
SoC it to EM: electromagnetic side-channel
attacks on a complex system-on-chip

J. Longo1, E. De Mulder2, D. Page1, and M. Tunstall2

1 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom.
{jake.longo,daniel.page}@bristol.ac.uk
2 Rambus Cryptography Research Division,

425 Market Street, 11th Floor,
San Francisco, CA 94105, United States.

{elke.demulder,michael.tunstall}@cryptography.com

Abstract. Increased complexity in modern embedded systems has pre-
sented various important challenges with regard to side-channel attacks.
In particular, it is common to deploy SoC-based target devices with high
clock frequencies in security-critical scenarios; understanding how such
features align with techniques more often deployed against simpler de-
vices is vital from both destructive (i.e., attack) and constructive (i.e.,
evaluation and/or countermeasure) perspectives. In this paper, we in-
vestigate electromagnetic-based leakage from three different means of
executing cryptographic workloads (including the general purpose ARM
core, an on-chip co-processor, and the NEON core) on the AM335x SoC.
Our conclusion is that addressing challenges of the type above is feasible,
and that key recovery attacks can be conducted with modest resources.

Keywords: side-channel, electromagnetic, system on chip, ARM, NEON.

1 Introduction

A significant proportion of academic literature on side-channel attacks already
targets real-world devices: even a very limited list of examples, such as those
against KeeLoq keyless entry systems [20,27], Xilinx FPGA bit-stream encryp-
tion [34], or Atmel CryptoMemory [5] authentication, provides compelling evi-
dence of their potency. However, and although clear counter-examples are iden-
tifiable, such devices may often be characterised as electronically and/or archi-
tecturally simple (the cryptographic aspects at least). From one perspective, this
is a non-issue: use-cases such as contact-based and contactless payment cards,
and trends such as Internet of Things (IoT) suggest devices of this type will
abound for some time to come; the simplicity of a target in no way implies that
developing and mounting attacks is simple nor without more general value. How-
ever, from a different perspective, it may seem unsatisfactory since it contrasts
sharply with trends in commodity micro-electronics. In particular, more complex
devices with richer functionality are now routinely deployed in contexts where

side-channel attacks are a threat. For example, smart-phones now house multi-
core, System-on-Chip (SoC) components with multi-gigahertz clock frequencies
as standard, and, modulo constraints such as energy efficiency, market forces
will drive increased use of similar components over time.

Within this context, use of ElectroMagnetic (EM) side-channel leakage is
particularly attractive. Rohatgi [38] offers a comprehensive overview of both
the physical phenomenon itself plus seminal results such as [3,21,37], neither of
which we expand on unless specifically relevant. Versus power analysis [28], the
non-contact, spatially flexible nature of an EM-based alternative means it a)
represents a less invasive means of taking acquisitions, b) avoids issues such as
on-chip voltage regulation and, most importantly, c) permits targeting of specific
regions of (or components on) an SoC that otherwise offer composite leakage.

Our goal in this paper is to demonstrate that by carefully translating and
refining existing techniques, EM-based side-channel attacks are viable against
modern, complex targets. The challenges of evaluation and countermeasure in-
strumentation already motivate such work, but are arguably magnified by other
constructive applications of side-channels (e.g., protection of intellectual prop-
erty [7] and Trojan hardware detection [19]) relevant to SoCs: all benefit from
better, open (noting this topic seems to represent an active but largely undoc-
umented focus of various security services [40]) understanding of the associated
leakage characteristics. We explore a single exemplar target device, namely the
Texas Instruments (TI) AM335x SoC on a BeagleBone Black development board,
with respect to three options for execution of cryptographic workloads. Following
the relevant background material in Section 2, our contribution is, concretely,
the EM-based analysis of
1. AES executed by an OpenSSL server on the ARM core (Section 3),
2. the proprietary AES co-processor (Section 4), and
3. the NEON3 core, including bit-sliced AES (Section 5).

A central conclusion is that, while some effort is required to characterise the
leakage, attack complexity does not necessarily scale in line with perceived device
complexity. For example, in the first case above we are able to acquire and exploit
leakage at much lower frequencies than suggested by the 1 GHz system clock;
this implies attack cost may also be lower than expected, and hence relying on
device complexity (resp. obscurity) to provide security is dubious at best.

2 Background

2.1 An overview of the BeagleBone platform

BeagleBone Black is a single-board computer built around a AM335x “Sitara”
SoC. Constituent components can be grouped logically into four sub-systems
per [25, Figure 1-1]; the sub-systems are able to communicate via a dedicated
Network-on-Chip (NoC), or interconnect. The following sections focus on the

3 Note that by targeting NEON, we specifically aim to add detail to the premise
introduced during the CHES 2014 rump session talk of Bernstein and Lange: see
http://cr.yp.to/talks/2014.09.25-2/slides-dan+tanja-20140925-2-4x3.pdf.

http://cr.yp.to/talks/2014.09.25-2/slides-dan+tanja-20140925-2-4x3.pdf

Micro-Processor Unit (MPU) and the cryptographic co-processor. Although the
latter lacks public documentation of the internal design (bar device driver source
code4 that interfaces with it), the former warrants further analysis: we refer to
the extensive literature5 for in-depth coverage.

The central point to take away from such analysis is the high degree of
architectural complexity evident, even ignoring the number of components. For
example, the MPU alone has a total of 3 clock and 4 power domains. Such
features make the SoC an extremely challenging target with respect to Signal-to-
Noise Ratio (SNR), and underlines the advantages offered by EM-based leakage.

2.2 Experimental environment

Acquisition and measurement equipment. To allow reproducibility, the equip-
ment used throughout this paper is listed below:
– Tektronix DPO7104 1 GHz oscilloscope,
– Signatec PX14400 400 MS/s digitiser,
– Langer PA303 pre-amplifier plus various (e.g., low-pass) hardware filters,
– Langer RF-3 mini near-field probe set,
– Langer ICS105 IC scanner (or XY-table),
– Matlab 2014b (with signal processing toolbox).

The configuration was therefore very standard: the target device was mounted
on the XY-table to allow micro-positioning of the probe(s), which supplied an
amplified, filtered signal to either the digitiser (Section 3 and Section 5) or
oscilloscope (Section 4, to cope with a higher sampling rate). This limits our
remit strictly to close-range acquisitions, rather than at a distance, e.g., per [43].

Software stack. We used a standard BeagleBone Black distribution of Debian
“Wheezey” on the target device (Linux kernel version 3.13.3). The device was
booted from on-board embedded MultiMediaCard (eMMC) storage as is; no
standard system processes were disabled. On top of this platform we use OpenSSL
1.0.1j, with the cryptodev extension6 enabled when appropriate.

2.3 Leakage detection and exploitation strategy

Notation. For some set or sequence x of length n, we let x[j] denote the j-th
element of x such that 0 ≤ j < n; xi then denotes the i-th such object within a
larger collection, with the subscript omitted where irrelevant. We use H(x) and
D(x, y) to denote the Hamming weight and distance, respectively, of some x and
y. As such,

ri = DUTfk(xi) λi

models some i-th execution of an operation f on the target device DUT, involving
a security critical datum k (e.g., key material), accepting input xi and yielding

4 http://github.com/torvalds/linux/blob/master/drivers/crypto/omap-aes.c
5 http://www.arm.com/files/pdf/A8_Paper.pdf
6 http://cryptodev-linux.org/

http://github.com/torvalds/linux/blob/master/drivers/crypto/omap-aes.c
http://www.arm.com/files/pdf/A8_Paper.pdf
http://cryptodev-linux.org/

an output ri and an EM-based trace of leakage λi (a sequence of samples).
Depending on the context, the target operation ranges from single instructions
to entire algorithms (e.g., AES), and, from the attacker perspective, ri and/or
xi may be known or unknown and controlled or uncontrolled.

λ is essentially a function of the target device (or leakage model), the opera-
tion f and input xi, plus the probe type and location (and any other parameters
of the experimental environment). With this in mind, mounting a concrete attack
demands an attacker a) determines when and where (in time and/or frequency
domains) λ contains useful, exploitable leakage, and b) selects a probe configu-
ration to maximise said leakage (i.e., maximise the SNR).

Leakage detection. While several strategies, e.g., [11,12,23], have been proposed
to address the former challenge above, throughout this paper we use Welch’s
t-test. More specifically, we use the Test Vector Leakage Assessment (TVLA)
methodology of Goodwill et al. [23]. Although there are several varients (fixed-
versus-random and semi-fixed-versus-random for instance), the basic idea in-
volves constructing two sets of test vectors V0 and V1: the former contains a sin-
gle (semi-)fixed vector, whereas the latter contains (a large number of) vectors
chosen uniformly at random. For each i-th invocation of the target device, the

input is selected by first randomly selecting a test vector type, i.e., a b
$← {0, 1},

then a test vector from the appropriate set, i.e., an xi
$← Vb; the resulting trace

of leakage, λi, is added to a set Λb based on the test vector type. Then, we
compute the t-statistic trace as

t =
Λ̄0 − Λ̄1√
σ2
0

|Λ0| +
σ2
1

|Λ1|

where |Λb|, Λ̄b and σ2
b respectively denote the sample size, sample mean and

sample variance of set Λb. The idea is that given a threshold τ (say τ = 4.5
per [23, Section 3]), if we find |t[j]| > τ then we claim significant leakage is
detected at the j-th sample: at that point there is a statistically observable dif-
ference between fixed and random test vectors, so there may be data-dependent
and thus potentially exploitable information present. Each following section uses
this approach: section-specific detail is included where appropriate, with a com-
prehensive overview deferred to the full version of this paper [29, Appendix A].

3 Software-based AES

In the literature, it is common to target embedded devices (e.g., a micro-controller)
executing a program on “bare-metal”, i.e., directly on the hardware. Although
reasonable for some scenarios, a growing number of targets will execute an Oper-
ating System (OS) kernel; this is even true of many smart-cards (cf. JavaCard or
MULTOS). Perhaps due to the perceived increase in complexity, related attacks
are less common than the bare-metal case: selected examples include Uno et
al. [42] and Genkin et al. [22] who mount non-differential EM-based attacks on

ARM and NEON
region

SRAM
region

ARM and NEON
region

SRAM
region

Fig. 1: BeagleBone Black schematic (source: http://github.com/CircuitCo/
BeagleBone-Black/blob/rev_a5c/BBB_PCB.zip) from front-side (left) and
back-side (right), annotated with probe locations for leakage from the SRAM
(red) and ARM and NEON cores (blue).

RSA (plus ElGamal in the latter case only) executing under Android (on ARM)
and Windows XP (on x86), Aboulkassimi et al. [1,2] who mount differential
EM-based attacks on AES executing under Java ME (on ARM), and Pellegrini
et al. [35] who mount voltage depletion fault attacks on RSA executing under
Linux (on SPARC).

In this section we consider a systems-oriented scenario of the latter type.
Specifically, we imagine the target is a communications device (e.g., a smart-
phone) engaged in a TLS-based session with some server. As such, the attacker
can observe computation of

ci = DUTAES-128-CBC
k (mi) λi .

That is, AES-128 encryption, in CBC mode, of some unknown plaintext mi

under k to yield a known ciphertext ci (since it is communicated across the
network). Concretely, each encryption operation is performed by OpenSSL in
software via the default T-tables-based [14, Section 4.2] implementation.

3.1 Experimental outline

Before considering an attack strategy to exploit λ and recover k, a host of ex-
perimental challenges need to be addressed: the first relates to acquisition of λ.
In common with analysis of other unknown/as yet unprofiled target devices, we
rely on initial exploration based on full control of a replica profiling device. We
stress that our use of the profiling device is simply to give insight into the asso-
ciated signal characteristics: although it is well known that such an approach is
not necessarily sufficient for building templates [13], we simply use it to mitigate
systemic features (e.g., of the OS scheduler, hardware and software interrupts
etc.) inherent in the scenario above.

Probe location. An initial, manual scan of the SoC surface was conducted in
several stages to identify leakage related to the execution of three kernels: a

http://github.com/CircuitCo/BeagleBone-Black/blob/rev_a5c/BBB_PCB.zip
http://github.com/CircuitCo/BeagleBone-Black/blob/rev_a5c/BBB_PCB.zip

0 1000 2000 3000 4000 5000

Sample Index

A
m

pl
it

ud
e

(a) Uninterrupted.

0 1000 2000 3000 4000 5000

Sample Index

A
m

pl
it

ud
e

(b) Interrupted.

Fig. 2: Impact of interrupts on the acquisition process in Section 3: whereas the
uninterrupted case (left) yields a “clean” trace, the interrupted case (right) is
corrupted (during the annotated period).

0 100 200 300 400 500

Sample Index

A
m

pl
it

ud
e

(a) 300 MHz.

0 50 100 150 200 250

Sample Index

A
m

pl
it

ud
e

(b) 600 MHz.

0 50 100 150 200

Sample Index

A
m

pl
it

ud
e

(c) 800 MHz.

0 20 40 60 80 100 120 140 160

Sample Index

A
m

pl
it

ud
e

(d) 1 GHz.

Fig. 3: Impact of clock scaling on the acquisition process in Section 3: each trace
represents execution of AES under one of the four available clock frequencies.

0 10 20 30 40 50 60 70 80

Time (ms)

0

200

400

600

800

1000

1200

F
re

qu
en

cy
(M

H
z)

−70

−65

−60

−55

−50

−45

−40

−35

−30

Po
w

er
(d

b)

Fig. 4: Spectrogram plot of frequency band 0 to 1.25 GHz at our attack location,
with the profiling device cycling through three kernels: a total of three iterations
(left-to-right) of the memory intensive, spin-lock and computational (i.e., AES)
kernels is illustrated. Note a) the indicative frequency response of AES, and b)
the relatively narrow, low frequency range required to capture this response.

0 50 100 150 200 250

Sample Index

−100

−50

0

50

100

t-
st

at
is

ti
c

(a) Fixed-versus-random test.

0 10 20 30 40 50 60 70 80

Number of Traces (×1000)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

C
or

re
la

ti
on

(b) Single-bit correlation.

Fig. 5: Leakage analysis results for a free-running target using 85,000 sub-traces
matched at 600 MHz. The leakage detection test (left) shows leakage above the
significance threshold τ = 4.5 (marked in black on the Y-axis) throughout the
AES execution. The single-bit analysis (right) tracks the correct key bit hypoth-
esis of the first byte over the number of sub-traces used.

set of memory intensive operations, a spin-lock, and a set of computationally
intensive operations (namely AES encryption, as performed by OpenSSL). By
periodically cycling through the kernels and monitoring the frequency response
(illustrated by Figure 4), two distinct regions of interest were identified (shown in
Figure 1). We attribute one region (straddling the SoC edge and SRAM bus) to
the memory intensive kernel, and hence memory access. Given that the memory
bus is specific to this development kit, that no effort appears to have been made
to secure it, and that a complete operational datasheet is available7, we did not
feel it warranted further investigation even though it will likely yield exploitable
leakage. The second region is located centrally on the AM335x surface, over a
cluster of capacitors on the back-side of the board (specifically, around C94 and
C46). Motivated by a) the magnitude of the frequency response observed during
the AES execution, but also b) the long-term trend toward stacked fabrication
processes (and associated decrease in SNR), we fixed the probe location over
this support circuitry.

Acquisition tuning. The leakage from the selected region was identifiable using
relatively low frequencies alone, i.e., below 100 MHz. We expect this, to some
degree, since a) AES throughout is clearly lower than the system clock frequency
(one round is requires more than one instruction), and b) the on-chip discrete
components coupled with the capacitor behave as a low-pass filter. As such,
we applied a band-pass filter to the amplified signal centred on 45 MHz with
a bandwidth of 24 MHz. This is interesting in so far as it allows use of less
capable, and hence less expensive acquisition equipment. That is, rather than
use a high-specification oscilloscope, we were able to use a lower-specification
digitiser.

Bulk, or multi-block acquisitions. Our next step was to replace the artificial ker-
nels with a “free-running” uninstrumented OpenSSL client instance: no artificial

7 http://www.micron.com/parts/dram/ddr3-sdram/mt41k256m16ha-125

http://www.micron.com/parts/dram/ddr3-sdram/mt41k256m16ha-125

(e.g., hardware, via a GPIO pin) triggers are inserted. A coarse, soft trigger is
attractive, but strictly to limit acquisitions to a target session (i.e., one k) rather
than to provide alignment per se: each trace λi acquired therefore relates to l
invocations of AES rather than 1, i.e., each ci is now a (16 · l)-byte or l-block
ciphertext, as generated by the TLS record layer. Such a soft trigger is easily
realised via traffic analysis, and is additionally beneficial since it permits ci to
be known (i.e., sniffed) rather than controlled (i.e., injected) by the attacker.

Although we argue that this choice is more realistic than the alternative, it
has both positive and negative effects. On one hand, bulk acquisition significantly
reduces the wall-clock time required [6, Section 3] and allows the effect of data
and instruction caches to be largely ignored (since all but the first few AES
invocations will occur with a warm cache). On the other, we must address various
challenges relating to systematic noise that occurs over the longer time period
(and which for “one-shot” devices such as smart-cards, are normally irrelevant).

Interrupt detection and synchronisation. The OS may preempt a user process if
it does not voluntarily yield, or if the kernel needs to service an interrupt: use of
bulk acquisition necessitates we account for these interrupts, because they will
be observed more frequently during the computation of longer ciphertexts.

Figure 2 demonstrates that an uninterrupted versus interrupted trace can be
identified visually. We automate similar identification using the trace alignment
scores (i.e., a measure of the least squares [31, page 208]). To do so, we manually
identify and select a single uninterrupted trace for use as a template. We then
perform coarse alignment of all traces and record their score (versus the tem-
plate): if the score is above an experimentally determined threshold, the trace
is assumed to have been interrupted. For interrupted traces, we then have two
choices: discard them, or “clean” them by pruning the interrupted region. We
found the low sample rate used means interrupt pruning is highly error prone
(it is not always clear at which exact point the interrupt has ended and the
OpenSSL process has resumed); such errors desynchronise the trace (i.e., the
sub-trace for a given AES invocation) from the associated ciphertexts. Although
discarding traces imposes a penalty on the total number of traces required, we
opted for this approach.

Clock scaling. Finally, the OS may attempt to scale (or throttle) the clock
frequency to optimise power consumption. We observed cases where this oc-
curred, although found the device would typically stabilise at 600 MHz once the
OpenSSL process becomes active. AES execution under each clock configuration
is shown in Figure 3, with the difference between cases clearly highlighting the
resulting misalignment.

By sampling well above the Nyquist rate, it may be possible to infer the
clock rate by examining the response at specific frequencies (i.e., at 300 MHz,
600 MHz, 800 MHz and 1 GHz); such an approach may also facilitate interrupt
pruning (per the above). However, use of a low sampling rate, while advantageous
in other respects, rules this approach out. Instead, we simply created a template
of AES execution at each clock frequency: any trivial comparison between each

template and target trace reveals the clock frequency used, and yields a usable
subset of traces whose clock frequency is uniform.

3.2 Analysis and discussion

Summarising the section above, to mount a concrete attack we performed an
acquisition phase as follows:
1. Bulk acquire n = 1,000 traces, each including l = 256 encryption operations

(meaning 4 kB of traffic per trace, and ∼ 4 MB in total).
2. Deal with systemic noise by filtering for interrupts and clock scaling; in our

experience, this means discarding ∼ 20%.
3. From each remaining trace, extract a fragment or sub-trace for each encryp-

tion operation; match these with the associated ciphertexts.
4. Realign each sub-trace, and discard any corrupted or low-quality cases; in

our experience, this means discarding a further ∼ 5%.
This process yields a set of s < n · l remaining (sub-)traces, and for such n and
l took ∼ 6 min. Based on this set, we then attempted to exploit the leakage. To
do so, we mounted a single-bit correlation-based attack targeting the T-table
(or S-box) look-up in the final AES round. Figure 5b illustrates, without loss of
generality, an example for the first byte of k: it shows growth of the correlation
coefficient as the number of (sub-)traces increases. Note the correct (highlighted)
hypothesis is clearly distinguished using around 20,000 (sub-)traces, meaning we
could have bulk acquired as few as 100 traces (∼ 400 kB) and still have been
successful. In reality, fine-tuning n before the acquisition phase is difficult since
the attacker cannot control l (and indeed this may change from one trace to
another). However, using an adaptive choice of n such that s is large enough,
the attack still succeeds.

We benchmarked this attack against a traditional alternative where an arti-
ficial hardware trigger (which simultaneously aligns traces, and avoids the issue
of interrupts) and fixed clock frequency were used. We found key recovery was
possible with only 3,000 (sub-)traces, ∼ 7 times fewer than our free-running sce-
nario. We posit the gap between the two can be incrementally reduced, since it
essentially represents pre-processing inefficiency, deferring this to future work.

4 Hardware-based AES

In this section, we shift focus to hardware-based execution of AES using the
cryptographic co-processor. As in Section 3, the attacker can still observe the
computation of

ci = DUTAES-128-CBC
k (mi) λi

as invoked via OpenSSL. However, the underlying encryption operations are
performed using a hardware-based AES implementation. We suggest this is likely
to reflect use-cases such as Full Disk Encryption (FDE) given the potential to
marshal operations via DMA. In such a use-case, the attacker can access ci since
this will represent (a block of) ciphertext stored on, and readable from, the disk
in question.

4.1 Experimental outline

As noted in Section 2.1, there is scant documentation for the AM335x crypto-
graphic co-processor: our only insight into the internal design stems from device
drivers that support interaction with it. Since the drivers do not expose any
system calls for use by user processes, such interaction is realised concretely
by enabling the OpenSSL cryptodev extension: each encryption operation in-
voked is processed, by OpenSSL, via the associated cryptodev kernel module
and ultimately performed by the co-processor.

Black-box architectural analysis. Treating the co-processor as a black-box, we
use the functionality offered (i.e., ECB, CBC and CTR modes, with 128-, 192-
and 256-bit key sizes) and the extensive literature on similar hardware designs to
infer the (probable) internal design. Specifically, the registers exposed (e.g., for
the IV) and requirement to reinitialise the key register per invocation (so the key
schedule is likely recomputed for each encryption) suggest an iterative design: a
single (combinatorial) core is likely used by surrounding control logic in multiple
steps to realise each mode. The default driver behaviour capitalises on hardware
DMA support, via the scatter-gather mechanism, to operate autonomously from
the ARM core.

Signal hunting. During any exploration phase, it is important to first establish a)
an identifiable form and b) a base alignment point for the target signal; doing so
maximises the chances of successfully detecting leakage. The two challenges are
intrinsically linked, since a well defined form will facilitate alignment. However,
the former challenge is perceived as being simple, because the target operation
will typically yield a pronounced, identifiable form by virtue of how it is com-
puted and by what. This was true, for instance, in Section 3: we were able to
easily detect leakage from the ARM core by monitoring the frequency response
during execution. In contrast, this is not true for the co-processor: not only is it
unclear how AES is computed, we could not identify any periodic leakage signa-
ture linked to the AES operation. This is complicated further by virtue of the
fact that the co-processor operates (semi-)independently of the ARM core (thus
any hardware trigger used will be asynchronous to encryption operations).

Without any visual cues nor a reliable trigger, we were unsuccessful in detect-
ing leakage under fixed-versus-random tests at the probe locations identified in
Section 3. Further attempts to manually scan the AM335x surface at alternative
probe locations did not yield better results. However, we did manage to detect
the DMA strobes by locating a probe over the memory access region: these are, of
course, inherently related to encryption operations and hence (to some degree)
yield a (somewhat) synchronous trigger for activity by the co-processor. The
difficulty with capitalising on this fact is that any memory intensive instruction
sequence can cause false positives, rendering the trigger less reliable.

To combat this issue, we instead rely on saturating the DMA engine with
other work: this forces the driver into a non-DMA fall-back mode, which issues
interrupts for any memory management. These interrupts are used as a trigger
for AES operations on the co-processor. While less ideal than the free-running

0 200 400 600 800 1000 1200

Sample Index

Sa
m

pl
e

A
m

pl
it

ud
e

(a) Averaged trace.

0 200 400 600 800 1000 1200

Sample Index

−150

−100

−50

0

50

100

150

200

250

300

t-
st

at
is

ti
c

(b) Averaged t-test.

0 100 200 300 400

Sample Index

Sa
m

pl
e

A
m

pl
it

ud
e

(S
ca

le
d
×

5)

(c) Filtered trace.

0 100 200 300 400

Sample Index

−150

−100

−50

0

50

100

150

200

250

300

t-
st

at
is

ti
c

(d) Filtered t-test.

Fig. 6: Leakage detection test results for the AES co-processor running with a
saturated DMA. The two columns relate to an averaged trace (left) and the
related t-test result (right). The rows are indicative of raw unprocessed traces
(top) and traces post-processed via the wavelet analysis (bottom).

scenario in Section 3, we argue this is incrementally better than a GPIO-based
hardware trigger. Specifically, it requires an attacker controlled process be co-
resident on the target device (cf. “spy process” in access-driven cache attacks
such as [36]) rather than invasive alteration of the target process.

Testing strategy. With the trigger mechanism active, we placed several probes
at various locations on the AM335x surface and repeated the same fixed-versus-
random tests as above (using all available channels on the oscilloscope, sampling
at a rate of 2.5 GS/s). Their repeated failure led us to abandon generic fixed-
versus-random tests, and instead focus on more specifically tailored leakage de-
tection test vectors. A test plan was developed to target several leakage models,
using semi-fixed-versus-random [6, Section 5] test vectors. The only strategy
to yield detectable leakage (which we focus on subsequently as a result) was
Hamming distance; the associated test vectors force a small Hamming distance
between round input and output. Figure 6 shows an averaged trace and the re-
sulting t-test result (over 10,000 traces); note that the t-statistic far exceeds our
significance threshold of τ = 4.5.

Signal processing and detrending. Although the leakage detection step was suc-
cessful, it gave us little insight into the signal characteristics. As a first step, we

carried out an automated scan of the AM335x surface, performing semi-fixed-
versus-random tests (over 400 traces) at increments of 1 mm in each dimension;
the location yielding the highest t-statistic will likely maximise our chances of
success during key recovery.

Having optimised the probe location, we applied wavelet analysis [15] in an
attempt to increase the SNR. There are already results [10,16] demonstrating
wavelet transforms effective for filtering (denoising) and decomposition analysis
in the context of side-channel attack. In general, denoising involves applying a
soft-threshold [17,18] on the details components at each filter level before resyn-
thesising the (clean) signal. However, a high-magnitude, semi-correlated interfer-
ence signal overlaid the low-magnitude signal of interest. Both signals separately
had low-noise but the interference reduced the SNR of the signal of interest. As
the interference contained overlapping frequencies with the signal of interest, a
wavelet based detrending scheme, as used in [39], provided an effective and ef-
ficient approach for separation. After trying various wavelets, ones with a lower
number of vanishing moments provided better results, indicating the need for a
fast response to sudden changes in the interference [15,41]. The detrending tech-
nique follows a simple algorithm, inspired by the wavelet shrinkage techniques
as described in [10,16]. First, perform the DWT [30] with the Haar wavelet. The
low ratio of the sampling rate over frequency content of the signal required only
a single level computed. Then, set all of the resulting approximation coefficients
to zero before performing an inverse DWT on the detail coefficients. The result-
ing signal (shown in Figure 6) with the interference extracted, yields a stronger
result from the leakage detection test.

4.2 Analysis and discussion

Summarising the section above, to mount a concrete attack we performed an
acquisition phase as follows:
1. Saturate the DMA mechanism such that the driver operates in the non-DMA

fall-back mode.
2. Acquire n = 500,000 traces, each associated with 1 encryption operation

and averaged over l = 1,000 trials; match these traces with the associated
ciphertexts.

3. Apply wavelet post-processing to each trace to maximise SNR.
Note that our interrupt-based trigger offers the best alignment achievable; post-
processing to improve alignment was impossible, due to the lack of an identifiable
form for AES operations. The acquisition process took around 3 days. To exploit
the leakage, we then applied a single-bit correlation-based attack: if si denotes
the AES state after i iterations through the AES core, we target D(si−1, si) for
i = 10 relating to the final AES round. This succeeded in recovering k (albeit
with a modest amount of key enumeration to cope with one lower-ranked byte).

There are (at least) three important conclusions to draw from the above.
First, the effort required to identify leakage from the device far outweighs that
of subsequent acquisition and attack phases: only by using a rigorous leakage
detection methodology were we able to get a satisfactory outcome. Second, a

gap exists: although Figure 6 indicates that strong leakage is identified, our
attack is unable to capitalise on this efficiently. This suggests that while leakage
detection is a necessary first step, translating it into an accurate leakage model
(in our case, Hamming distance seems not to be so) is also important in concrete
attack scenarios. Third, while black-box analysis gave some insight into the co-
processor architecture, this did not extend to the internal implementation. In
particular, the initial failure of our testing strategy suggests either a) the trigger
mechanism is not accurate enough to align traces correctly, hence decimating
the SNR, and/or b) the co-processor is, in some way, protected against side-
channel attacks. If the latter is true, it remains unclear which countermeasure is
implemented: in contrast with Heinz et al. [24], for example, there is no structure
in the signal that suggests time-based hiding, but equally attempted higher-
order attacks on possible masking strategies were unsuccessful. Either way, if
a countermeasure is implemented, then we conclude it only seems effective in
increasing attack cost rather than preventing an attack.

5 NEON

NEON is a general-purpose SIMD extension to Cortex A-series ARM cores,
harnessed, for example, by Bernstein and Schwabe [8] to both accelerate cryp-
tographic workloads and deliver constant execution time. In terms of the ISA,
each vector instruction �w processes vector operands with l = n

w elements (or
sub-words), each w-bits in size; n ∈ {64, 128} is determined by the instruction
type (more specifically, whether the operands are double- or quad-words). For
the simplest case of a pure vector operation, we can therefore say

r = x�w y 7→ 〈rw[0] = xw[0]�w yw[0], . . . , rw[l − 1] = xw[l − 1]�w yw[l − 1]〉

where tw[j] = t[j · w, . . . , (j + 1) · w − 1] is the j-th w-bit (scalar) sub-word
of vector t, and �w is the operation � for such sub-words. The ISA naturally
captures standard logical (e.g., � = ⊕ with w = 1) and arithmetic (e.g., � =
+ with w = 8, w = 16 or w = 32) operations, plus various more specialist
extensions. Note that although the semantics of quad-word NEON instructions
suggest they process 128-bit operands, the pipeline will in fact issue two 64-bit
micro-operations.

5.1 Instruction-level characterisation

In this section we study leakage from (a subset of) NEON instructions by focus-
ing on observation of

ri = DUT�
w

(xi,yi) λi

for a range of �w but, without loss of generality, on w ∈ {8, 32} bit sub-words
within double-word, i.e., n = 64 bit, operands. Given that the NEON pipeline is
tightly coupled to the ARM pipeline, we reason the two will be physically close
on the AM335x surface; as such, we retain the same experimental configuration
(e.g., same probe location) as Section 3. However, our specific remit means we

compromise by using a strictly controlled profiling device: a hardware trigger is
used throughout to support instruction-level (i.e., cycle-accurate) alignment and
hence a lower bound on success rate.

Leakage detection. We performed an initial exploration focused on a limited,
indicative set of NEON instructions: the aim was to gather general intuition
about their leakage characteristics. As such, we considered various potential
sources of leakage. Consider, for example, execution of a vector XOR instruc-
tion (e.g., veor.u32 d0,d1,d2): one could potentially observe leakage related to
operand reads (i.e., from d1 and/or d2), computation of the operation, or result
write-back (i.e., to d0).

In summary, the results show that a) clear operation-dependent SPA leakage
is evident, allowing, for example, construction of per-instruction templates, and
b) data-dependent leakage is evident, but from result write-back only: we could
identify no leakage relating to operand reads. The latter fact, i.e., the statistically
observable difference between write-back of random versus fixed results, confirms
that the leakage point relates to said step (not reading operands from memory).

Hamming weight leakage. Having identified a set of leakage points, our next
goal was to analyse and exploit their structure. More specifically, we attempted
to align the characterisation with standard attacks by tracking the Hamming
weight of results written-back against associated leakage. This is achieved by
amending the fixed-versus-random methodology, so semi-fixed test vectors are
selected (for a given Hamming weight).

The results of this analysis, plus their utility, are discussed in the following
sections. We stress that, throughout, the Hamming weight of the entire n-bit
result is considered: our results show that focusing on an individual w-bit sub-
word is feasible, but with the expected increase the number of traces. That is, if
one considers leakage with regards to a single w-bit sub-word then the other l−1
sub-words can be considered noise (thus overcome by acquiring more traces).

Arithmetic and logical operations. Figure 7 illustrates leakage from two specific
NEON instructions pertinent to cryptography. The (vector) XOR case is in-
dicative of most instructions, in the sense that clear separation between distinct
Hamming weights is evident. In contrast, the vector polynomial multiplication is
something of a special case. The separation between distinct Hamming weights
is still evident, and potentially relevant to cryptographic use-cases (e.g., [9]).
However, unlike the other instructions there is some “cross over” with regard to
the Hamming weight and signal that we cannot currently explain.

Comparison operations. Figure 8 illustrates leakage from a NEON vector com-
parison instruction. In contrast to a scalar comparison on the ARM core (which
produces a 1-bit result in the CPSR status register), a NEON vector comparison
sets (or clears) all w bits in each sub-word to signal true or false (i.e., forms a
mask). Without loss of generality, we focus on equality comparison:

rw[j] =

{
2w − 1 if xw[j] = yw[j] ,

0 otherwise.

0 20 40 60 80 100 120

Sample Index

−0.10

−0.05

0.00

0.05

0.10

Sa
m

pl
e

A
m

pl
it

ud
e

0

8

16

24

32

40

48

56

64

H
am

m
in

g
W

ei
gh

t

(a) veor.u32 instruction (raw).

59.5 60.0 60.5 61.0 61.5 62.0

Sample Index

0.075

0.080

0.085

0.090

0.095

0.100

Sa
m

pl
e

A
m

pl
it

ud
e

0

8

16

24

32

40

48

56

64

H
am

m
in

g
W

ei
gh

t

(b) veor.u32 instruction (zoom).

0 20 40 60 80 100 120

Sample Index

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

Sa
m

pl
e

A
m

pl
it

ud
e

0

8

16

24

32

40

48

56

64

H
am

m
in

g
W

ei
gh

t

(c) vmul.p8 instruction (raw).

65.5 66.0 66.5 67.0 67.5

Sample Index

0.0680

0.0685

0.0690

0.0695

0.0700

0.0705

0.0710

Sa
m

pl
e

A
m

pl
it

ud
e

0

8

16

24

32

40

48

56

64

H
am

m
in

g
W

ei
gh

t

(d) vmul.p8 instruction (zoom).

Fig. 7: Illustration of Hamming weight leakage for a (limited) set of NEON arith-
metic and logical instructions (where w = 32).

This can be used to support branch-free, constant-time implementations: the
resulting mask is used to control conditional execution of subsequent operations
in each sub-word, replacing conditional control-flow by conditional data-flow.

Our results demonstrate two important facts. First, analysis of leakage from a
vector comparison reveals the (total) number of sub-word results that were true
(or false); this is as expected, given the maximal and minimal Hamming weight
of the outputs (i.e., masks) produced in each case. Second, as demonstrated
by Figure 10, it is possible to target a specific sub-word, and hence ascertain
whether it has the value 2w − 1 or 0. Doing so means considering each sub-word
independently, treating the remaining sub-words as noise (cf. single-bit DPA).

5.2 A concrete attack on AES

The charactisation above clearly suggests Hamming weight leakage can be lever-
aged in concrete attacks. As justification, we consider a scenario where the at-
tacker can observe computation of

mi = DUTAES-128-CBC
k (ci) λi

but alter how AES itself is realised (compared with Section 3 and Section 4): we
instead target the NEON-based bit-sliced implementation in OpenSSL (which
stems from work by Käsper and Schwabe [26], and was enabled via the pre-
processor flag -DBSAES_ASM).

0 20 40 60 80 100 120

Sample Index

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

Sa
m

pl
e

A
m

pl
it

ud
e

0 matches
1 matches
2 matches

(a) vceq.u32 instruction (raw).

48.0 48.5 49.0 49.5 50.0

Sample Index

−0.034

−0.032

−0.030

−0.028

−0.026

Sa
m

pl
e

A
m

pl
it

ud
e

0 matches
1 matches
2 matches

(b) vceq.u32 instruction (zoom).

Fig. 8: Illustration of Hamming weight leakage for NEON comparison instruc-
tions (where w = 32).

0 200 400 600 800 1000 1200

Sample Index

0.00

0.05

0.10

0.15

0.20

0.25

A
m

pl
it

ud
e

(a) Single averaged trace.

0 5000 10000 15000 20000 25000 30000

Number of Traces

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

C
or

re
la

ti
on

(b) Single byte correlation.

Fig. 9: Illustration of decryption (for a 128-byte ciphertext) using the NEON-
based bit-sliced implementation of AES in OpenSSL; the corresponding correla-
tion coefficient evolution suggests the attack succeeds with ∼ 5,000 traces.

This particular implementation is triggered if ci is sufficiently large (namely
128 bytes, falling-back to an alternative implementation otherwise). Although
we note the techniques in Section 3 remain broadly applicable, for clarity we
retain the same experimental environment as Section 5.1 (e.g., with a hardware
trigger). The attack then proceeds in a fairly straightforward manner: we simply
use key (byte, due to the representation of data used by the implementation)
hypotheses based on Hamming weight of the intermediate state after the first
round InvSubBytes operation in a standard, correlation-based approach. The
attack succeeds with ∼ 5,000 traces, requiring 5000 · 128 = 625 kB of ciphertext.

5.3 A theoretical attack on NORX

Perhaps more so than other operations, the relevance of leakage from a vector
comparison needs motivation. As such, consider NORX [4], an AEAD-based
CAESAR candidate whose reference implementation8 harnesses NEON. The

8 See http://github.com/norx/NORX. We stress our analysis should in no way be
inferred as criticism of NORX within the context of CAESAR.

http://github.com/norx/NORX

0 20 40 60 80 100 120

Sample Index

−3

−2

−1

0

1

2

3

D
if

fe
re

nc
e

of
M

ea
ns

×10−4

(a) Sample difference.

0 500 1000 1500 2000

Number of Averaged Trials

−6

−4

−2

0

2

4

6

D
if

fe
re

nc
e

of
M

ea
ns

×10−4

(b) Difference over averaged trials.

Fig. 10: Illustration of a single-word attack on vceq.u32: the black hypothesis
for rw[j] = 2w − 1 (i.e., where the comparison is true, without loss of generality
for j = 0) is clearly distinguished after averaging over 1,000 trials.

NORX32-6-1 parametrisation (i.e., for 32-bit word size, 6 rounds, parallelism
degree 1, and 128-bit tag size) verifies tags as follows

/* Verify tag */
A = vceqq_u32(A, LOADU(c + 0));
return 0xFFFFFFFF == (vgetq_lane_u32(A, 0) & vgetq_lane_u32(A, 1) &

vgetq_lane_u32(A, 2) & vgetq_lane_u32(A, 3)) ? 0 : -1;

noting the state A (representing the computed tag) is compared with the received
tag using vector comparison on 32-bit sub-words.

On one hand this is attractive since a) it is likely more efficient than four
sequential 32-bit comparisons, and b) it is constant-time, unlike an alternative
such as use of memcmp. On the other hand, consider a (purely hypothetical)
scenario where an attacker has access to a decryption oracle, i.e., execution of

DUTNORX32-6-1
k (ci) λi

for chosen ci can be observed. The resulting leakage can be used to enable tag
forgery: the attacker is able to determine the total number of matching sub-words
for a candidate tag, so requires O(232) queries (albeit with a constant factor that
hides the cost of dealing with noise etc. in acquisitions) to brute-force search for
a tag matching ciphertext of their choice. Whether or not such an approach is
feasible in practice clearly depends on the context, but equally clear is the gap
between this and the supposed (theoretical) security level.

6 Conclusions

In this paper we present concrete, EM-based analysis of the AM335x SoC and
software executing on it. Although hard to compare directly, a summary of our
results targetting CBC-based AES is shown in Table 1. Beyond this, however,
we draw several more general conclusions:

Section Operation Implementation Hardware Trigger Acquisitions Data

3 Decryption T-tables ARM core GPIO-based 3,000 46 kB

3 Encryption T-tables ARM core Network-based 100 400 kB

4 Encryption Hardware Co-processor DMA-based 500,000 7 GB

5 Decryption Bit-sliced NEON core GPIO-based 5,000 625 kB

Table 1: Summary of results.

1. Despite suggestions to the contrary [32], higher clock frequency does not
imply a requirement for a high sampling rate: instruction- or cycle-level res-
olution may yield better results, but we still observed exploitable leakage at
much lower frequencies (mirroring observations such as in [22]). This fact
refutes any suggestion that the impact of EM-based attacks (against targets
of this complexity) is lessened by cost: for example, in Section 3 a (post-
characterisation, i.e., excluding the XY-table) attack can be mounted using
∼ $1,800 of equipment (including a suitable low-end oscilloscope in place of
the digitiser, and hand-made 30 AWG coil, 15-turn probe).

2. For devices of this complexity, the value offered by the TVLA methodology
is significant: we suggest that an ad hoc analysis would have been difficult or
ineffectual, particularly in the context of an unknown target (as in Section 4).

3. Target complexity suggested at a high level does not imply the same com-
plexity at lower levels. Our results demonstrate this fact in two examples.
First, we were able to bypass complexity relating to the SoC architecture or
fabrication technology by targeting support circuitry in Section 3. Second, in
Section 5, we observed that parallelism suggested in the NEON ISA (tradi-
tionally viewed as a complicating factor in DPA, for example) is not realised
in the micro-architecture: This is of relevance to constructions (e.g., [33],
albeit studied in the context of hardware) that rely on parallelism somehow.

4. Although the drive for efficient, constant-time implementation using NEON
is clearly important, it seems prudent to proactively consider when/how
such an approach can enable other forms of leakage. For example, Section 5
demonstrates that vector comparison, while advantageous in the sense of
having a fixed latency, will still leak information about sub-word (in)equality.

5. Software such as OpenSSL is now becoming commonplace in (embedded)
scenarios in which it might traditionally have been deemed too heavy-weight.
As a result, alongside the challenging goal of securing such software against
network-based attacks, it is starting to seem of long-term importance that
countermeasures for hardware side-channels are also proactively considered.

Acknowledgements

Jake Longo has been supported in part by a studentship under the EPSRC
Doctoral Training Partnership (DTP) scheme. The authors would like to thank
Pankaj Rohatgi for general discussion, and Sami Saab for specific help with signal
processing/analysis. We also thank both Billy Brumley and Markku Saarinen for
their insight on NEON-based implementation, Martijn Stam for discussion about
AEAD, and the NORX team, all of who help improved Section 5.

References

1. D. Aboulkassimi, M. Agoyan, L. Freund, J.J.A. Fournier, B. Robisson, and A. Tria.
ElectroMagnetic Analysis (EMA) of software AES on Java mobile phones. In
Information Forensics and Security (WIFS), pages 1–6, 2011.

2. D. Aboulkassimi, J.J.A. Fournier, L. Freund, B. Robisson, and A. Tria. EMA as a
physical method for extracting secret data from mobile phones. IJCSA, 2(1):16–25,
2013.

3. D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi. The EM side-channel(s).
In CHES, pages 29–45. LNCS 2523, 2003.

4. J.-P. Aumasson, P. Jovanovic, and S. Neves. NORX. CAESAR submission speci-
fication, version 1.1, 2014. http://norx.io/data/norx.pdf.

5. J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and I. Verbauwhede. Power analysis
of Atmel CryptoMemory – recovering secret keys from secure EEPROMS. In CT-
RSA, pages 19–34. LNCS 7178, 2012.

6. G.T. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy,
T. Kouzminov, A. Leiserson, M. Marson, P. Rohatgi, and S. Saab. Test Vector
Leakage Assessment (TVLA) methodology in practice. In ICMC, 2013.

7. G.T. Becker, M. Kasper, A. Moradi, and C. Paar. Side-channel based watermarks
for IP protection. In COSADE, pages 47–50, 2010.

8. D.J. Bernstein and P. Schwabe. NEON crypto. In CHES, pages 320–339. LNCS
7428, 2012.

9. D. Câmara, C.P.L. Gouvêa, J. López, and R. Dahab. Fast software polynomial
multiplication on ARM processors using the NEON engine. In CD-ARES, pages
137–154. LNCS 8128, 2013.

10. X. Charvet and H. Pelletier. Improving the DPA attack using wavelet transform.
In NIST Physical Security Testing Workshop, 2005.

11. T. Chothia and A. Guha. A statistical test for information leaks using continuous
mutual information. In CSF, pages 177–190, 2011.

12. O. Choudary and M.G. Kuhn. Efficient template attacks. In CARDIS, pages
253–270, 2013.

13. O. Choudary and M.G. Kuhn. Template attacks on different devices. In COSADE,
pages 179–198, 2014.

14. J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.
15. I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series

in Applied Mathematics. Society for Industrial and Applied Mathematics, 1992.
16. N. Debande, Y. Souissi, M.A.E. Aabid, S. Guilley, and J. Danger. Wavelet trans-

form based pre-processing for side channel analysis. In MICROW, pages 32–38,
2012.

17. D.L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information
Theory, 41(3):613–627, 1995.

18. D.L. Donoho and I.M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425–455, 1994.

19. D. Du, S. Narasimhan, R. Subhra Chakraborty, and S. Bhunia. Self-referencing:
A scalable side-channel approach for hardware Trojan detection. In CHES, pages
173–187. LNCS 6225, 2010.

20. T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M.T. Manzuri
Shalmani. On the power of power analysis in the real world: A complete break of
the KeeLoq code hopping scheme. In CRYPTO, pages 203–220. LNCS 5157, 2008.

21. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results.
In CHES, pages 251–261. LNCS 2162, 2001.

http://norx.io/data/norx.pdf

22. D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer. Stealing keys from PCs
by radio: Cheap electromagnetic attacks on windowed exponentiation. Cryptology
ePrint Archive, Report 2015/170, 2015. http://eprint.iacr.org/.

23. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side-
channel resistance validation. In NIST Non-Invasive Attack Testing Workshop,
2011.

24. B. Heinz, J. Heyszl, and F. Stumpf. Side-channel analysis of a high-throughput
AES peripheral with countermeasures. In ISIC, pages 25–29, 2014.

25. Texas Instruments. AM335x Sitara processor datasheet. Technical Report
SPRS717G, TI, 2014. http://www.ti.com/lit/ds/symlink/am3358.pdf.

26. E. Käsper and P. Schwabe. Faster and timing-attack resistant AES-GCM. In
CHES, pages 1–17. LNCS 5747, 2009.

27. M. Kasper, T. Kasper, A. Moradi, and C. Paar. Breaking KeeLoq in a flash: On
extracting keys at lightning speed. In AFRICACRYPT, pages 403–420. LNCS
5580, 2009.

28. P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, pages
388–397. LNCS 1666, 1999.

29. J. Longo, E. De Mulder, D. Page, and M. Tunstall. SoC it to EM: electromagnetic
side-channel attacks on a complex system-on-chip. Cryptology ePrint Archive,
2015. http://eprint.iacr.org/.

30. S.G. Mallat. A theory for multiresolution signal decomposition : the wavelet rep-
resentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(7):674–693, 1989.

31. S. Mangard, E. Oswald, and T. Popp. Power analysis attacks: Revealing the secrets
of smart cards. Springer, 2008.

32. E. Mateos and C.H. Gebotys. Side channel analysis using Giant Magneto-Resistive
(GMR) sensors. In COSADE, pages 42–49, 2011.

33. M. Medwed, F.-X. Standaert, and A. Joux. Towards super-exponential side-channel
security with efficient leakage-resilient PRFs. In CHES, pages 193–212. LNCS 7428,
2012.

34. A. Moradi, A. Barenghi, T. Kasper, and C. Paar. On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from Xilinx
Virtex-II FPGAs. In CCS, pages 111–124, 2011.

35. A. Pellegrini, V. Bertacco, and T. Austin. Fault-based attack of RSA authentica-
tion. In DATE, pages 855–860, 2010.

36. C. Percival. Cache missing for fun and profit, 2005. http://www.daemonology.

net/papers/htt.pdf.
37. J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA): Measures and

counter-measures for smart cards. In E-SMART, pages 200–210. LNCS 2140, 2001.
38. P. Rohatgi. Electromagnetic attacks and countermeasures. In Cryptographic En-

gineering, pages 407–430. Springer, 2009.
39. S. Saab, A. Leiserson, and M. Tunstall. Efficient key extraction from the pri-

mary side of a switched-mode power supply. Cryptology ePrint Archive, Report
2015/512, 2015. http://eprint.iacr.org/.

40. J. Scahill and J. Begley. iSpy: The CIA campaign to steal Apple’s se-
crets. The Intercept, 2015. http://firstlook.org/theintercept/2015/03/10/

ispy-cia-campaign-steal-apples-secrets/.
41. G. Strang and G.J. Fix. An Analysis of the Finite Element Method. Automatic

Computation. Prentice-Hall, 1973.
42. H. Uno, S. Endo, Y. Hayashi, N. Homma, and T. Aoki. Chosen-message elec-

tromagnetic analysis against cryptographic software on embedded OS. In EMC,
2014.

http://eprint.iacr.org/
http://www.ti.com/lit/ds/symlink/am3358.pdf
http://eprint.iacr.org/
http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf
http://eprint.iacr.org/
http://firstlook.org/theintercept/2015/03/10/ispy-cia-campaign-steal-apples-secrets/
http://firstlook.org/theintercept/2015/03/10/ispy-cia-campaign-steal-apples-secrets/

43. A. Zajic and M. Prvulovic. Experimental demonstration of electromagnetic infor-
mation leakage from modern processor-memory systems. IEEE Transactions on
Electromagnetic Compatibility, 56(4):885–893, 2014.

	SoC it to EM: electromagnetic side-channel attacks on a complex system-on-chip

