame perfect equilibrium of an extended game G′.
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4 The Correlated Element Selection Problem

In most common games, the joint strategy of the players is described by a
short list of pairs {(move1,move2)}, where the strategy is to choose at ran-
dom one pair from this list, and have Player 1 play move1 and Player 2 play
move2. (For example, in the game of chicken the list consists of three pairs
{(D,C), (C,D), (C,C)}.)4

Hence, to obtain an efficient solution for such games, we need an efficient
cryptographic protocol for the following problem: Two players, A and B, know
a list of pairs (a1, b1), . . . , (an, bn) (maybe with repetitions), and they need to
jointly choose a random index i, and have player A learn only the value ai and
player B learn only the value bi. We call this problem the Correlated Element
Selection problem. In this section we describe our efficient solution for this prob-
lem. We start by presenting some notations and tools that we use (in particular,
“blindable encryption schemes”). We then show a simple protocol that solves
this problem in the special case where the two players are “honest but curious”,
and explain how to modify this protocol to handle the general case where the
players can be malicious.

4.1 Notations and Tools

We denote by [n] the set {1, 2, . . . n}. For a randomized algorithm A and an
input x, we denote by A(x) the output distribution of A on x, and by A(x; r)
we denote the output string when using the randomness r. If one of the inputs
to A is considered a “key”, then we write it as a subscript (e.g., Ak(x)). We use
pk, pk1, pk2, . . . to denote public keys and sk, sk1, sk2, . . . to denote secret keys.
The main tool that we use in our protocol is blindable encryption schemes.

Like all public-key encryption schemes, blindable encryption schemes include
algorithms for key-generation, encryption and decryption. In addition they also
have a “blinding” and “combining” algorithms. We denote these algorithms by
Gen, Enc, Dec, Blind, and Combine, respectively. Below we formally define the
blinding and combining functions. In this definition we assume that the message
space M forms a group (which we denote as an additive group with identity 0).

Definition 4 (Blindable encryption). A public-key encryption scheme E is
blindable if there exist (PPT) algorithms Blind and Combine such that for every
message m and every ciphertext c ∈ Encpk(m):

– For any messagem′ (also referred to as the “blinding factor”), Blindpk(c,m
′)

produces a random encryption ofm+m′. Namely, the distribution Blindpk(c,m
′)

should be equal to the distribution Encpk(m+m′).

Encpk(m+m′) ≡ Blindpk(c,m
′) (1)

4 Choosing from the list with distribution other than the uniform can be accommo-
dated by having a list with repetitions, where a high-probability pair appears many
times.
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– If r1, r2 are the random coins used by two successive “blindings”, then for
any two blinding factors m1,m2,

Blindpk(Blindpk(c,m1; r1),m2; r2) = Blindpk(c,m1+m2; Combinepk(r1, r2))
(2)

Thus, in a blindable encryption scheme anyone can “randomly translate” the
encryption c of m into an encryption c′ of m +m′, without knowledge of m or
the secret key, and there is an efficient way of “combining” several blindings into
one operation.
Both the ElGamal and the Goldwasser-Micali encryption schemes can be ex-

tended into blindable encryption schemes. We note that most of the components
of our solution are independent of the specific underlying blindable encryption
scheme, but there are some aspects that still have to be tailored to each scheme.
(Specifically, proving that the key generation process was done correctly is han-
dled differently for different schemes. See details in the full paper [13].)

4.2 A Protocol for the Honest-but-Curious Case

For the case of honest-but-curious players, one can present an “almost trivial”
solution using any 1-out-of-n oblivious transfer protocol. However, in order to
be able to derive an efficient protocol also for the general case, our starting point
would be a somewhat different (but still very simple) protocol.
Let us recall the Correlated Element Selection problem. Two players share a

public list of pairs {(ai, bi)}
n
i=1. For reasons that will soon become clear, we call

the two players the “Preparer” (P ) and the “Chooser” (C). The players wish to
pick a random index i such that P only learns ai and C only learns bi. Figure 1
describes the Correlated Element Selection protocol for the honest-but-curious
players. We employ a semantically secure blindable encryption scheme and for
simplicity, we assume that the keys for this scheme were chosen by a trusted
party ahead of time and given to P , and that the public key was also given to
C.
At the beginning of the protocol, the Preparer randomly permutes the list,

encrypts it element-wise and sends the resulting list to the Chooser. (Since the
encryption is semantically secure, the Chooser “cannot extract any useful in-
formation” about the permutation π.) The Chooser picks a random pair of ci-
phertexts (c`, d`) from the permuted list (so the final output pair will be the
decryption of these ciphertexts). It then blinds c` with 0 (i.e. makes a random
encryption of the same plaintext), blinds d` with a random blinding factor β,
and sends the resulting pair of ciphertexts (e, f) back to the Preparer. Decryp-
tion of e gives the Preparer its element a (and nothing more, since e is a random
encryption of a after the blinding with 0), while the decryption b̃ of f does not
convey the value of the actual encrypted message since it was blinded with a
random blinding factor. The Preparer sends b̃ to the Chooser, who recovers his
element b by subtracting the blinding factor β.
It is easy to show that if both players follow the protocol then their output

is indeed a random pair (ai, bi) from the known list. Moreover, at the end of the
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Protocol CES-1

Common inputs: List of pairs {(ai, bi)}
n
i=1, public key pk.

Preparer knows: secret key sk.

P : 1. Permute and Encrypt.
Pick a random permutation π over [n].
Let (ci, di) = (Encpk(aπ(i)), Encpk(bπ(i))), for all i ∈ [n].
Send the list {(ci, di)}

n
i=1 to C.

C : 2. Choose and Blind.
Pick a random index ` ∈ [n], and a random blinding factor β.
Let (e, f) = (Blindpk(c`, 0), Blindpk(d`, β)).
Send (e, f) to P .

P : 3. Decrypt and Output.

Set a = Decsk(e), b̃ = Decsk(f). Output a.

Send b̃ to C.

C : 4. Unblind and Output.

Set b = b̃− β. Output b.

Fig. 1. Protocol for Correlated Element Selection in the honest-but-curious model.

protocol the Preparer has no information about b other than what’s implied by
its own output a, and the Chooser gets “computationally no information” about
a other than what’s implied by b. Hence we have:

Theorem 2. Protocol CES-1 securely computes the (randomized) function of the
Correlated Element Selection problem in the honest-but-curious model.

Proof omitted.

4.3 Dealing with Dishonest Players

Generic transformation. Following the common practice in the design of secure
protocols, one can modify the above protocol to deal with dishonest players by
adding appropriate zero-knowledge proofs. That is, after each flow of the origi-
nal protocol, the corresponding player proves in zero knowledge that it indeed
followed its prescribed protocol: After Step 1, the Preparer proves that it knows
the permutation π that was used to permute the list. After Step 2 the Chooser
proves that it knows the index ` and the blinding factor that was used to produce
the pair (e, f). Finally, after Step 3 the Preparer proves that the plaintext b̃ is
indeed the decryption of the ciphertext f . Given these zero-knowledge proofs,
one can appeal to general theorems about secure two-party protocols, and prove
that the resulting protocol is secure in the general case of potentially malicious
players.
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We note that the zero-knowledge proofs that are involved in this protocol can
be made very efficient, so even this “generic” protocol is quite efficient (these are
essentially the same proofs that are used for mix-networks in [1], see description
in the full paper). However, a closer look reveals that one does not need all
the power of the generic transformation, and the protocol can be optimized in
several ways. Some of the optimizations are detailed below, while protocols for
the zero-knowledge proofs and issues of key generation can be found in the full
paper [13]. The resulting protocol CES-2 is described in Figure 2.

Theorem 3. Protocol CES-2 securely computes the (randomized) function of the
Correlated Element Selection problem.

Proof omitted.

Proof of proper decryption. To withstand malicious players, the Preparer P
must “prove” that the element b̃ that it send in Step 3 of CES-1 is a proper
decryption of the ciphertext f . However, this can be done in a straightforward
manner without requiring zero-knowledge proofs. Indeed, the Preparer can reveal
additional information (such as the randomness used in the encryption of f), as
long as this extra information does not compromise the semantic security of the
ciphertext e. The problem is that P may not be able to compute the randomness
of the blinded value f (for example, in ElGamal encryption this would require
computation of discrete log). Hence, we need to devise a different method to
enable the proof.
The proof will go as follows: for each i ∈ [n], the Preparer sends the element

bπ(i) and corresponding random string that was used to obtain ciphertexts di in
the first step. The Chooser can then check that the element d` that it chose in
Step 2 was encrypted correctly, and learn the corresponding plaintext.
Clearly, in this protocol the Chooser gets more information than just the

decryption of f (specifically, it gets the decryption of all the di’s). However,
this does not affect the security of the protocol, as the Chooser now sees a
decryption of a permutation of a list that he knew at the onset of the protocol.
This permutation of the all bi’s does not give any information about the output
of the Preparer, other than what is implied by its output b. In particular, notice
that if b appears more than once in the list, then the Chooser does not know
which of these occurrences was encrypted by d`.
Next, we observe that after the above change there is no need for the Chooser

to send f to the Preparer; it is sufficient if C sends only e in Step 2, since it can
compute the decryption of d` by itself.

A weaker condition in the second proof-of-knowledge. Finally, we observe that
since the security of the Chooser relies on an information-theoretic argument,
the second proof-of-knowledge (in which the Chooser proves that it knows the
index `) does not have to be fully zero-knowledge. In fact, tracing through the
proof of security, one can verify that it is sufficient for this proof to be witness
independent in the sense of Feige and Shamir [16].
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Protocol CES-2

Common inputs: List of pairs {(ai, bi)}
n
i=1, public key pk.

Preparer knows: secret key sk.

P : 1. Permute and Encrypt.
Pick a random permutation π over [n], and random strings {(ri, si)}

n
i=1.

Let (ci, di) = (Encpk(aπ(i); rπ(i)), Encpk(bπ(i); sπ(i))), for all i ∈ [n].
Send {(ci, di)}

n
i=1 to C.

Sub-protocol Π1: P proves in zero-knowledge that it knows the randomness

{(ri, si)}
n
i=1 and permutation π that were used to obtain the list {(ci, di)}

n
i=1.

C : 2. Choose and Blind.
Pick a random index ` ∈ [n].
Send to P the ciphertext e = Blindpk(c`, 0).

Sub-protocol Π2: C proves in a witness-independent manner that it knows

the randomness and index ` that were used to obtain e.

P : 3. Decrypt and Output.
Set a = Decsk(e). Output a.
Send to C the list of pairs {(bπ(i), sπ(i))}

n
i=1 (in this order).

C : 4. Verify and Output.
Denote by (b, s) the `’th entry in this lists (i.e., (b, s) = (bπ(`), sπ(`)) ).
If d` = Encpk(b; s) then output b.

Fig. 2. Protocol for Correlated Element Selection.

Blinding by Zero. Notice that for the modified protocol we did not use the full
power of blindable encryption, since we only used “blindings” by zero. Namely,
all that was used in these protocols is that we can transform any ciphertext
c into a random encryption of the same plaintext. (The zero-knowledge proofs
also use only “blindings” by zero.) This is exactly the “random self-reducibility”
property used by Sander et al. [33].

Efficiency. We note that all the protocols that are involved are quite simple. In
terms of number of communication flows, the key generation step and Step 1
take at most five flows each, using techniques which appear in Appendix A.
Step 2 takes three flows and Step 3 consists of just one flow. Moreover, these
flows can be piggybacked on each other. Hence, we can implement the protocol
with only five flows of communication, which is equal to the five steps which are
required by a single proof. In terms of number of operations, the complexity of
the protocol is dominated by the complexity of the proofs in Steps 1 and 2. The
proof in Step 1 requires nk blinding operations (for a list of size n and security
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parameter k), and the proof of Step 2 can be optimized to about nk/2 blinding
operations on the average. Hence, the whole protocol has about 3

2nk blinding
operations.5

5 Epilogue: Cryptography and Game Theory

The most interesting aspect of our work is the synergy achieved between crypto-
graphic solutions and the game-theory world. Notice that by implementing our
cryptographic solution in the game-theory setting, we gain on the game-theory
front (by eliminating the need for a mediator), but we also gain on the cryptog-
raphy front (for example, in that we eliminate the problem of early stopping).
In principle, it may be possible to make stronger use of the game theory setting
to achieve improved solutions. For example, maybe it is possible to prove that
in the context of certain games, a player does not have an incentive to deviate
from its protocol, and so in this context there is no point in asking this player to
prove that it behaves honestly (so we can eliminate some zero-knowledge proofs
that would otherwise be required).
More generally, it may be the case that working in a model in which “we

know what the players are up to” can simplify the design of secure protocols.
It is a very interesting open problem to find interesting examples that would
demonstrate such phenomena.
We conclude with the table that shows some parallels between Cryptography

and Game Theory that we discussed.

Issue Cryptography Game Theory

Incentive None Payoff

Players Totally Honest/Malicious Always Rational

Punishing Cheaters Outside Model Central Part

Solution Concept Secure Protocol Equilibrium

Early Stopping Problem Not an Issue
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A Reducing the Error in a Zero-knowledge

Proof-of-knowledge

Below we describe a known transformation from any 3-round, constant-error
zero-knowledge proof-of-knowledge into a 5-round, negligible error zero-knowledge
proof-of-knowledge, that uses trapdoor commitment schemes. We were not able
to trace the origin of this transformation, although related ideas and techniques
can be found in [14, 28, 12].
Assume that you have some 3-round, constant-error zero-knowledge proof-of-

knowledge protocol, and consider the 3-round protocol that you get by running
the constant-error protocol many times in parallel. Denote the first prover mes-
sage in the resulting protocol by α, the verifier message by β, and the last prover
message by γ. Note that since the original protocol was 3-round, then parallel
repetition reduces the error exponentially (see proof in [4]). However, this pro-
tocol is no longer zero-knowledge.
To get a zero-knowledge protocol, we use a trapdoor (or Chameleon) commit-

ment schemes [8]. Roughly, this is a commitment scheme which is computation-
ally binding and unconditionally secret, with the extra property that there exists
a trapdoor information, knowledge of which enables one to open a commitment
in any way it wants.
In the zero-knowledge protocol, the prover sends to the verifier in the first

round the public-key of the trapdoor commitment scheme. The verifier then
commits to β, the prover sends α, the verifier opens the commitment to β,
and the prover sends γ and also the trapdoor for the commitment. The zero-
knowledge simulator follows the one for the standard 4-round protocol. The
knowledge extractor, on the other hand, first runs one instance of the proof to
get the trapdoor, and then it can effectively ignore the commitment in the second
round, so you can use the extractor of the original 3-round protocol.


