
A masked ring-LWE implementation

Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede

KU Leuven Dept. Electrical Engineering-ESAT/COSIC and iMinds
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be

Abstract. Lattice-based cryptography has been proposed as a postquan-
tum public-key cryptosystem. In this paper, we present a masked ring-
LWE decryption implementation resistant to first-order side-channel
attacks. Our solution has the peculiarity that the entire computation
is performed in the masked domain. This is achieved thanks to a new,
bespoke masked decoder implementation. The output of the ring-LWE
decryption are Boolean shares suitable for derivation of a symmetric key.
We have implemented a hardware architecture of the masked ring-LWE
processor on a Virtex-II FPGA, and have performed side channel analysis
to confirm the soundness of our approach. The area of the protected
architecture is around 2000 LUTs, a 20% increase with respect to the
unprotected architecture. The protected implementation takes 7478 cy-
cles to compute, which is only a factor ×2.6 larger than the unprotected
implementation.

1 Introduction

Once the quantum computer is built, Shor’s algorithm will make most current
cryptographic algorithms obsolete. In particular, public-key cryptosystems that
rely on number-theoretic hardness assumptions such as integer factorization
(RSA) or discrete logarithms, either in Z∗p (Diffie-Hellman) or in elliptic curves
over finite fields, will be insecure. On the bright side, there is an entire branch
of postquantum cryptography that is believed to resist mathematical attacks
running on quantum computers.

There are three main branches of postquantum cryptosystems: based on codes,
on multivariate quadratic equations or on lattices [1]. Lattice-based cryptographic
constructions, founded on the learning with errors (LWE) problem [21] and
its ring variant known as ring-LWE problem [15], have become a versatile
tool for designing asymmetric encryption schemes [15], digital signatures [8]
and homomorphic encryption schemes [9,3]. Several hardware and software
implementations of such schemes have appeared in the literature. So far, the
reported implementations have focused mainly on efficient implementation
strategies, and very little research work has appeared in the area of side channel
security of the lattice-based schemes.

It comes as no surprise that implementations of postquantum algorithms
are vulnerable to side-channel attacks. Side-channel attacks, as introduced by

Kocher [13], exploit timing, power consumption or the electromagnetic emanation
from a device executing a cryptographic implementation to extract secrets, such as
cryptographic keys. A particularly powerful side-channel technique is Differential
Power Analysis (DPA), introduced by Kocher et. al. [14]. In a typical DPA
attack, the adversary measures the instantaneous power consumption of a device,
places hypotheses on subkeys and applies statistical tests to confirm or reject the
hypotheses. DPA attacks can be surprisingly easy to mount even with low-end
equipment, and hence it is important to protect against them.

There are plenty of countermeasures against DPA. Most notably,
masking [6,12] is both a provably sound and popular in industry. Masking
effectively randomizes the computation of the cryptographic algorithm by splitting
each intermediate into several shares, in such a way that each share is independent
from any secret. This property is preserved through the entire computation. Thus,
observing any single intermediate (for example, by a side-channel, be it known or
unknown) reveals nothing about the secret. However, there are not many masking
schemes specifically designed for postquantum cryptography. In [4] Brenner et.
al. present a masked FPGA implementation of the post-quantum pseudo-random
function SPRING.

In the rest of the paper, we focus on protecting the ring-LWE decryption
operation against side-channel attacks with masking. The decryption algorithm
is considerably exposed to DPA attacks since it repeatedly uses long-term private
keys. In contrast, the encryption or key-generation procedures use ephemeral
secrets only [24].

Our contribution. In this paper we present a very compact masked implementation
of the ring-LWE decryption function. The masking countermeasure adds very
limited overhead compared to other previous approaches, thanks to a bespoke
probabilistic masked decoder designed specifically for our implementation. We
implemented the design on a Virtex-II FPGA and tested the side-channel security
with practical experiments that demonstrate the validity of our approach.

Organization. The paper is structured as follows: we provide a brief mathematical
background of the ring-LWE encryption scheme in Section 2 and describe a high-
level overview of the proposed masked ring-LWE decryption in Section 3. In the
next section we construct the masked decoder and in Section 5 we show the
experimental results. We analyze the error rates of the decryption operation in
Section 6 and apply error correcting codes. We dedicate Section 7 for the side
channel evaluation.

2 Preliminaries

Notation. The Latin letters r, ci indicate polynomials. When we want to explicitly
access a coefficient of the polynomial we write r[i]. Multiplication of polynomials
is written as r∗c1. Coefficient-wise multiplication is denoted as r ·c1. The letter m
denotes a string of bits, and q is an integer. Letters with prime x′ or double prime

x′′ represent shares of variable x. Depending on the context, these shares are
split either arithmetically x = x′ + x′′ (mod q) or Boolean x = x′ + x′′ (mod 2).
A polynomial r is shared into (r′, r′′) by additively sharing each of its coefficients
r[i] such that r = r′ + r′′.

Ring-LWE. For completeness, we give in this section a description of the three
major algorithms of the ring-LWE public-key cryptosystem [15]: key-generation,
encryption and decryption.

The ring-LWE encryption scheme works with polynomials in a ring Rq =
Zq[x]/(f(x)), where f(x) is an irreducible polynomial of degree n. During the
key generation, encryption and decryption operations, polynomial arithmetic
such as polynomial addition, subtraction and multiplication are performed. In
addition, the key-generation and encryption operations require sampling of error
polynomials from an error distribution (typically a discrete Gaussian.)

The ring-LWE encryption scheme is described in this way:

– In the key generation phase, two error polynomials r1 and r2 are sampled
from the discrete Gaussian distribution. The secret key is the polynomial r2
and the public key is the polynomial p = r1 − g ∗ r2. After key generation,
there is no use of the polynomial r1. The polynomial g is globally known.

– In the encryption operation of a binary message vector m of length n, the
message is first lifted to a ring element m̄ ∈ Rq by multiplying the message
bits by q/2. The ciphertext is computed as a pair of polynomials (c1, c2)
where c1 = g∗e1 +e2 and c2 = p∗e1 +e3 +m̄ ∈ Rq. The encryption operation
requires generation of three error polynomials e1, e2 and e3.

– The decryption operation uses the private key r2 to compute the message as
m = th(c1 ∗ r2 + c2). The decoding function th is a simple threshold decoder
that is applied coefficient-wise and is defined as

th(x) =

{
0 if x ∈ (0, q/4) ∪ (3q/4, q)
1 if x ∈ (q/4, 3q/4)

(1)

Efficiency improvements. To achieve an efficient implementation of the encryption
scheme, the irreducible polynomial f(x) is taken as xn + 1 where n is a power
of two, and the modulus q is chosen as a prime number satisfying q ≡ 1
mod 2n [18,25]. In this setting, polynomial multiplications can be efficiently
performed in O(n log n) time using the Number Theoretic Transform (NTT).

Following [25], we keep the ciphertext polynomials c1 and c2 in the NTT
domain to reduce the computation cost of the decryption operation. The
decryption operation thus computes the decrypted message as

m = th
(
INTT(c̃1 · r̃2 + c̃2)

)
. (2)

Here the symbol r̃ represents the NTT of a polynomial r, and INTT(·)
represents the inverse NTT operation. The multiplication of c̃1 · r̃2 is thus
performed coefficient-wise (as well as the addition c̃1 · r̃2 + c̃2.) For convenience,
we drop the tildes in the rest of the paper and work with c1, c2 and r2 in the NTT

domain. We furthermore refer to r̃2 simply as r. (We recall that the INTT is a
linear transformation applied to the n coefficients of a = r ·c1 +c2.) The decoding
function th applies a threshold function to each coefficient of a as defined in
Equation 1 to output n recovered message bits.

3 High-level overview

In this section, we give a high-level view of the masked ring-LWE implementation.
The most natural way to split the computation of the decryption as Equation 2
is to split the secret polynomial r additively into two shares r′ and r′′ such that
r[i] = r′[i] + r′′[i] (mod q) for all i. The n coefficients of r′ are chosen uniformly
at random in Zq in each execution of the decryption.

INTT

INTT

masked
decoder

r′

r′′

m′

m′′

c1 c2

c1

a′

a′′

1

13

13

1

13

13

Fig. 1: General data flow of the masked ring-LWE decryption. r′ and r′′ are
the arithmetic shares of the private key r; c1 and c2 are the input unmasked
ciphertext; m′ and m′′ are the Boolean shares of the recovered plaintext.

The bulk of the computation from Equation 2 is amenable to this splitting,
since by linearity of the multiplication and INTT operation, we have that
INTT(r · c2 + c1) = INTT(r′ · c2 + c1) + INTT(r′′ · c2). Thus, we can split
almost the entire computation from Equation 2 into two branches, as drawn in
Figure 1. The first branch computes on r′ to determine the polynomial

a′ = INTT(r′ · c2 + c1) (3)

and the second branch operates on r′′ to determine

a′′ = INTT(r′′ · c2). (4)

The advantage of such a high-level masking is that the operations of Equation 3
and 4 can be performed on an arithmetic processor without any particular
protection against DPA. (This is because any intermediate appearing in either
branch is independent of the secret r. This situation is very similar to, for
example, base point blinding in elliptic curve scalar multiplication.) We can reuse
an existing ring-LWE processor for these operations, and leverage the numerous
optimizations carried out for this block [18,25].

The final threshold th(·) operation of Equation 2 is obviously non-linear in
the base field Fq, and hence cannot be independently applied to each branch
(Equation 3 and 4). There are generic approaches to mask arbitrary functions.
For instance, in [4] an approach based on masked tables was used. However, these
generic approaches are usually quite expensive in terms of area or randomness.
In the following Section 4, we pursue another direction. We design a bespoke
masked decoder that results in a very compact implementation.

4 Masked decoder

In this section we describe a very compact, probabilistic masked decoder. In the
sequel, a denotes a single coefficient and (a′, a′′) its shares such that a′ + a′′ = a
(mod q). The decoder computes the function th(a) from the shares (a′, a′′). We
also drop the symbol (mod q) when obvious.

First crack. The key idea of the efficient masked decoder is that we do not need
to know the exact values of the shares a′ and a′′ of a coefficient a in order to
compute th(a). For example, if 0 < a′ < q/4 and q/4 < a′′ < q/2 then a = a′+a′′

is bounded by q/4 < a < 3q/4, and thus th(a) = 1. That is, we learnt th(a)
from only a few most significant bits from a′ and a′′. We can use this idea to
substantially simplify the complexity of the masked th function.

a a′′

a′

q/4

3q/4

q/2 0

q/4

3q/4

q/2 0

III

III IV

q/4

3q/4

q/2 0

a = a′ + a′′

a = a′ + a′′ a′

a′ a′′
a′′

Fig. 2: Idea for the masked decoder. Elements in Zq are shown in a circle. Adding
two elements translates into adding their respective angles. Left: case 0 < a′ < q/4,
q/4 < a′′ < q/2, and therefore th(a) = 1. Center and right: case 0 < a′ < q/4,
0 < a′′ < q/4, which does not allow to infer th(a).

4.1 Rules

Figure 2, left, illustrates the situation from the last paragraph. In this case,
0 < a′ < q/4 and q/4 < a′′ < q/2 so obviously a can range only from q/4 to 3q/4,
and hence th(a) = 1. Analogously to this rule, we can formulate 3 other rules:

– If q/2 < a′ < 3q/4 and 3q/4 < a′′ < q then q/4 < a < 3q/4 and thus
th(a) = 1.

– If q/4 < a′ < q/2 and q/2 < a′′ < 3q/4 then a belongs to (0, q/4) ∪ (3q/4, q)
and thus th(a) = 0 (quadrants I and IV, left half of the circle).

– If 3q/4 < a′ < q and 0 < a′′ < q/4 then a belongs to (0, q/4) ∪ (3q/4, q) and
thus th(a) = 0.

There are 4 other rules that result from interchanging a′ with a′′ in the above
expressions. (This follows straight from the symmetry of the additive splitting.)
Essentially, with the only information of the quadrant of each share a′ and a′′

we can, in half of the cases, deduce the output of th(a). (For the explanation
simplicity, we obviated what happens in the boundaries of the quadrant intervals.
Similar conclusions hold when including them.)

What if no rule is hit? In roughly half of the cases, we can apply one of the 8
rules previously described to deduce the value of th(a). However, in the other half
of the cases, none of the rules applies. A representative case of this event is shown
in Figure 2, center and right. In both cases, 0 < a′ < q/4 and 0 < a′′ < q/4. This
situation is not covered by any of the 8 rules previously described. We see that
in the center sub figure th(a) = 0 while in the right sub figure th(a) = 1, so in
this case the quadrants of each share a′ and a′′ do not allow us to infer th(a).

The solution in this case is to refresh the splitting (a′, a′′), that is, update
a′ ← a′ + ∆1 and a′′ ← a′′ − ∆1 for certain ∆1. (This refreshing naturally
preserves the unshared value a = a′ + a′′.) After the refreshing, the 8 rules can
be checked again. If still no rule applies, the process is repeated with a different
refreshing value ∆i. Note that in each iteration of the step, roughly half of the
possible values of (a′, a′′) ∈ Zq×Zq are successfully decoded, and thus the amount
of pairs (a′, a′′) that do not get decoded shrinks exponentially with the number
of iterations. In our implementation, N = 16 iterations produces a satisfactory
result. This will be studied in detail in Section 6.1.

Optimal cooked values for ∆i. One can determine a sequence of ∆i values
that maximizes the number of pairs successfully decoded after N iterations.
We performed a first-order search for such a sequence of ∆i values. Each ∆i

maximizes the number of successfully decoded pairs after i− 1 iterations. See
the extended version of this paper1 for exemplary values of ∆i.

Architecture. The hardware architecture for the masked decoder follows from
the previous working principle description. Our implementation is shown in
Figure 3. From left to right, we see the first refreshing step by the constants
∆i. The constants ∆i vary from iteration to iteration. After the refreshing step,
the quadrant function is applied to each share a′, a′′. This quadrant function
outputs x if a belongs to the x-th quadrant, and thus the output consists of 2 bits.
These blocks are essentially 13-bit comparators, and thus relatively inexpensive

1 http://www.reparaz.net/oscar/ches2015-lwe/

http://www.reparaz.net/oscar/ches2015-lwe/

masked table

quad

quad

2

∆i

a′

a′′

1313

r

2

1

1

1

1

1

m′

m′′

q′

q′′

Fig. 3: The masked decoder.

in logic.2 The subsequent rule checking on (q′, q′′) is performed by a masked table
lookup that is described in the following section. The whole process is repeated
N = 16 iterations, and this number of iterations stays fixed even if the decoding
is successful after the few first iterations.

4.2 Masked table lookup

The final step in the masked decoder is a masked table lookup. This table
implements the rules described in Section 4.1, and essentially maps the output
of each quadrant q′i and q′′i (2 bits each) after the i-the iteration (i ∈ [1, N]) to
a (Boolean) masked output bit value (m′i,m

′′
i). In our specific implementation,

we have other inputs: the result of the decoding from the previous iteration
(m′i−1,m

′′
i−1) and an extra randomness bit r (fresh at each of the N iterations

for each of the n coefficients).
This is a well-studied problem that arises in other situations (for instance,

when masking the sbox lookup in a typical block cipher) and there are plenty
of approaches here to implement such masked table lookup. We opted for
the approach of masked tables as in [26]. We set m′i ← r and we compute
m′′i ← f(r, q′i, q

′′
i ,m

′
i−1,m

′′
i−1). The function f essentially bypasses the previous

decoded value when no rule applies to q′i, q
′′
i by setting the output m′′i to

r + m′i−1 + m′′i−1 (refreshing the content of the output registers). If a rule
applies to q′i, q

′′
i , it sets the output m′′i accordingly. By doing this, we can register

always the output of this table and no control logic to enable such output register
is needed (it is implicitly integrated into this masked table.) This is the reason
why the table sees also the previous decoded value m′i−1 and m′′i−1.

The usual precautions are applied when implementing f . For our target
FPGA platform, we carefully split the 7-bit input to 1-bit output function f
into a balanced tree of 4-bit input LUTs, in such a way that any intermediate

2 Note that in the special case that q is a prime close to a power of two the construction
of the quadrant block can be further simplified.

input or output of LUTs does not leak in the first order. Note that here we are
assuming that each LUT is an atomic operation. If stronger security guarantees
are needed, other approaches to implement such function f should be followed.
When implemented in an ASIC, it may be preferable to store this masked table
in ROM (since the contents of the table are immutable and the size is small.)

The output of this table is (Boolean) masked, and thus no unmasked value
lives within the implementation. This is suited for consumption of a masked AES
module (say) after some preprocessing as will be detailed later. We stress that
we use masked tables on the output of the quadrants. This is the key for our
reduced area requirements, as will be explained in the next Section 5.

5 Implementation results

We implemented the fully masked ring-LWE decryption system with the parameter
set (n, q, s) = (256, 7681, 11.32) first introduced in [11], corresponding to a
medium-term security level. The target platform is a Xilinx Virtex-II xc2vp7
FPGA. The HDL files were synthesized within Xilinx ISE v8.2 with optimization
settings set to balanced and KEEP HIERARCHY flag when appropriate to prevent
optimization of security-critical components. We base our arithmetic processor
on the design from [25].

5.1 Area

In our case, a single arithmetic coprocessor performs serially the computations of
Equation 3 and then that of Equation 4. This incurs in a very slight area overhead
(only the control microcode is slightly modified, plus the masked decoder), at the
obvious cost of an increased execution time. In comparison to the unprotected
version, our protected decryption scheme consumes more memory as now we store
two shares r′ and r′′ of the secret polynomial r, and the two output polynomials
a′ and a′′ from the two INTT operations.

In Table 1, we can see that the proposed masking of the ring-LWE architecture
incurs an additional area overhead of only 301 LUTs and 129 FFs in comparison
to the unprotected version. This additional area cost is mostly due to a pair of
masked decoders. Due to its low area overhead, we chose to keep two masked
decoders in parallel, decoding two coefficients simultaneously. (This nicely fits
with the memory organization of the arithmetic coprocessor, since it fits two 13-
bit coefficients in each memory word.) Thus, we use two addition and subtraction
circuits for the refreshing with ∆i (accounting for 160 LUTs) and two masked
tables (90 LUTs in total.)

We note that we could straightforward reduce the additional area cost by
reusing the 13-bit addition and subtraction circuits present in the arithmetic
coprocessor. Since during a decoding operation, the arithmetic coprocessor
remains idle, reusing of the addition and subtraction circuits do not cause any
increase in the cycle count. For simplicity, we did not implement this approach.

Implementation LUTs/FFs/DSPs Freq Cycles/Time(µs)

Algorithm (MHz) Decryption

Unprotected RLWE 1713/830/1 120 2.8k/23.5

Protected RLWE 2014/959/1 100 7.5k/75.2

Table 1: Performance and Comparison on Xilinx Virtex-II xc2vp7 FPGA. Note
that these results are not directly comparable with [25], since the latter were
obtained from a more advanced Virtex-6 FPGA, which has 6-bit input LUTs
and superior routing mechanisms in comparison to our target FPGA.

5.2 Cycle count

The cycle count for our approach is decomposed in the computation of Equation 3,
Equation 4 and the masked decoder. Equation 3 takes 2840 cycles (one
unprotected ring-LWE decryption), Equation 4 takes 2590 cycles, slightly less
than Equation 3 since there is no addition present in the second branch.

The two-way parallel masked decoder takes 1
2 ×n×N + ε cycles to decode all

the coefficients into message bits. In our case with n = 256, N = 16 the masked
decoder takes 2048 cycles. Thus in total, a masked decryption operation requires
7478 cycles. The arithmetic coprocessor and the masked decoder run in constant
time and constant flow.

5.3 Comparison with an elliptic-curve cryptosystem

We compare our protected decryption scheme with the unprotected high-speed
elliptic curve scalar multiplier architecture proposed by Rebeiro et al. in [20].
The architecture for the field GF(2233) consumes 23 147 LUTs and computes an
unprotected scalar multiplication in 12.5µs on a more advanced Virtex-4 FPGA.
Thus the scalar multiplier has an area × time product of approximately 289 337.
Our protected ring-LWE decryption (for a similar security) achieves an area ×
time product of approximately 151 452 on a Virtex-2 FPGA; thus achieving at
least 1.9 times better figure of merit.

5.4 Trade-offs

The previous figures are subject to trade-offs. If smaller latency is desired instead
of a compact implementation, two coprocessors can perform the two computations
of Equation 3 and 4 in parallel. Trade-offs also apply to the masked decoder, and
the parallelization could be extended easily to reduce latency in this stage. Since
the BRAMs present in the Xilinx FPGAs support reading of multiple consecutive
words, we could keep more pairs of masked decoders in parallel and reduce the
number of cycles. Another alternative is to keep the masked decoder in pipeline
with the polynomial arithmetic block. Such type of setting is suitable for systems
where many decryption operations are performed in a chain. While the masked
decoder works on the coefficients of a previous computation, the polynomial

arithmetic unit processes new ciphertexts. Since the masked decoder is faster
than the polynomial arithmetic unit, the cycle count of the masked decoder is
not an overhead in such type of setting. But of course, in this situation we could
not reuse the arithmetic circuitry of the arithmetic coprocessor for the refreshing
operation of the masked decoder.

5.5 Maximum frequency

We note that the arithmetic coprocessor is a very optimized unit with a complex
pipeline organization. We thus insert two pipeline stages in the masked decoder
to match the maximum frequency of the whole system to that of the arithmetic
coprocessor. In this way, the design can run up to almost 100 MHz. The critical
path is inside the arithmetic multiplier.

6 Discussion

6.1 Error rates

Cryptosystems based on ring-LWE are inherently probabilistic. This means that
there is a non-zero probability that the recovered plaintext after ring-LWE
decryption is not exactly the plaintext before encryption. In our case, due to the
probabilistic nature of our masked decoder approach, there is a second source of
noise. Since the number of iterations of the masked decoder is finite, there are
some pair values (a′, a′′) that will not get decoded within the fixed finite number
of iterations. In this section, we first explain the error rate of the probabilistic
decoding in isolation, and then we switch to the global system error rate and
point out strategies to mitigate it.

Errors due to the probabilistic decoding. In this section, we assume that the
plaintext bit is 1 and the unmasked input a to the masked decoder is in (q/4, 3q/4).
The additional error due to the probabilistic masked decoder is the probability
pe that (a′, a′′) does not get successfully decoded. Let us write ps = 1− pe.

This probability ps is influenced by two distributions. We have that

ps =
∑

Pr[successful decode|a] · Pr[a] (5)

where the sum is taken over a ∈ (q/4, 3q/4). On the one hand,
Pr[successful decode|a] is the probability that the decoder successfully decodes
a. On the other, Pr[a] is the probability with which a takes various values in
(q/4, 3q/4).

The distribution of the decoder success probability Pr[successful decode|a]
as a function of the unshared input value a to the decoder can be easily
computed by averaging over all possible pairs (a′, a′′) such that a′ + a′′ =
a. Since for any given value of a, its shares a′ or a′′ are (individually)
equiprobable, we compute Pr[successful decode|a] as Pr[successful decode|a] =
1
q

∑
a′+a′′=a Pr[successful decode of (a′, a′′)].

0 q/4 q/2 3q/4 q

0

0.2

0.4

0.6

0.8

1

unshared input to decoder

p
su

cc
es

sf
ul

 d
ec

od
in

g

N=16
N=2

0 q/4 q/2 3q/4 q
0

0.2

0.4

0.6

0.8

1
x 10

−3

input to the decoding

p
ap

pe
ar

ea
nc

e

Fig. 4: Left: empirical success distribution for the masked decoder. Right:
Distribution of a when plaintext is 1.

The distribution Pr[successful decode|a] is shown in Figure 4, left. We see
that the decoder performs best when a ≈ q/2, in which case all possible inputs
get decoded correctly. Only when the input value a approaches q/4 or 3q/4, the
performance degrades. When using a larger number of iterations N = 16 this
effect is less pronounced when compared to N = 2 iterations, as Figure 4 shows.

On the other hand, it is easy to see that not all unshared inputs a to the
decoder are equally likely. By the construction of the ring-LWE decryption
function, the unshared input to the decoder a is either centered around q/2
(resp. 0) when the message bit is 1 (resp. 0). This distribution Pr[a] is plotted in
Figure 4, right.

These two observations combined produce a nice interaction between
the prior distribution Pr[a] of a (given by the ring-LWE decryption) and
the success distribution of the masked decoder Pr[successful decode|a] as in
Equation 5. Namely, values of a that are difficult to decode (those with low
Pr[successful decode|a]) are quite unlikely to appear as input to the masked
decoder (their Pr[a] is also low). This positive interaction keeps the global error
rate of the system quite low. This is precisely quantified in the next paragraph.

Global error rate and number of iterations. We performed simulations to estimate
the global error rate and determine the required number of iterations N in our
design. Over 106 bits, the average error per bit using a deterministic decoder was
pbaseline = 3.634375 × 10−5. This is a baseline error intrinsic to the ring-LWE
construction. When we plug in the probabilistic decoder, the global, end-to-end,
error rate per bit pg increases. (We have pg = pbaseline + pe.) In Figure 5, we
can find the global error rate for different values of the number of iterations N
of the decoding. At N = 3, for instance, the error rate is pg = 1.7844 × 10−3,
which is ≈ 49 times larger than pbaseline. As already hinted, the error rate quickly
decreases with N (roughly exponentially, as can be see in Figure 6). In our design,

Iterations pg [×10−5] pg/pbaseline

N =2 332.24 91.41
3 178.44 49.09
4 25.36 6.97
5 20.77 5.71
6 16.22 4.46
8 6.97 1.91
16 4.32 1.19
24 4.06 1.11
30 3.87 1.06

Fig. 5: Global error rates with
the probabilistic decoder.

0 10 20 30

100

101

102

Iterations N

p
g
/
p
b
a
se

li
n
e

Fig. 6: Evolution of the ratio pg/pbaseline
as the number of iterations N grows.

we set N = 16 (we iterate 16 times per coefficient) as a balanced tradeoff between
cycle count and error rate. The impact of the masked probabilistic decoder on
the global error rate is quite low, adding less than 20% to the intrinsic error rate
when compared to a deterministic decoder, as it can be see in Figure 5.

6.2 Comparison with other decoding strategies

We are only aware of a similar masked decoder, the one presented in [4]. There the
authors resort to a generic masking method, namely masked tables, to perform
the decoding. Translating the ideas of [4] in our context, we would need two
tables of 213 bits (one of them random). For a smaller group Zd with d = 257
the authors report an utilization of 1331 slices on a Virtex 6 FPGA. While the
results in slices are not directly comparable with ours, we point out that the size
of the masked table following the approach of [4] grows linearly in the group size
q, while for our solution the size of the masked table stays constant (independent
of q), and the quadrant blocks grow only logarithmically in q. The cycle count,
however, is larger in our solution. The critical observation of our masked decoder
is that we can compress the input coefficient shares a′ and a′′ to a mere two bit
per share (the output of each quadrant) and then perform the decoding based on
the information of the two quadrants (4 bits.)

6.3 Post-processing

Albeit the computation from Equation (2) is commonly referred as the “ring-
LWE decryption”, the decryption process should include a post-processing on
the recovered message m. This post-processing consists of error correction and
padding verification.

Linear codes with masking. One approach to deal with the probabilistic nature
of the ring-LWE decryption system is to use forward error correcting codes
(FEC). The message prior to encryption is encoded using a FEC and the resulting
composite is ring-LWE encrypted. The output of the ring-LWE decryption should
be corrected for errors, preferably in the masked domain. For syndrome decoding
of linear codes, this can easily be done by masking the syndrome table.

Padding schemes. As presented, the ring-LWE system is malleable. CCA security
can be achieved with a padding mechanism. The Fujisaki-Okamoto [10] padding
scheme is known to work with ring-LWE [17]. This padding scheme makes use of
standard symmetric cryptographic constructions whose masked implementations
are well studied. We point out that key-encapsulation mechanisms may result in
a more compact and simpler implementation.

6.4 Extension to higher-order security

We point out that the approach laid out in Section 3 scales quite well with
the security order. To achieve security at level d + 1, one would need to split
the computation of Equation 2 into d branches analogously to Equation 3. The
masked decoder can follow the same principles with the appropriate modifications.
The complexity of this decoder obviously grows. Generic approaches to perform
this computation have been discussed in [7,2,22].

7 Evaluation

For the purposes of a side-channel evaluation, we implemented the full design
on a SASEBO G board. The design was clocked at 18.75 MHz and the power
consumption was sampled at 500 MS/s. This platform is very low noise.

We provide a very advantageous setting for the adversary: we assume that
the evaluator knows the details about the implementation (for example, pipeline
stages). In addition, we assume that while guessing a subkey, the adversary knows
the rest of the key. These assumptions allow to comfortably place predictions on
intermediates arbitrarily deep into the computation. While this may represent a
very powerful attacker and somewhat unrealistic, the algebraic structure of such
cryptosystem may help the attacker to predict deep intermediates with relatively
low effort. We refer the reader to the extended version of this paper for an attack
on half-masked ring-LWE decryption that uses these ideas. This stresses the
necessity of masking the decoding function entirely.

The evaluation methodology to test if the masking is sound is as follows. We
first proceed with first-order key-recovery attacks when the randomness source
(PRNG) is switched off. We demonstrate that in that situation the attacks are
successful, indicating that the setup and procedure is sound. Then we switch on
the PRNG and repeat the attacks. If the masking is sound, the first-order attacks
shall not succeed. In addition, we perform second-order attacks to confirm that
the previous first-order analyses were carried out with enough traces.

We test 4 different points which covers all the relevant parts of the computation.
The targets are the first 13-bit coefficient of r′ · c1 + c2, the first 13-bit coefficient
of r′′ · c1, the first input coefficient to the shared decoder and the first output
bit. We modeled the power consumption of a register as the Hamming distance
between two consecutive values held in the register, and used Pearson’s correlation
coefficient to compare predictions with measurements [5].

1000 2000 3000 4000 5000 6000 7000
time in cycles

sa
m

p
le
ρ

m
ea

n
cu

rv
e

ρ = 0.27, intermediate: a′[0]

ρ = 0.21, intermediate: m′[0]

ρ = 0.3, intermediate: r′′[0] · c1[0]

ρ = 0.25, intermediate: r′[0] · c1[0] + c2[0]

branch 1 branch 2 decoding

Fig. 7: PRNG off. On top, black, one power consumption trace. The different
computational stages can be distinguished: first branch, second branch and
decoding. Next, in blue, the correlation trace for the value r′[0] · c1[0] + c2[0]. The
correlation achieves a maximum value of ρ = 0.25. Below, in red, correlation for
r′′ · c1 (max ρ ≈ 0.3); in green: correlation for the input of the masked decoder
a′[0]. At the bottom: correlation with one message bit m′[0].

7.1 PRNG off

We first begin the experiments when the PRNG is off. That is, the sharing of
r into r′ and r′′ on each execution is deterministic. This would not happen in
practice, as an active PRNG would randomize the representation of r in each
execution. In our setting, this would mean that the masking is switched off.

In Figure 7 we draw the result of correlating against the 4 intermediates with
10 000 traces. On top, we draw a mean trace for orientation. The correlation
values are, from top to bottom, 0.25, 0.3, 0.27 and 0.21, respectively. This means
that the attacks are successful, and confirms the soundness of our setting. In
Figure 8 we can see the evolution of the correlation coefficient as the number of
traces increases for the first two intermediates. We can see that starting from

0 2000 4000 6000 8000 10000
−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

0 2000 4000 6000 8000 10000
−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

Fig. 8: PRNG off. Evolution of the correlation coefficient as the number of traces
increases for the intermediates r′[0] · c1[0] + c2[0] (left) and r′′[0] · c1[0] (right).
Correct subkey guess in red, all other guesses in green. A 99.99 % confidence
interval for ρ = 0 is plotted in black discontinuous line. We can see that starting
from hundred measurements the attacks are successful.

hundred traces the attack is successful. Similar behavior was observed for other
intermediates.

7.2 PRNG on

0 2000 4000 6000 8000 10000
−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

0 2000 4000 6000 8000 10000
−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

Fig. 9: Analogous to Figure 8, but with PRNG on. The correct subkey is no
longer identifiable. This is expected and means that the masking is effective.

In Figure 9 we draw the result of the previous analysis when the masks are
switched on. This corresponds to the situation that an adversary would face
in reality. We can see that the correct key guess is no longer distinguishable,
even when using 10 000 traces. We repeated the same experiments for other
intermediates and other intermediate positions with identical results.

7.3 Second-order attacks

To confirm that we used enough traces in our previous analyses, we perform here
second-order attacks on the masked implementation with the PRNG on. We will
focus on the masked decoder. In Figure 10 we draw on top a mean curve in the
region of 7 400 to 7 700 cycles, corresponding to the end of the masked decoding.
We target one output bit of the decoding: m[254].

7400 7450 7500 7550 7600 7650 7700

sa
m

p
le
ρ

mask: m′[254]

masked value: m′′[254]

unmasked value: m[254], first order

unmasked value: m[254], squared traces

unmasked value: m[254], abs traces

cu
rv

e
m

ea
n

time [cycles]

ρ = 0.34

ρ = 0.32

ρ = 0.09

ρ = 0.09

Fig. 10: Correlation traces for intermediates within the shared decoder. On top,
a power measurement trace showing the last 15 decodings. Below, correlation
traces. The first two (masks and masked values) assume that the adversary knows
the masks. The third one, in light blue, is a first-order attack without knowing
the attack, and is unsuccessful. In contrast, the second-order attack against the
same intermediate is successful, as the traces in magenta and yellow show.

In Figure 10 we first begin by correlating against masks and masked values.
This is a test scenario, since for this attack we need to know the masks, something
that would not happen in a real deployment. Correlation with masks or masked
value yield high correlation as expected (ρ = 0.32 and ρ = 0.34, respectively).
In contrast, when correlating against the unshared value (in light blue), the
correlation coefficient does not traverse the confidence interval for ρ = 0. This
indicates that the masking is effective. We can repeat the same attack against
centered and squared traces [6,19]. This is effectively a second-order attack, and
is expected to work. It is shown in magenta in Figure 10, and we can see that
the attack succeeds. Using the centered absolute value to pre-process traces also
works as expected, as shown in yellow.

0 0.5 1 1.5 2

x 10
4

−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

0 0.5 1 1.5 2

x 10
4

−0.5

0

0.5

number of traces

sa
m

pl
e

co
rr

el
at

io
n

Fig. 11: Left: correlation as the number of traces increases for the first-order
attack (PRNG on), around clock cycle 7560. Right: correlation for the second-
order attack with masks on. The attack begins to be successful with 2 000
measurements.

In Figure 11 we can see the evolution as a function of the number of traces.
We can see that starting from ≈ 2000 measurements this second-order attack is
successful. This confirms that the first-order attacks of Section 7.2 were carried
out with enough traces, since a second-order attack is already successful starting
from ≈ 2000 measurements.

We remark that the relatively low number of traces required for the second-
order attack is due to the very friendly scenario for the evaluator. The platform
is low noise and no other countermeasure except than masking was implemented.
In practice, masking needs a source of noise to be effective, and consequently the
higher-order attacks would be harder to mount, requiring more traces [6] and
more computation [23].

7.4 Horizontal DPA attacks

During the decoder operation, the input coefficients are refreshed N − 1 = 15
times with publicly known offsets ∆i. The device thus handles consecutively the
values a′, a′ +∆1, ..., a′ +∆1 + . . .+∆15. This may enable a horizontal DPA
attack [16] during the operation: the adversary may collect a single trace, split
it into 16 chunks and then perform a DPA on these 16 chunks to recover the
mask a′. Once the masks from all traces are discovered, a first-order, vertical
DPA applies.

There are two factors that mitigate this threat. First, we note the adversary
is given a very limited number of traces to recover each mask (namely, N = 16).
Secondly, this attack can be easily prevented by shuffling the public coefficients

Fig. 12: Crosscorrelation trace. The x and y axes represent time, flowing from the
upper left hand side corner to the lower right. The entire figure spans 7500 cycles
(as Figure 7). It is possible to distinguish the two branch computations (including
its components) and the decoding. Colors enhanced to improve contrast.

∆i. This randomizes the order of execution of each refreshing with ∆i, and thus
the exposure to horizontal DPA attacks is minimized.

8 Conclusion

In this paper we described a practical side-channel protected implementation
of the lattice-based ring-LWE asymmetric decryption. Our solution is based on
the sound principles of masking and incurs in a manageable overhead (in cycles
and area). A key component of our solution is a bespoke masked decoder. Our
implementation performs the entire ring-LWE decryption computation in the
masked domain.

Acknowledgements. The authors would like to thank the CHES 2015 reviewers for their

valuable comments. This work has been supported in part by the European Commission

through the ICT programme under contracts H2020-ICT-645622 PQCRYPTO,

H2020-ICT-644209 HEAT and FP7-ICT-2013-10-SEP-210076296 PRACTICE; by the

Research Council KU Leuven TENSE (GOA/11/007); by the Flemish Government

FWO G.0550.12N, G.00130.13N and G.0876.14N; and by the Hercules Foundation

AKUL/11/19. Oscar Reparaz is funded by a PhD fellowship of the Fund for Scientific

Research - Flanders (FWO). Sujoy Sinha Roy was supported by Erasmus Mundus PhD

Scholarship.

References

1. Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post Quantum
Cryptography. Springer, 1st edition, 2008.

2. Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-order threshold implementations. In ASIACRYPT, volume 8874 of
LNCS, pages 326–343. Springer, 2014.

3. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security
for a ring-based fully homomorphic encryption scheme. In Cryptography and Coding,
volume 8308 of LNCS, pages 45–64. Springer, 2013.

4. Hai Brenner, Lubos Gaspar, Gaëtan Leurent, Alon Rosen, and François-Xavier
Standaert. FPGA implementations of SPRING - and their countermeasures against
side-channel attacks. In CHES, volume 8731 of LNCS, pages 414–432. Springer,
2014.

5. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In CHES, volume 3156 of LNCS, pages 16–29. Springer, 2004.

6. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In CRYPTO, volume 1666
of LNCS, pages 398–412. Springer, 1999.

7. Jean-Sbastien Coron. Higher order masking of look-up tables. In EUROCRYPT,
volume 8441 of LNCS, pages 441–458. Springer, 2014.

8. Léo Ducas, Alain Durmus, Tancréde Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal gaussians. In CRYPTO, volume 8042 of LNCS, pages 40–56.
Springer, 2013.

9. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.

iacr.org/.
10. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and

symmetric encryption schemes. Journal of Cryptology, 26(1):80–101, 2013.
11. Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and

Sorin Huss. On the design of hardware building blocks for modern lattice-based
encryption schemes. In CHES, volume 7428 of LNCS, pages 512–529. Springer,
2012.

12. Louis Goubin and Jacques Patarin. DES and differential power analysis the
duplication method. In CHES, volume 1717 of LNCS, pages 158–172. Springer,
1999.

13. Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In CRYPTO, volume 1109 of LNCS, pages 104–113. Springer,
1996.

14. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, volume 1666 of LNCS, pages 388–397. Springer, 1999.

15. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In EUROCRYPT, volume 6110 of LNCS, pages
1–23. Springer, 2010. Full Version available at Cryptology ePrint Archive, Report
2012/230.

16. J. Pan, J.I. den Hartog, and Jiqiang Lu. You cannot hide behind the mask: Power
analysis on a provably secure s-box implementation. In Information Security
Applications, volume 5932 of LNCS, pages 178–192. Springer, 2009.

17. Chris Peikert. Lattice cryptography for the internet. In Post-Quantum Cryptography
- 6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada, October
1-3, 2014. Proceedings, pages 197–219, 2014.

http://eprint.iacr.org/
http://eprint.iacr.org/

18. Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key
encryption on reconfigurable hardware. In Selected Areas in Cryptography – SAC
2013, volume 8282 of LNCS, pages 68–85. Springer, 2014.

19. E. Prouff, M. Rivain, and R. Bevan. Statistical analysis of second order differential
power analysis. Computers, IEEE Transactions on, 58(6):799–811, June 2009.

20. Chester Rebeiro, Sujoy Sinha Roy, and Debdeep Mukhopadhyay. Pushing the
limits of high-speed GF(2m) elliptic curve scalar multiplication on fpgas. In CHES,
volume 7428 of LNCS, pages 494–511. Springer, 2012.

21. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the Thirty-seventh Annual ACM Symposium
on Theory of Computing, STOC ’05, pages 84–93, New York, NY, USA, 2005.
ACM.

22. Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, , and Ingrid
Verbauwhede. Consolidating masking schemes. In CRYPTO, volume ZZZZ of
LNCS, pages xxx–yyy. Springer, 2015.

23. Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. Selecting time samples
for multivariate DPA attacks. In CHES, volume 7428 of LNCS, pages 155–174.
Springer, 2012.

24. Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede.
Compact and side channel secure discrete gaussian sampling. IACR Cryptology
ePrint Archive, 2014:591, 2014.

25. Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and
Ingrid Verbauwhede. Compact ring-lwe cryptoprocessor. In CHES, volume 8731 of
LNCS, pages 371–391. Springer, 2014.

26. E.V. Trichina. Table lookup operation on masked data, 2013. US Patent 8,422,668.

	A masked ring-LWE implementation

