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Abstract. In this work, we retake an old idea presented by Koblitz in
his landmark paper [21], where he suggested the possibility of defining
anomalous elliptic curves over the base field Fs. We present a careful
implementation of the base and quadratic field arithmetic required for
computing the scalar multiplication operation in such curves. In order
to achieve a fast reduction procedure, we adopted a redundant trinomial
strategy that embeds elements of the field F4m , with m a prime number,
into a ring of higher order defined by an almost irreducible trinomial. We
also report a number of techniques that allow us to take full advantage of
the native vector instructions of high-end microprocessors. Our software
library achieves the fastest timings reported for the computation of the
timing-protected scalar multiplication on Koblitz curves, and competi-
tive timings with respect to the speed records established recently in the
computation of the scalar multiplication over prime fields.

1 Introduction

Anomalous binary curves, generally referred to as Koblitz curves, are binary
elliptic curves satisfying the Weierstrass equation, E, : y? + zy = 2° + az? + 1,
with a € {0, 1}. Since their introduction in 1991 by Koblitz [21], these curves have
been extensively studied for their additional structure that allows, in principle, a
performance speedup in the computation of the elliptic curve point multiplication
operation. As of today, the research works dealing with standardized Koblitz
curves in commercial use, such as the binary curves standardized by NIST [23] or
the suite of elliptic curves supported by the TLS protocol [9, 4], have exclusively
analyzed the security and performance of curves defined over binary extension
fields Fom, with m a prime number (for recent examples see [1,5, 32, 36]).
Nevertheless, Koblitz curves defined over Fy were also proposed in [21]. We
find interesting to explore the cryptographic usage of Koblitz curves defined over
F4 due to their inherent usage of quadratic field arithmetic. Indeed, it has been
recently shown [3,25] that quadratic field arithmetic is extraordinarily efficient
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when implemented in software. This is because one can take full advantage of the
Single Instruction Multiple Data (SIMD) paradigm, where a vector instruction
performs simultaneously the same operation on a set of input data items.

Quadratic extensions of a binary finite field F2 can be defined by means
of a monic polynomial h(u) of degree two irreducible over F,. The field Fg is
isomorphic to F,[u]/(h(u)) and its elements can be represented as ag + aju,
with ag,a; € Fy. The addition of two elements a,b € Fg 2, can be performed as
¢ = (ag + bo) + (a1 + b1)u. By choosing h(u) = u? + u + 1, the multiplication of
a,b can be computed as, d = agbg + a1b1 + ((ap + a1) - (bo + b1) + apbp)u. By
carefully organizing the code associated to these arithmetic operations, one can
greatly exploit the pipelines and their inherent instruction-level parallelism that
are available in contemporary high-end processors.

Our contributions In this work we designed for the first time, a 128-bit secure
and timing attack resistant scalar multiplication on a Koblitz curve defined over
Fy, as they were proposed by Koblitz in his 1991 seminal paper [21]. We devel-
oped all the required algorithms for performing such a computation. This took us
to reconsider the strategy of using redundant trinomials (also known as almost
irreducible trinomials), which were proposed more than ten years ago in [6, 10].
We also report what is perhaps the most comprehensive analysis yet reported
of how to efficiently implement arithmetic operations in binary finite fields and
their quadratic extensions using the vectorized instructions available in high-end
microprocessors. For example, to the best of our knowledge, we report for the
first time a 128-bit AVX implementation of the linear pass technique, which is
useful against side-channel attacks.

The remaining of this paper is organized as follows. In §2 we formally in-
troduce the family of Koblitz elliptic curves defined over F4. In §3 and §4 a de-
tailed description of the efficient implementation of the base and quadratic field
arithmetic using vectorized instructions is given. We present in §5 the scalar
multiplication algorithms used in this work, and we present in §6 the analysis
and discussion of the results obtained by our software library. Finally, we draw
our concluding remarks and future work in §7.

2 Koblitz curves over Fy

Koblitz curves over F, are defined by the following equation
Eo:y® +xy =2’ +aya® +, (1)

where 7y € Fy2 satisfies v2 = v+ 1 and a € {0,1}. Note that the number of
points in the curves Ey(F4) and E;(Fy) are, #E¢(F4) = 4 and #E1(F4) = 6,
respectively. For cryptographic purposes, one uses Eq. (1) operating over exten-
sion fields of the form F,, with ¢ = 4™, and m a prime number. The set of affine
points P = (z,y) € Fy x F, that satisfy Eq. (1) together with a point at infinity
represented as O, forms an abelian group denoted by E,(F4m ), where its group
law is defined by the point addition operation.



Since for each proper divisor [ of k, E(Fy) is a subgroup of E(F,), one has
that #E(Fy) divides #E(F,x). Furthermore, by choosing prime extensions m,
it is possible to find E,(F4m ) with almost-prime order, for instance, Fo(Fg2-163)
and Fj(Faz-167). In the remaining of this paper, we will show that the aforemen-
tioned strategy can be used for the efficient implementation of a 128-bit secure
scalar multiplication on software platforms counting with 64-bit carry-less native
multipliers, such as the ones available in contemporary personal desktops.

The Frobenius map 7 : E,(F,) = E4(F,) defined by 7(0) = O, 7(x,y) =
(x%,y%), is a curve automorphism satisfying (72 + 4)P = ur(P) for p = (—1)°
and all P € E,(F,). By solving the equation 72 + 4 = ur, the Frobenius map
can be seen as the complex number 7 = (u £ v/—15)/2.

2.1 The 7-adic representation

Given a Koblitz curve E,/Fo2m with group order #E,(Fo2m) = h - p - r, where
h is the order #FE,(Fy4), r is the prime order of our subgroup of interest, and p
is the order of a group of no cryptographic interest.> We can express a scalar
k € Z, as an element in Z[7] using the now classical partial reduction introduced
by Solinas [31], with a few modifications. The modified version is based on the
fact that 72 = pr — 4.

Given that the norm of 7is N(7) =4, N(t—1) = h, N(t™—1) = h-p-r and
N((r™ —1)/(t — 1)) = p - r, the subscalars rq and ry resulting from the partial
modulo function will be both of size approximately \/p-7. As a consequence,
the corresponding scalar multiplication will need more iterations than expected,
since it will consider the order p of a subgroup which is not of cryptographic
interest.

For that reason, we took the design decision of considering that the input
scalar of our point multiplication algorithm is already given in the Z[7r] domain.
As a result, a partial reduction of the scalar k is no longer required, and the
number of iterations in the point multiplication will be consistent with the scalar
k size. If one needs to retrieve the equivalent value of the scalar k£ in the ring
Z., this can be easily computed with one multiplication and one addition in Z,.
This strategy is in line with the degree-2 scalar decomposition method within
the GLS curves context as suggested in [12].

2.2 The width-w 7INAF form

Assuming that the scalar k is specified in the Z[7] domain, one can represent the
scalar in the regular width-w 7INAF form as shown in Algorithm 1. The length
of the representation width-w TNAF of an element k € Z[7] is discussed in [30].

Given a width w, after running Algorithm 1, we have 22(w=1~-1 different
digits.* As a result, it is necessary to be more conservative when choosing the

3 Usually the order p is composite. Also, every prime factor of p is smaller than r.
4 We are considering only positive digits, since the cost of computing the negative
points in binary elliptic curves is negligible.



Algorithm 1 Regular width-w 7-recoding for m-bit scalar

Input: w, ty, ay = By +v,7 for v ={£1,4£3, 45 ..., £4°" 1 — 1}, p = ro+r17 € Z[1]
with odd 70,71

[mt2y
Output: p = Z virt @
i=0
1: for i + 0 to [242] - 1 do 14: if ro # 0 and 71 # 1 then
2 if w = 2 then 150 wi<ro+mT
3 v; < ((ro —4-r1) mod 8) — 4 16: else
4: To < To — Vs 17: if r1 # 0 then
5. else 18: Vi 11
6 u 4 (ro + r1tw mod 22“’*1) —92(w=1) 10 else
7 if v > 0then s+ 1 else s <+ —1 20: Vi 4 To
8: 70 <= 70 — 8By, T1 = T1 — 570, Vi s, 21t end if
9:  end if 22: end if
10:  for j < 0 to (w —2) do
11: t<ro,m0 11+ (1W-70) /4,71  —t/4
12:  end for

13: end for

width w, when compared to the Koblitz curves defined over Fy. For widths
w = 2, 3,4,5 we have to pre- or post-compute 2, 8, 32 and 128 points, respectively.
For the 128-bit point multiplication, we estimated that the value of the width w
must be at most four, otherwise, the costs of the point pre/post-processing are
greater than the addition savings obtained in the main iteration.

In addition, we must find efficient expressions of a,, = v mod 7. The method
for searching the best expressions in Koblitz curves over Fy [33] cannot be directly
applied in the F4 case. Because of this, we manually provided «, representations
for w € {2,3,4} and a = 1, which are our implementation parameters. The main
rationale for our representation choices was to minimize the number of field
arithmetic operations. In practice, we strive for reducing the required number
of full point additions by increasing the number of point doublings and mixed
additions, which have a cheaper computational cost. ® In Table 1 we present the
a, representatives along with the operations required to generate the multiples
of the base point.°

Therefore, one point doubling and one full addition are required to gener-
ate the points a,, - P for w = 2, one point doubling, four full additions, three
mixed additions and four applications of the Frobenius map for the w = 3 case
and one point doubling, twenty full additions, eleven mixed additions and five
applications of the Frobenius map for the w = 4 case.

5 Full addition is defined as the addition of two points given in projective coordinates.
The mixed addition operation adds one point given in projective coordinates with
another given in affine coordinates.

5 Notice that the multiples cv, - P as shown in Table 1, must be computed out of order.
The order for computing the multiples is shown in roman numbers.



Table 1. Representations of a, = vmod 7%, for w € {2,3,4} and a = 1 and the
required operations for computing «,. Here we denote by D, FA MA,T the point
doubling, full addition, mixed addition and the Frobenius map, respectively. In addi-
tion, we consider that the point a1 P is represented in affine coordinates. The order for
computing the points is given in roman numbers

l w [ v [ v mod 7% Qly [Operations [ Order ‘

2|1 1 1 n/a I
3 3 3 to < 2a, az < to + aa (D+FA) 1T

31 1 1 n/a I
3 3 3 to < 2au1, az < to + a1 (D+FA) 1T
5 5 —T — 15 |ag < —t1 — aqs (MA) VIII
7 3r+3 | 72as +as lar «— T2as + as (FA+2T) 111
9 3r+5 a7 +2 a9<—067+t0(F14) IV
11 3r+7 g + 2 a11 < a9 + 1o (FA) V
13 -7 =7 ’7'2 — Qa3 13 < to — a3 (MA) VII

2 t1 4= T, 2 = Tl1, a5 2 — a1

15| —7-5 T —1 (MA +27) VI

411 1 1 n/a I
3 3 —7% — a1 |ag « —ts — ap1 (MA) XXVI
5 5 7’7’3 — Q59 |y < —t4 — a9 (MA) XXVII
7 7 —7% — a7 |ar < —tg — asy (MA) XXVIII
9 9 —7'3 — Q55 (g — —tg — a5 (MA) XXIX
11 11 —27’2-}—0543 11 ¢ —t2 + aus (FA) XXX
13 13 —27% + aus|anz « —ta + aus (FA) XXXI
15 15 —27% 4+ aur|ars < —t2 + aar (FA) XXXIT
17| 57 —11 —73 = Qq7 |ty T2t3, Q17 < —tg — Qa7 (MA + 2T) XIX
19 51 —9 77‘3 — Q45 |17 <— —t4 — a7 (MA) XX
21 57— 7 —’7'3 — Qq3 |17 — —tg — s (MA) XXI
23 51 — 5 —7'3 — 41 |17 — —tg — aus (MA) XXII
25| 51 —3 | -7 —asg |ou7 + —ts — a1 (MA) XXIIT
27 57 —1 —7'3 — a37 |17 +— —ty — asgg (MA) XXIV
29| 5741 | =73 —azs |a17 «— —ts —azr (MA) XXV
31 =21 —9 | 27% =1 |to < Tt1, az1 ¢t —c1 (MA+T) XII
33 =27 =7 | 2r%+1 |ass < t2+a1 (MA) XIII
35| —27r—5 27 —5 Q35 < Q37 — t() (FA) VI
37 —27—3 —27—3 |ag7 + a39 — to (FA) IV

to < 2a1, t1 < Tlo, 39 +— —11 — a1

39| —27—-1 27 —1 (D+MA+T) 11
41| —27+1 27+ 1 |ag1 +— —t1 + a1 (MA) 111
43| =274+ 3 | =27+ 3 |ous  au1 +to (FA) A%
45 =27 4+5 | =27+ 5 |aus  auz +to (FA) VII
47| =27+ 7 =27+ 7 |au7r < aus +to (FA) VIII
49] 2749 | =27+ 9 |auo + aar +to (FA) X
51| —27+11 —27 + 11 Q51 < Q49 + 1o (FA) X
53| —27 + 13 | =27 + 13 |ass < as1 +to (FA) XI
55| 3r—13 3r—13 t3 = TQ1, a5 < t3 — (53 (MA+T) XIV
57| 3r—11 3r—11 as7 < t3 — (51 (MA) XV
59 3r—9 3r—9 as9 < t3 — Qa9 (MA) XVI
61 3r—17 3r—17 agl — t3 — a7 (MA) XVII
63 3r—5 3r—5 g3 < t3 — aup (MA) XVIII




2.3 Security of the Koblitz curves defined over F,

Since the Koblitz curves defined over E,(IF4m ) operate over quadratic extensions
fields, it is conceivable that Weil descent attacks [13,16] could possibly be effi-
ciently applied on these curves. However, Menezes and Qu showed in [22] that
the GHS attack cannot be implemented efficiently for elliptic curves defined over
binary extension fields F,, with ¢ = 2, and m a prime number in [160, ..., 600].
Further, a specialized analysis for binary curves defined over fields of the form
Fym reported in [14], proved that the only vulnerable prime extension in the
range [80,...,256], is m = 127. Therefore, the prime extension used in this
work, namely, m = 149, is considered safe with respect to the state-of-the-art
knowledge of the Weil descent attack classes.

For a comprehensive survey of recent progress in the computation of the
elliptic curve discrete problem in characteristic two, the reader is referred to the
paper by Galbraith and Gaudry [11].

3 Base field arithmetic

In this section, we present the techniques used in our work in order to implement
the binary field arithmetic. We selected a Koblitz curve with the parameter a = 1
defined over Fym» with m = 149. This curve was chosen because the order of its
subgroup of interest is of size 22°4, which yields a security level roughly equivalent
to a 128-bit secure scalar multiplication.

3.1 Modular reduction

One can construct a binary extension field Fam by taking a polynomial f(x) €
Fylx] of degree m which is irreducible over Fa. It is very important that the
form of the polynomial f(x), admits an efficient modular reduction. The criteria
for selecting f(x) depends on the architecture where the implementation will be
executed as it was extensively discussed in [29)].

For our field extension choice, we do not have degree-149 trinomials which
are irreducible over Fy. An alternative solution is to construct the field through
irreducible pentanomials. Given an irreducible pentanomial f(z) = 2™ + z* +
x? +2° + 1, the efficiency of the shift-and-add reduction method depends mostly
on the fact that the term-degree differences m —a, m —b and m — ¢, are all equal
to 0 modulo W, where W is the architecture word size in bits.

Using the terminology of [29], lucky irreducible pentanomials are the ones
where the three previously mentioned differences are equal to 0 modulo W.
Fortunate irreducible pentanomials are the ones where two out of the three
above differences are equal to 0 modulo W. The remaining cases are called
ordinary irreducible pentanomials. Performing an extensive search with W = 8,
we found no lucky pentanomials, 189 fortunate pentanomials and 9491 ordinary
pentanomials for the extension m = 149.



The problem is that fortunate pentanomials make the modular reduction too
costly if we compare it with the field multiplication computed with carry-less in-
structions. This is because we need to perform four shift-and-add operations per
reduction step. Besides, two of those operations require costly shift instructions,
since they are shifts not divisible by 8.

3.2 Redundant trinomials

As a consequence of the above analysis, we resorted to the redundant trinomi-
als strategy introduced in [6,10], also known as almost irreducible trinomials.
Given a non-irreducible trinomial g(z) of degree n that factorizes into an ir-
reducible polynomial f(z) of degree m < n, the idea is to perform the field
reduction modulo g(z) throughout the scalar multiplication and, at the end of
the algorithm, reduce the polynomials so obtained modulo f(z). In a nutshell,
throughout the algorithm we represent the base field elements as polynomials in
the ring Fo[z] reduced modulo g(z). At the end of the algorithm, the elements
are reduced modulo f(x) in order to bring them back to the target field Faiao.
For the sake of simplicity, throughout this paper, we will refer to those elements
as field elements.

Since our target software platform counts with a native 64-bit carry-less
multiplier, an efficient representation of the field elements must have at most
192 bits, i.e, three 64-bit words. For that reason, we searched for redundant

trinomials of degree at most 192.

We selected the trinomial, g(x) = 219 + 2'9 4 1, for two reasons. First,

since our target architecture contains 128-bit vectorized registers, the difference
(m—a) > 128 allows us to perform the shift-and-add reduction in just two steps.
Second, the property m mod 64 = 0, which allows us to perform efficiently the
first part of the shift-and-add reduction. The steps to perform the modular
reduction are described in Algorithm 2.7 The reduction using 128-bit registers is
presented in §4, where we discuss our strategy for implementing the arithmetic
in the quadratic field extension.

Algorithm 2 Modular reduction by the trinomial g(x) = 2192 + 2% + 1
Input: A 384-bit polynomial 7(x) = F- 23 + E- 25+ D292 4 C-.2'*®* 4+ B-2%* 4 A
in Fa[x] stored into six 64-bit registers (A - F).
Output: A 192-bit polynomial s(z) = r(z) mod g(z) = I - 2'*® + H - 2 + G stored
into three 64-bit registers (G - I).
1: G+ A® DD (F>45) @ (D@ (F > 45)) < 19)
2. H+ B®E® (F < 19) @ (D > 45)
31+ COF®(F<19)® (B> 45)

" The symbols <, > stand for bitwise shift of packed 64-bit integers.



The overall cost of the modular reduction is ten xors and five bitwise shifts.
At the end of the scalar multiplication, we have to reduce the 192-bit polynomial
to an element of the field Fyis0. Note that the trinomial g(z) = 2192 + 2! +1
factorizes into a 69-term irreducible polynomial f(z) of degree 149.

The final reduction is performed via the mul-and-add reduction which, ex-
perimentally, performed more efficiently than the shift-and-add reduction.® Con-
cisely, the mul-and-add technique consists in a series of steps which includes shift
operations (in order to align the bits in the registers), carry-less multiplications
and xor operations for eliminating the extra bits.

The basic mul-and-add step is described in Algorithm 3. Here, besides the
usual notation, we represent the 64-bit carry-less multiplication by the symbol
Xi;, where 4,5 = {L,H}, with L and H representing the lowest and highest
64-bit word packed in a 128-bit register, respectively. For example, if one wants
to multiply the 128-bit register A lowest 64-bit word by the 128-bit register B
highest 64-bit word, we would express this operation as T + A X g B.

Algorithm 3 Basic step of the mul-and-add reduction modulo the 69-term

irreducible polynomial f(z)

Input: A j-bit polynomial 7(z) = B - 2'?® + A stored into two 128-bit registers (A,
B), for j € [191,148], the irreducible polynomial f(z) = F - z'*® + E stored into
two 128-bit registers (E, F).

Output: A (j — 3)-bit polynomial s(z) = D-x?® 4 C stored into two 128-bit registers

(C, D).

1: To < B > 21 (64-bit alignment) 5: T+ T @ (Tr < 64)
2: Th + ExrpTo 6: To(—To@(T2>>64)
3: TQ(-EXHLTO 70(—A€BT1

4: Ty < F xrr To 8 D« B®dTo

Algorithm 3 requires four xors, three bitwise shifts and three carry-less mul-
tiplications. In our particular case, the difference between the degrees of the two
most significant monomials of f(x) is three. Also, note that we need to reduce 43
bits (191-148). As a result, it is required [42] = 15 applications of the Algorithm
3 in order to conclude this reduction.

4 Quadratic field arithmetic

In this Section, the basic arithmetic operations in the quadratic field are pre-
sented. As usual, the quadratic field Fy2.140 was constructed by the degree two
monic polynomial h(u) = u?+u+1, and its elements are represented as ag +a1u,
with ag, a1 € Faia.

8 For a more detailed explanation of the shift-and-add and the mul-and-add reduction
methods to binary fields, see [5].



4.1 Register allocation

The first aspect to be considered is the element allocation into the architecture’s
available registers. In our case, we have to store two polynomials of 192 bits into
128-bit registers in such a way that it allows an efficient modular reduction and,
at the same time, it generates a minimum overhead in the two main arithmetic
operations, namely, the multiplication and squaring.

Let us consider an element a = (ag + aju) € Fy2.140, where ag = C' - 228 +
B-2% 4+ Aand a; = F-2'2 + E- 2% 4+ D are 192-bit polynomials, each one of
them stored into three 64-bit words (A-C, D-F). Also, let us have three 128-bit
registers R;, with ¢ € {0,1,2}, which can store two 64-bit words each. In this
Section, we adopted the following notation, given a 128-bit register R, its most
and least significant packed 64-bit words, denoted respectively by S and T, are
represented as R = S|T. The first option is to rearrange the 384-bit element
a = (ap + aru) as,

R():A‘B, Rl :C‘D, R2:E|F

The problem with this representation is that a significant overhead is generated
in the multiplication function, more specifically, in the pre-computation phase
of the Karatsuba procedure (cf. §4.2 with the computation of V1, Vpo and
Vi,2). Besides, in order to efficiently perform the subsequent reduction phase,
we must temporarily store the polynomial terms into four 128-bit vectors, which
can cause a register overflow. A better method for storing the element a is to
use the following arrangement,

Ro=D|A, Ry =E|B, R,=F|C.

Using this setting, there still exists some overhead in the multiplication and
squaring arithmetic operations, even though the penalty on the latter operation
is almost negligible. In the positive side, the terms of the elements ag, a; do not
need to be rearranged and the modular reduction of these two base field elements
can be performed in parallel, as discussed next.

4.2 Multiplication

Given two Fgz2140 elements a = (ap + aju) and b = (by + byu), with ag, a1, bo, b1
in Fy140, we perform the multiplication ¢ = a - b as,

c=a-b=(ag+ aru) - (by + byu)
= (aobo ® a1b1) + (aobo @ (a0 ® a1) - (bo © b1))u,

where each element a;, b; € o140 is composed by three 64-bit words. The analysis
of the Karatsuba algorithm cost for different word sizes was presented in [35].
There, it was shown that the most efficient way to multiply three 64-bit word
polynomials s(z) = sex?+s12+s0 and t(z) = tox? +t1x+1tg as v(x) = s(z)-t(x)
is through the one-level Karatsuba method,



VQZSO'tQ, V1281~t1, VQZSQ'tQ,
Vo1 = (s0@s1)- (to®t1), Voo = (so®s2) (to®Bta) Vie = (s1Bs2)-(t1Bta),
v(z) = Vora+ (Vip@V1@Va) 2+ (Vo 2 @ Vo @ V1 ®Va) -2+ (Vo1 Vo & V1) -2+ Vi,

which costs six multiplications and twelve additions. The Karatsuba algorithm
as used in this work is presented in Algorithm 4.%

Algorithm 4 Karatsuba algorithm for multiplying three 64-bit word polynomi-

als s(z) and ¢(x)

Input: Six 128-bit registers R;, with ¢ € {0...5}, containing the elements
Ro = to|so, R1 = t1]s1, Ra = ta|s2, R3 = (to B t1)|(s0o @ s1), Ra = (to ® t2)|(s0 @ s2),
Rs = (t1 ® t2)|(s1 D s2).

Output: Three 128-bit registers R;, with ¢ € {6...8}, which store the value

v(z) =s(@)-t(x) = vs - 2 F oy 2?0 F vz 2% fuy -2 £ o 2% 4w as
R6 = 1)1|U07R7 = ’U3|’027R8 = U5|’U4.

1: tmpo < Ro Xur Ro 9: tmpy < tmp1 & tmpo

2: tmpr < R1 Xur R 10: tmpa < tmps B tmp

3: tmpz < R2 Xgr Ro 11: tmpy < tmps O tmp2

4: tmps < R3 Xy R3 12: tmps < tmps & tmp:

5: tmps < R4 Xur Ra 13: Rg < (tmpg < 64)

6: tmp5 < Rs xuyr Rs 14: Rg <+ (tmp5 > 64)

7: tmps < tmps ® tmp: 15: R7 < ((tmps, tmps) > 64)

8: tmps +— tmps B tmpz

Algorithm 4 requires six carry-less instructions, six vectorized xors and three
bitwise shift instructions. In order to calculate the total multiplication cost, it
is necessary to include the Karatsuba pre-computation operations at the base
field level (twelve vectorized xors and six byte interleaving instructions) and
at the quadratic field level (six vectorized xors). Also, we must consider the
reorganization of the registers in order to proceed with the modular reduction
(six vectorized xors).

4.3 Modular reduction

The modular reduction of an element a = (ag + aju), where ag and a; are
384-bit polynomials, takes nine vectorized xors and six bitwise shifts. The com-
putational savings of the previously discussed register configuration can be seen
when we compare the reduction of quadratic field elements, presented in Algo-
rithm 5 with the modular reduction of the base field elements (see Algorithm
2). The cost of reducing an element in Faia0 in 64-bit registers is about the same
as the cost of the reduction of an element in Fa2.140 stored into 128-bit registers.
Thus, we achieved a valuable speedup of 100%.

9 As before, the symbols <, > stand for bitwise shift of packed 64-bit integers. The
symbol > stands for bytewise multi-precision shift.



Algorithm 5 Modular reduction of the terms ag, a; of an element a = (ag+a;ju)
modulo g(x) = 219% + 219 +1

Input: An element a = ag+aiu = (F- 22204+ F a4 D22+ C -2+ B-2% 4+
A+ (L2320 4 K-+ J-2192 4 T- 28 4 H - 2% 4 G)u, with the 64-bit words (A-L)
arranged in six 128-bit registers as Ro = G|A, Ry = H|B, R; = I|C,R3 = J|D, R4 =
K|E,Rs = L|F

Output: Elements (ap,a1) mod g(x) = M - 2" + N -2 4+ 0, P - 2'*® + Q - 25 +R,
with the 64-bit words (M-R) organized in three 128-bit registers as
Rs = R|O,R7 = Q|N,Rs = P|M

: Rg < Ra® Rs

R7 < R1 ® R4

Rg + Rs @ (Rs < 19)

R7; < R7 & (R4 < 19)

Rg <+ Rs @ (R4 > 45)

R7<—R7€B(R3<<45)
Rs < R3 @ (Rs > 45)
R@(-RaEB(R6<<19)
Rs < Re ® Ry

4.4 Squaring

Squaring is a very important function in the Koblitz curve point multiplication
algorithm, since it is the building block for computing the 7 endomorphism.
In our implementation, we computed the squaring operation through carry-less
multiplication instructions which, experimentally, was an approach less expen-
sive than the bit interleaving method (see [15, Section 2.3.4]). The pre-processing
phase is straightforward, we just need to rearrange the 32-bit packed words of the
128-bit registers in order to prepare them for the subsequent modular reduction.

The pre- and post-processing phases require three shuffle instructions, three
vectorized xors and three bitwise shifts. The complete function is described
in Algorithm 6. Given 128-bit registers R;, we depict the SSE 32-bit shuffle
operation as Ry « R; () zzxx. For instance, if we compute Ry + R; () 3210, it
just maintains the 32-bit word order of the register R, in other words, it just
copies Ry to Ry. The operation Ry <— Ry () 2103 rotates the register R; to the
left by 32-bits. See [18,17] for more details.

4.5 Inversion

The inversion operation is computed via the Itoh-Tsujii method [19]. Given an
element ¢ € Fom, we compute ¢~ = 0(2_7”/_1’_1)'2 through an addition chain,
which in each step computes the terms (021_1)2J A with0<j<i<m-—1.

For the case m = 149, the following chain is used,
1-2—-4—-8—>16—32— 33 = 66— 74 — 148.

This addition chain is optimal and was found through the procedure described
in [7]. Note that although we compute the inversion operation over polynomials
in Fy[z] (reduced modulo g(z) = 22 + 21 4 1), we still have to perform the
addition chain with m = 149, since we are in fact interested in the embedded
Fo140 field element.



Algorithm 6 Squaring of an element a = (ag + a1u) € Faz140

Input: Element a = a0 + a1v = (C- 22 + B - 2% + A) 4+ (F- 2" + E - 2% +
D)u € Fy2.140, with the 64-bit words (A-F) arranged in three 128-bit registers as
Ro = D|A, Ry = E|B, Ry = F|C

Output: Element o> = ¢ = ¢ + cau = [P +H-2%4+G) +
(L-2'8 + K -2 4 J)u € Fy2.140, where both elements (co, c1) € Fa[z] are reduced
modulo 2'?2 +2'? 4-1. The 64-bit words (G-L) are arranged in three 128-bit registers
as Rs = J|G,Rs = H|K,Rs = I|L.

1: tmpo < Ro () 3120 9: auxs < tmpas Xgg tmps

2: tmp1 < R1 () 3120 10: Rs, R4, R5 + ModularReduction(auzo..5)
3: tmpa R Q 3120 11: tmpo R3s > 64

4: auzo < tmpo XL tmpo 12: tmp1 < R4 > 64

5: auxy < tmpo X g tmpo 13: tmpa < Rs > 64

6: auxe < tmp1 XL tmpr 14: R3 < R3 & tmpo

7 auxs < tmp1 Xgg tmpr 15: Ry < R4 @ tmp:

8: auxy < tmpa X1 tmpa 16: Rs < Rs & tmpa

As previously discussed, in each step of the addition chain, we must calculate
an exponentiation ¢ followed by a multiplication, where the value j represents
the integers that form the addition chain. Experimentally, we found that when
J > 4, it is cheaper to compute the exponentiation through table look-ups in-
stead of performing consecutive squarings. Our pre-computed tables process four
bits per iteration, therefore, it is required [192] = 48 table queries in order to
complete the multisquaring function.

5 t-and-add scalar multiplication

In this Section we discuss the single-core algorithms that compute a timing-
resistant scalar multiplication through the 7-and-add method over Koblitz curves
defined over F4. There are two basic approaches, the right-to-left and the left-
to-right algorithms.

5.1 Left-to-right 7-and-add

This algorithm is similar to the traditional left-to-right double-and-add method.
Here, the point doubling operation is replaced by the computationally cheaper
7 endomorphism. In addition, we need to compute the width w-7NAF represen-
tation of the scalar k and perform linear passes (cf. §5.3) in the accumulators in
order to avoid cache attacks [34,26]. The method is shown in Algorithm 7.

The main advantage of this method is that the sensitive data is indirectly
placed in the points P,,. However, those points are only read and then added to
the unique accumulator ). As a consequence, only one linear pass per iteration
is required before reading P,,. On the other hand, the operation 7%~1(Q) must
be performed by successive squarings, since computing it through look-up tables
could leak information about the scalar k.



Algorithm 7 Left-to-right regular w-TNAF 7-and-add on Koblitz curves de-
fined over Fy
Input: A Koblitz curve Eo/Fy2m, a point P € Eq(Fy2m ) of order 7, k € Z-
Output: Q = kP
1: Compute p = r¢ + r17 = k partmod (Tm_l)

T—1

: Ensure that ro and 7, are odd.

: . 22411 e
3: Compute the width-w regular 7-NAF of ro + ri7 as >, B vﬁ’(w D)
4: for v € {1,3,...4°"* — 1} do Compute P, = a, - P end for

5: Q<+ O

6: fori:;’)‘—i‘f—i—ltOOdo

. QeT"HQ)

8: Perform a linear pass to recover P,;

9: Q+QxP,

10: end for

11: Subtract P,7(P) from @ if necessary

12: return Q = kP

5.2 Right-to-left m-and-add

This other method processes the scalar k from the least to the most significant
digit. Taking advantage of the 7 endomorphism, the GLV method is brought to
its full extent. This approach is presented in Algorithm 8.

Algorithm 8 Right-to-left regular w-TNAF 7-and-add on Koblitz curves de-
fined over Fy
Input: A Koblitz curve E,/Fo2m, a point P € Eq(Fy2m) of order 7, k € Z,
Output: Q = kP
1: Compute p = rg + 717 = k partmod (mod T:n:ll)
Ensure that 9 and r; are odd.

m+2 g )
Compute the width-w regular 7-NAF of ro + r17 as ZI o=t vn‘l(“’*l)

=0
foriec{1,3,...47 ' -1} do Q; = O
fori:Oton—ferldo
Perform a linear pass to recover Q;
Perform a linear pass to store Q;
9: P« 7 Y(P)
10: Q < O
11: forue {1,3,..4* ' -1} do Q=Q + o - Qs
12: Subtract P,7(P) from @ if necessary
13: return Q = kP

Here, we have to perform a post-computation in the accumulators instead of
precomputing the points P; as in the previous approach. Also, the 7 endomor-



phism is applied to the point P, which is usually public. For that reason, we can
compute 7 with table look-ups instead of performing squarings multiple times.

The downside of this algorithm is that the accumulators carry sensitive in-
formation about the digits of the scalar. Also, the accumulators are read and
written. As a result, it is necessary to apply the linear pass algorithm to the
accumulators ); twice per iteration.

5.3 Linear pass

The linear pass is a method designed to protect sensitive information against
side-channel attacks associated with the CPU cache access patterns. Let us con-
sider an array A of size [. Before reading a value A[i], with ¢ € [0,] — 1], the
linear pass technique reads the entire array A but only stores, usually into an
output register, the requested data A[i]. In that way, the attacker does not know
which array index was accessed just by analyzing the location of the cache-miss
in his own artificially injected data. However, this method causes a considerable
overhead, which depends on the size of the array.

In this work, we implemented the linear pass method using 128-bit SSE
vectorized instructions and registers. For each array index j, we first copy j to a
register and compare this value with the current scalar £k TNAF digit. The SSE
instruction pcmpeqq compares the values of two 128-bit registers A and B and
sets the resulting register C' with bits one, if A and B are equal, and bits zero
otherwise. For that reason, we can use the register C' as a mask: if j is equal to
the scalar k digit, the register C' will contain only bits one. Then, by performing
logical operations between C' and each of the array values A[j], we can retrieve
the requested data.

Experimental results shown that the implementation of the linear pass tech-
nique with SSE registers is more efficient than using 64-bit conditional move
instructions [25] by a factor of 2.125. The approach just described is presented
in Algorithm 9.

Algorithm 9 Linear pass using 128-bit AVX vectorized instructions
Input: An array A of size [, a requested index d, SSE 128-bit registers tmp, dst.
Output: The register dst containing A[d).

1: dst + 0

2: fori € {0,...,l—1} do

3: tmp <1

4: tmp < compare( tmp,d )

(compare returns 1'?® if the operands are equal and 0'?® otherwise.)
5 tmp < tmp A Afi]
6: dst < dst & tmp
7: end for




6 Results and discussion

Our software library can be executed in any Intel platform, which comes with
the SSE 4.1 vector instructions and the 64-bit carry-less multiplier instruction
pclmulgdg. The benchmarking was executed in an Intel Core i7 4770k 3.50
GHz machine (Haswell architecture) with the TurboBoost and HyperThreading
features disabled. Also, the library was coded in the GNU11 C and Assembly
languages.

Regarding the compilers, we performed an experimental analysis on the per-
formance of our code compiled with different systems: GCC (Gnu Compiler
Collection) versions 5.3, 6.1; and the clang frontend for the LLVM compiler in-
frastructure versions 3.5 and 3.8. All compilations were done with the flags -03
-march=haswell -fomit-frame-pointer. For the sake of comparison, we re-
ported our timings for all of the previously mentioned compilers. However, when
comparing our code with the state-of-the-art works, we opted for the clang/llvm
3.8, since it gave us the best performance.

6.1 Parameters

Given ¢ = 2™, with m = 149, we constructed our base binary field F, =
Fo[z]/(f(x)) with the 69-term irreducible polynomial f(z) described in Section 4.
The quadratic extension Fgp2 = F[u]/(h(u)) was built through the irreducible
quadratic h(u) = u? + u + 1. However, our base field arithmetic was computed
modulo the redundant trinomial g(z) = 2'°? + 2'% + 1, which has among its
irreducible factors, the polynomial f(z).

Our Koblitz curve was defined over F,2 as E1/Fge : y? oy =23 +uz? +u,
and the group E;(F2) contains a subgroup of interest of order

r = 0x637845F7F8BFAB325B85412FB54061F148B7F6E79AE11CC843ADE1470F7E4E29,

which corresponds to approximately 255 bits. In addition, throughout our scalar
multiplication, we represented the points in A-affine [20, 28] and A-projective [25]
coordinates. We selected an order-r base point P at random represented in A-
affine coordinates.

6.2 Field and elliptic curve arithmetic timings

In Table 2, we present the timings for the base and the quadratic field arith-
metic. The multisquaring operation is used to support the Itoh-Tsujii addition
chain, therefore, it is implemented only in the field Fauso (actually, in a 192-bit
polynomial in Fy[z]). In addition, we gave timings to reduce a 192-bit polynomial
element in Fo[z] modulo f(z). Finally, all timings of operations in the quadratic
field include the subsequent modular reduction.

Applying the techniques presented in [27], we saw that our machine has a
margin of error of four cycles. This range is not of significance when considering
the timings of the point arithmetic or the scalar multiplication. Nevertheless, for



Table 2. Timings (in clock cycles) for the finite field operations in Fy2.149 using different
compiler families

. IR . Multi- . Reduction
Compilers | Multiplication | Squaring squaring Inversion modulo f(z)
GCC 5.3 52 20 100 2,392 452
GCC 6.1 52 20 104 2,216 452
clang 3.5 64 24 100 1,920 452
clang 3.8 60 20 96 1,894 452

Table 3. The ratio between the arithmetic and multiplication in Fy140. The timings
were taken from the code compiled with the clang 8.8 compiler

Reduction

Operations Squaring Multisquaring Inversion modulo f(z)

operation /

g L 0.33 1.60 31.56 7.53
multiplication

inexpensive functions such as multiplication and squaring, it is recommended to
consider it when comparing the timings between different compilers.

In the following, we compare in Table 3 the base arithmetic operation timings
with the multiplication operation, which is the main operation of our library.
The ratio squaring/multiplication is relatively expensive. This is because the
polynomial g(z) = x'%2 + 21° + 1, does not admit a reduction specially designed
for the squaring operation. Furthermore, the multisquaring and the inversion
operations are also relatively costly. A possible explanation is that here, we
are measuring timings in a Haswell architecture, which has a computationally
cheaper carry-less multiplication when compared with the Sandy Bridge platform
[18].

In Table 4 we give the timings of the point arithmetic functions. There, we
presented the costs of applying the 7 endomorphism to an affine point (two
coordinates) and a A-projective point (three coordinates). The reason is that,
depending on the scalar multiplication algorithm, one can apply the Frobenius
map on the accumulator (projective) or the base point (affine). In addition,
we report in Table 4, the mized point doubling operation, which is defined as
follows. Given a point P = (xp,yp), the mixed-doubling function computes,
R = (Xg,Lg,Zr) = 2P. In other words, it performs a point doubling on an
affine point and returns the resulting point in projective representation. Such
primitive is useful in the computation of the TNAF representations «, = v mod
T (see §2.2).

Table 4 also shows the superior performance of the clang compiler in the point
arithmetic timings, since the only operations where it has a clear disadvantage
are the full and mixed point doubling. However, those functions are rarely used
throughout a Koblitz curve scalar multiplication. In fact, they are used only in
the precomputing phase. Next, in Table 5, we show the relation of the point
arithmetic timings with the field multiplication.



Table 4. Timings (in clock cycles) for point addition over a Koblitz curve E; /q* using
different compiler families

Compilers Full Mixed Full Mixed 7 endomorphism
Addition | Addition | Doubling | Doubling | 2 coord. [ 3 coord.
GCC 5.3 792 592 372 148 80 120
GCC 6.1 796 588 368 148 80 120
clang 3.5 768 580 404 164 84 124
clang 3.8 752 564 384 160 84 120

Table 5. The ratio between the timings of point addition and the field multiplication.
The timings were taken from the code compiled with the clang 3.8 compiler

Operations Full Mixed Full Mixed |7 endomorphism

P Addition | Addition | Doubling | Doubling | 2 coord. [ 3 coord.
operation / 12.53 9.39 6.40 2.66 1.40 2.00
multiplication

6.3 Scalar multiplication timings

Here the timings for the left-to-right regular w-7NAF r-and-add scalar multipli-
cation, with w = 2, 3,4 are reported. The setting w = 2 is presented in order to
analyze how the balance between the pre-computation and the main iteration
costs works in practice. Our main result lies in the setting w = 3. Also, among
the scalar multiplication timings, we show, in Table 6, the costs of the regular
recoding and the linear pass functions.

Table 6. A comparison of the scalar multiplication and its support functions timings
(in clock cycles) between different compiler families

Compilers Regular recoding Linear pass Scalar multiplication

w=2 [ w=3 [ w=4 | w=2 [ w=3 [ w=4 | w=2 [ w=3 [ w=4
GCC 5.3 1,656 | 2,740 | 2,516 8 40 240 |100,480 | 72,556 | 90,020
GCC 6.1 1,792 | 2,688 | 2,480 8 44 240 | 99,456 |71,72889,740
clang 3.5 1,804 | 2,680 | 2,396 8 44 272 | 96,812 |69,696 | 86,632
clang 3.8 1,808 | 2,704 | 2,376 8 40 264 | 95,196 |68,980 |85,244

Regarding the regular recoding function, we saw an increase of about 46%
in the 3-TNAF timings when comparing with the w = 2 case. The reason is
that, for the w = 3 case, we must compute a more complicated arithmetic. Also,
when selecting the digits, we must perform a linear pass in the array that stores
them. Otherwise, an attacker could learn about the scalar k by performing a
timing-attack based on the CPU cache.

The linear pass function also becomes more expensive in the w = 3 case,
since we have more points in the array. However, in the m = 149 case, we have



to process 64 more iterations with the width w = 2, when compared with the
3-7NAF point multiplication (since the number of iterations depends on m and
w: Z]‘—jf + 2). As a result, the linear pass function overhead is mitigated by the
savings in mixed additions and applications of 7 endomorphisms in the main
loop. Finally, our scalar multiplication measurements consider that the point
@ = kP is returned in the A-projective coordinate representation. If the affine
representation is required, it is necessary to add about 2,000 cycles to the total
scalar multiplication timings.

6.4 Comparisons

In Table 7, we compare our implementation with the state-of-the-art works. Our
3-7NAF left-to-right 7-and-add point multiplication outperformed by 29.64%
the work in [24], which is considered the fastest protected 128-bit secure Koblitz
implementation. When compared with prime curves, our work is surpassed by
15.29% and 13.06% by the works in [8] and [2], respectively.

Table 7. Scalar multiplication timings (in clock cycles) on 128-bit secure ellitpic curves

[Curve/Method | Architecture| Timings
Koblitz over Fy2ss (7-and-add, 5-TNAF [24]) Haswell 99,000
GLS over Fy2.127 (double-and-add, 4-NAF [25]) Haswell 61,712
Twisted Edwards over F(y127_yy2 (double-and-add [8]) Haswell 59,000
Kummer genus-2 over Fyi27_; (Kummer ladder [2]) Haswell 60,556
Koblitz over F, 119 (7-and-add, 2-TINAF (this work)) Haswell 96,822
Koblitz over F, 110 (7-and-add, 3-TNAF (this work)) Haswell 69,656
Koblitz over F,i10 (7-and-add, 4-TNAF (this work)) Haswell 85,244

Skylake architecture In addition, we present timings for our scalar multiplication
algorithms, also compiled with clang 3.8, in the Skylake architecture (Intel Core
i7 6700K 4.00 GHz). The results (in clock cycles) for the cases w = 2,3, 4 are,
respectively, 71,138, 51,788 and 66,286.

7 Conclusion

We have presented a comprehensive study of how to implement efficiently Koblitz
elliptic curves defined over quaternary fields Fym, using vectorized instructions
on the Intel micro-architectures codename Haswell and Skylake.

As a future work, we plan to investigate the use of 256-bit AVX2 registers
to improve the performance of our code. In addition, we intend to implement
the scalar multiplication algorithms in other architectures such as the ARMvS.
Finally, we would like to design a version of our point multiplication in the
multi-core and known point scenarios.
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