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Abstract. In this paper, we propose a new hardware friendly authen-
ticated encryption (AE) scheme TriviA based on (i) a stream cipher for
generating keys for the ciphertext and the tag, and (ii) a pairwise in-
dependent hash to compute the tag. We have adopted one of the ISO-
standardized stream ciphers for lightweight cryptography, namely Triv-
ium, to obtain our underlying stream cipher. This new stream cipher has
a state that is a little larger than the state of Trivium to accommodate
a 128-bit secret key and IV. Our pairwise independent hash is also an
adaptation of the EHC or “Encode-Hash-Combine” hash, that requires
the optimum number of field multiplications and hence requires small
hardware footprint. We have implemented the design in synthesizable
RTL. Pre-layout synthesis, using 65 nm standard cell technology under
typical operating conditions, reveals that TriviA is able to achieve a high
throughput of 91.2 Gbps for an area of 24.4 KGE. We prove that our
construction has at least 128-bit security for privacy and 124-bit security
of authenticity under the assumption that the underlying stream cipher
produces a pseudorandom bit stream.

Keywords: Trivium, stream cipher, authenticated encryption, pairwise
independent, EHC, TriviA.

1 Introduction

The emergence of Internet-of-Things (IoT) has made security an extremely im-
portant design goal. A huge number of embedded devices are online and this
online presence opens myriads of possibilities to a third party intruder to alter
the communication between two devices. Hence, a critical information trans-
fer requires a secure channel. Symmetric-key encryption provides privacy by
securing the channel, whereas message authentication codes (MACs) are used
to provide integrity and authenticity assurances. Using an appropriate, efficient
combination of symmetric key encryption and MAC, also called authenticated
encryption [10, 25], one can achieve both privacy and authenticity. An interest
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in new efficient and secure solutions of authenticated encryption is manifested
in the recently launched competition called CAESAR [3].

Authenticated encryption can be achieved using either a stream cipher or a
block cipher or both. The general opinion seems to be that stream ciphers can be
designed to offer high throughput/ area ratios, a desired performance metric for
embedded devices. Trivium [16], Grain [23], Mickey [9] etc. are prominent exam-
ples of implementation-friendly stream ciphers from the eSTREAM project [4].
Trivium has been specified as an International Standard under ISO/IEC 29192-3
for the lightweight cryptography category [5].

Authenticated Encryption based on Stream Cipher. A method of us-
ing stream cipher for the construction of authenticated encryption scheme is
described by Bernstein [12]. The authenticated encryption scheme HELIX [19]
and later PHELIX [35] are designed based on a stream cipher. Both were later
attacked [31, 36]. Grain has been modified to Grain-128 [24] to support an in-
tegrated authentication mechanism. To the best of our knowledge, in the ETSI
specification [1], combining the stream cipher SNOW-3G [2] with polynomial
hash, and later by Sarkar [33], a study on constructions of authenticated encryp-
tions using stream cipher and ∆U hash have been made. Integrating universal
hash with other cryptographic primitives has also been studied by Bernstein [11].

Our Contribution. In this paper, we propose a new stream cipher TriviA-SC
which is a modification of Trivium [16], a well-studied and efficient (both in
terms of software and hardware) stream cipher. Moreover, our new stream cipher
has a key and a initial value of 128 bits. We introduce non-linearity in the
output stream which helps to resist some known approaches of finding the key
for Trivium. We also study a ∆-Universal hash EHC [32], parametrized by a
parameter d, which requires a minimum number of field multiplications and can
be implemented with small hardware footprint. In the paper by Nandi [32], the
∆U property (a close variant of pair-wise independent property) of EHC is shown
for d ≤ 4. Here we extend their result and show that the same hash function is
a ∆U hash for d = 5. This choice of d helps us to make a higher security claim.

Finally, we describe an efficient integration of these primitives to construct
a new authenticated encryption scheme-TriviA constructed as a variant of the
stream cipher based modes described by Sarkar [33]. We would like to point out
that EHC requires a variable key to incorporate variable length messages and the
security of it relies on the assumption that all the keys are chosen independently.
However, in an authenticated encryption mode, we have to leak the key through
ciphertext and the independence assumption is no longer true. We show that
TriviA achieves 128-bit security for privacy and 124-bit security for authenticity,
assuming that Trivia-SC produces pseudorandom bit stream.

We also report the hardware performance of TriviA on both FPGA and ASIC
platforms and make a comparative study with other authenticated encryption
schemes implemented in a similar platform. We have observed that, TriviA is
very efficient in terms of throughput, cycles per byte and area-efficiency. For
area-efficiency metric TriviA is at least 3.8 times better than the closest candidate
Ascon from our list.
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2 Preliminaries

Notation. We represent a tuple (Xa, · · · , Xb) by X[a · · · b], when the Xi’s are
bit strings, we also identify the tuple as the concatenation Xa‖ · · · ‖Xb. For a set
S, let S+ = ∪∞i=1S

i, S≤n = ∪ni=1S
i and S∗ = S+ ∪ {λ} where λ is the empty

string. The usual choice of S is {0, 1}. For ∀x = x1 . . . xn ∈ {0, 1}∗, denote n by
|x|. The string with one followed by n zeroes is denoted by 10n. Let the number
of n-bit blocks in a Boolean string x be denoted by `nx = |x|/n.

Finite Field. Let F2n denote the finite field over {0, 1}n, for a positive inte-
ger n. In this paper, we consider the primitive polynomials [18, 29] p32(x) =
x32 +x22 +x2 +x+1 and p64(x) = x64 +x4 +x3 +x+1 to describe F232 and F264

respectively. Denote the corresponding primitive elements by α and β which are
binary representations of 2. The field addition or bit-wise addition is denoted as
“xor” ⊕. Note that multiplication by powers of α, β are much simpler than mul-
tiplication between two arbitrary elements. For example, multiplication between
an arbitrary element a := (a0, . . . , a31) ∈ {0, 1}32 and α is a · α = (b0, . . . , b31)
where b0 = a31, b1 = a0 ⊕ a31, b2 = a1 ⊕ a31, b22 = a21 ⊕ a31 and for all other
i, bi = ai−1. Similarly, we express the multiplication of other powers of primi-
tive elements by some linear combinations of the bits ai’s. This representation
is useful when we implement power of α and β multipliers in hardware.

2.1 Authenticated Encryption and Its Security Definitions

An authenticated encryption FK is an integrated scheme that provides both
privacy of a plaintext M ∈ {0, 1}∗ and authenticity or data integrity of the
plaintext M as well as the associate data D ∈ {0, 1}∗. Thus, on the input of a
public variable nonce N (it can be considered as an arbitrary number distinct
for every encryption), associate data D ∈ {0, 1}∗ and a plaintext M ∈ {0, 1}∗,
FK produces a tagged-ciphertext (C, T ) where |C| = |M | and |T | = t (tag-
size, usually 128). Its inverse or decryption algorithm F−1

K returns ⊥ for all
those (N,D,C, T ) for which no such M exists, otherwise it returns M for which
(C, T ) is the tagged-ciphertext.

Privacy. A distinguishing advantage of A against two oracles O1 and O2 is
defined as ∆A(O1;O2) = |Pr[AO1 = 1]−Pr[AO2 = 1]|. Given a nonce-respecting
adversary A (nonces for every encryption are distinct) we define the privacy or

PRF-advantage of A against F as Advprf
F (A) := ∆A(FK ; $) where $ returns

a random string of appropriate size. The PRF-advantage of F is defined as

Advprf
F (q, σ, t) = max

A
Advprf

F (A) ,

where the maximum is taken over all adversaries running in time t and making
q queries with total bit-size of all responses at most σ.

Authenticity. We say that an adversary A forges an authenticated encryption
F if A outputs a fresh (not obtained before through an F -query) (N,D,C, T )
where F−1

K (N,D,C, T ) 6= ⊥. In general, a forger can make qf forging attempts
where N can repeat. We denote the forging advantages as
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Advauth
F (A) := Pr[AF forges], Advauth

F (q, qf , σ, t) = max
A

Advauth
F (A) ,

where the maximum is taken over all adversaries running in time t making q
queries and qf forging attempts with total bit-size of all responses at most σ.

2.2 Examples of Universal Hash Functions

A keyed hash function h(K; ·) over D is called an ε-∆U (universal) hash
function if for all δ, the δ-differential probability

Pr[h(K;x)− h(K;x′) = δ] ≤ ε for all x 6= x′ ∈ D .

In this paper, we conventionally assume the hash keys are uniformly chosen
from the key-space. A hash function h is called ε-universal (or ε-U) if the 0-
differential probability (or collision probability) is at most ε for all x 6= x′. We
call h ε-balanced if for all a, b, Pr[h(K; a) = b] ≤ ε.

Examples. The Multi-linear hash ML(k1;x1) := k1·x1 and Pseudo-dot-product
(or PDP) hash PDP(k;x) := (x1 ⊕ k1) · (x2 ⊕ k2), with k = k1||k2 and x =
x1||x2 are two popular examples of 2−32-∆U hash where x1, x2, k1, k2 ∈ F232 and
k, x ∈ F264 . One can check that the ∆U property of a hash using independent
keys is closed under summation. This is a useful technique to define a hash for
larger domain, e.g. we can add the invidual PDP values corresponding to the
message and key blocks to obtain a ∆U hash

⊕m
i=1(k2i−1 ⊕ x2i−1) · (k2i ⊕ x2i)

for x = (x1, · · · , x2m) and k = (k1, · · · k2m).

3 EHC Hash

This section describes a ∆-Universal hash EHC or Encode-Hash-Combine hash,
which is constructed using an error correcting code ECCoded of distance d. We

first describe a Vandermonde matrix of size d× `, denoted V
(d)
γ , γ as a primitive

element of F2n is defined below. For n = 32 and 64 the matrices are denoted by

V
(d)
α and V

(d)
β respectively.

V (d)
γ =




1 · · · 1 1 1
γ`−1 · · · γ2 γ 1
γ2(`−1) · · · γ4 γ2 1

... · · ·
...

...
...

γ(`−1)(d−1) · · · γ2(d−1) γd−1 1




.

We have observed that, whenever 1, γ, . . . , γ`−1 are distinct, any s ≤ d
columns of V are linearly independent. We next describe the VMult algorithm

for multiplying V
(d)
α to a vector h = (h1, . . . , h`) ∈ F`32 in an online manner

using Horner’s rule without requiring any additional memory.
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Algorithm VMultα,d
Input: x := (x1, x2, ..., x`) ∈ F`

232

Output: y := (y1, y2, . . . , yd) ∈ Fd
232

such that y = V (d)
α · x

1 y1 = · · · = yd = 032

2 for i = 1 to `
3 for j = 1 to d: yj ← αj−1 · yj ⊕ xi ; \∗ VHorner module ∗\
4 return (y1, . . . yd);

Algorithm 1: VMultα,d multiplies an `-dimensional column vector x = (x1, . . . , x`) by

a Vandermonde matrix V
(d)
α to output a d-dimensional vector y := V

(d)
α ·x. Similarly we

define VMultβ,d for 64-bit field elements. Note that, α and β are the primitive elements
of F232 and F264 , respectively described in Sect. 2. When we implement this algorithm
in hardware we only need to implement VHorner.

3.1 ECCode

We next describe the efficient instantiation of an error correcting code ECCoded
with systematic form over {0, 1}64.

ECCoded(x1, . . . , x`) = (x1, . . . , x`, x`+1, . . . , x`+d−1) , (1)

where (x`+1, . . . , x`+d−1) = VMultβ,(d−1)(x1, . . . , x`).

Example 1. Let (x1, x2, x3) ∈ ({0, 1}64)3 be the input to ECCode4. The out-
put is ECCode4(x1, x2, x3) = (x1, x2, x3, x4, x5, x6) where, x4 = x1 + x2 + x3,
x5 = β2x1 + βx2 + x3 and x6 = β4x1 + β2x2 + x3.

In [32], it has been shown that for d = 4, the above code has minimum
distance 4. We next extend their result for d = 5 and show that it has minimum
distance 5 for all ` ≤ 230. The result is described in Proposition 1 below.

Proposition 1. ECCode5 has minimum distance 5 over {0, 1}64` for any fixed
` ≤ 230.

Proof. ECCode5 is a linear code with systematic form in which the expansion
is determined by the matrix V := Vβ . So it suffices to show that Vβ is an MDS
matrix, i.e., all square submatrices are non-singular. Clearly, any square subma-
trix of size 1 or 4 is a Vandermonde matrix and hence non-singular. Each of the
submatrices of size 2 can be converted to a Vandermonde matrix by elementary
column operations (multiplying the columns with non-zero constants).

We now consider the submatrices of size 3. If we consider the submatrices
corresponding to the 1st, 2nd and the 3rd row or the 2nd, 3rd and the 4th row, then
these submatrices can be transformed to a Vandermonde matrix by elementary
column operations (by non-zero constant multiplications). If we consider the
submatrices corresponding to the 1st, 2nd and the 4th row or the 1st, 3rd and the
4th row then the matrices have the form




1 1 1
βi βj βk

β3i β3j β3k


 or




1 1 1
β2i β2j β2k

β3i β3j β3k


 .
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One can check that the submatrix corresponding to the 1st, 2nd and the 4th

row is non-singular if and only if 1 + β(i−j) + β(k−j) 6= 0, by computing the
determinant. We have experimentally verified that the above condition holds for
all i < j < k ≤ 230. This completes the proof. ut

3.2 EHC Hash

EHC hash [32] is a 2−128-∆U hash which requires fewer multiplications than the
Toeplitz hash [26] to process a message block. For a fixed length ` ≤ 230, the

definition of EHC(d,`) is given in the Algorithm 2 for all d ≤ 5. PDP hash used
in this construction is described in Sect. 2.

Algorithm EHC(d,`)

Input: (k1, . . . , k`+d−1) ∈ {0, 1}64(`+d−1), x ∈ {0, 1}64`

1 (x1, . . . , x`+d−1)← ECCoded(x);
2 for i = 1 to `+ d− 1 : gi = PDP(ki, xi);
3 return VMultα,d(g1, g2, . . . , g`+d−1);

Algorithm 2: EHC(d,`) [32] hash for a fixed length message.

The variable length hash EHC(d) defined over all messages of sizes 64`, 1 ≤
` ≤ 230, is computed as follows:

EHC(d)((K, (V1, V2));x) = EHC(d,`)(K;x)⊕ b1 · V1 ⊕ b2 · V2 ,

where x ∈ s64`, K ∈ {0, 1}64(`+d−1), V1, V2 ∈ {0, 1}32d and (b1, b2) ∈ {0, 1}2 is
the binary representation of ` mod 4.

Example 1 (continued). We have already seen how ECCode4(x1, x2, x3) =
(x1, x2, x3, x4, x5, x6) has been defined. Let k = (k1, . . . , k6) ∈ ({0, 1}64)6 be
the corresponding key. For 1 ≤ i ≤ 6, denote, xi = xi1||xi2 and ki = ki1||ki2
with xi1, xi2, ki1, ki2 ∈ {0, 1}32. For 1 ≤ i ≤ 6, denote gi = PDP(xi, ki) =

(xi1 + ki1)(xi2 + ki2). Thus, EHC(4,3)(k;x1, x2, x3) = (o1, o2, o3, o4) where,

• o1 = g1 + . . .+ g5 + g6, o2 = α5g1 + . . .+ αg5 + g6,
• o3 = α10g1 + . . .+ α2g5 + g6 o4 = α15g1 + . . .+ α3g5 + g6

3.3 Discussions

ECCode4 and ECCode5 are MDS codes for ` ≤ 232 and ` ≤ 230 respectively
(see [32] and Proposition 1). To incorporate arbitrary length messages, we define
ECCode∗d as follows. It first parses x ∈ F+

264 as (X1, . . . , Xm) such that all Xi’s,
possibly excluding the last one, are 230-block elements. We call theseXi’s chunk.
The last one is possibly an incomplete chunk. Next, apply ECCoded to all of these
chunks individually. More formally,

ECCode∗d(x) = (ECCoded(X1), . . . ,ECCoded(Xm−1), ECCoded(Xm)) . (2)
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We next extend the definition of EHC(d,`), denoted as xEHC(d,`), which works
the same as EHC(d,`) except it runs ECCode∗d instead of ECCoded (line 1 of
Algorithm 2), i.e., the first step is executed as (x1, . . . , x`+d−1)← ECCode∗d(x).

Table 1. # 32-bit field multiplications needed for EHC-Hash, Toeplitz-Hash and Poly-
Hash (with d = 4) to process a 64`-bit message, ` ≤ 230. In case of Poly-Hash we need
to apply 40-bit field multiplications for a 160-bit hash.

Tag Size d
# Multiplications

EHC Hash
# Multiplications

Toeplitz-PDP Hash
# Multiplications

Poly-Hash
128 4 ` + 3 4` 4.5`
160 5 ` + 4 5` 4.5` [40]

Comparison with EHC(d) for arbitrary length and other hashes. We
have chosen EHC hash as it requires much less multiplications than others (see
Table 1). We have modified the processing of EHC for variable length messages.
EHC uses a fixed length dependent key to deal with variable length messages, and
the key needs to be stored, but we generate all the keys in run-time through the
stream cipher so we do not need to store it. To achieve authenticity, one needs
to apply a pairwise independent hash. By adding a length dependent key to the
output of a Universal hash we can construct a ∆-Universal hash. Construction of
a pairwise independent hash can be achieved by masking one more independent
key to the output of a ∆-Universal hash. However, as we generate keys on the
fly, our hash becomes pairwise independent and this further saves more storage.
We provide a detailed discussion of hardware implementation in Sect. 6.

4 TriviA Authenticated Encryption

We first propose a stream cipher TriviA-SC4 which has a similar design as the
popular stream cipher Trivium [16]. Trivium is well studied and efficient both in
terms of hardware and software. It uses an 80-bit secret key, an 80-bit nonce and
a 288-bit internal state and provides 80-bit security. We aim to provide higher
security while maintaining the simplicity and without increasing the state size
much. In particular, we have made the following modifications:

1. We keep the size of state S to be 384 bits and increase the size of key K and
nonce N to 128 bits.

2. We introduce a non-linear effect in the key stream computation.

Algorithm 3 describes all the basic modules used for the stream cipher TriviA-
SC (see Fig. 4.1). A proper integration of these modules need to be defined to
obtain a stream cipher or an authenticated encryption. For example, when we
want to use it in stream cipher mode, we first run Load(K, IV ) for an initial
value IV, then Update for some reasonable rounds (to make the state random)
and finally, both KeyExt and Update to obtain the key stream. However, in case

4 Our authenticated encryption TriviA (a shorthand notation for Trivium-
Authenticated Encryption) is based on the stream cipher TriviA-SC.



8 Avik Chakraborti et al.

Modules of TriviA-SC: The state S := (S1, S2, . . . , S384) ∈ {0, 1}384 is represented
by A = (S1, . . . , S132), B = (S133, . . . , S237) and C = (S238, . . . , S384).

Load (K,N) / ∗Key and IV Loading ∗ /
1 A = K‖14, B = 1105, C = N‖119 ;

Update(S) / ∗Update a Single Round ∗ /
2 t1 ← A66 ⊕ A132 ⊕ (A130 ∧ A131)⊕ B96;
3 t2 ← B69 ⊕ B105 ⊕ (B103 ∧ B104)⊕ C120;
4 t3 ← C66 ⊕ C147 ⊕ (C145 ∧ C146)⊕ A75;
5 (A1, A2, A3, ..., A132)← (t3, A1, A2, ..., A131);
6 (B1, B2, B3, ..., B105)← (t1, B1, B2, ..., B104);
7 (C1, C2, C3, ..., C147)← (t2, C1, C2, ..., C146);

Algorithm 3: Modules of TriviA-SC.

of authenticated encryption we additionally need to process the associate data
and need to produce a tag.

Trivia-SC is also parallelizable up to 64 bits, i.e., the stream cipher can pro-
duce upto 64 output bits at a single clock cycle (see KeyExt64). Similarly, the
64 round updates of Trivia-SC can also be computed in a single clock cycle (see
Update64). KeyExt64 and Update64 are described in Algorithm 4.

KeyExt64 / ∗ Extract 64 Bit Key Stream ∗ /
1 Output t = A[3···66] ⊕ A[69···132] ⊕ B[6···69] ⊕ B[42···105] ⊕ C[3···66] ⊕ C[84···147]

⊕A[39···102] ∧ B[3···66] ;

Update64 / ∗Update 64 Rounds ∗ /
2 t1 ← A[3···66] ⊕ A[69···132] ⊕ (A[67···130] ∧ A[68···131])⊕ B[33···96] ;
3 t2 ← B[6···69] ⊕ B[42···105] ⊕ (B[40···103] ∧ B[41···104])⊕ C[57···120] ;
4 t3 ← C[3···66] ⊕ C[84···147] ⊕ (C[82···145] ∧ C[83···146])⊕ A[12···75] ;
5 (A1, A2, A3, ..., A132)← (t3, A1, A2, ..., A68) ;
6 (B1, B2, B3, ..., B105)← (t1, B1, B2, ..., B41) ;
7 (C1, C2, C3, ..., C147)← (t2, C1, C2, ..., A83) ;

Algorithm 4: 64-bit modules of Trivia-SC. Here ∧ denotes “bitwise-and” of two
64-bit variables.

4.1 Specification of TriviA

Algorithm 5 describes our authenticated encryption algorithm TriviA.
Sarkar [33] has proposed several generic methods of combining ∆U hash

and a stream cipher SCK . Formally, a stream cipher supporting an n-bit initial
value IV is a keyed function SCK : {0, 1}n×N→ {0, 1}+ such that SCK(N ; `) ∈
{0, 1}`. Whenever understood, we skip ` as an input for the sake of notational
simplicity. We mention a scheme close to our design paradigm and state its
security guarantee (in a revised and simplified form appropriate to our notation).
Theorem [33] Suppose Hτ is an ε-∆U n-bit hash function and SCK is a stream
cipher. Let AE be an authenticated encryption scheme defined as

AEK,τ (N,D,M) = (C := M ⊕ Z, T := Hτ (M)⊕R) ,

where (R,Z) = SCK(Hτ (N,A), |M |+ n). Then, we have
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Algorithm TriviA

Input: (K, (N,D,M)) ∈ {0, 1}128 × ({0, 1}128 × {0, 1}∗ × {0, 1}∗), `M , `D ≤ 230.

1 Processing N : Load(K,N), Update64 18 times;

2 Processing D : (z, SK)← KeyGen(`D + 4) ;

3 T ′ = EHC(5,`D)(SK ;D)⊕ (z`D+2‖z`D+3‖z`D+4[1..32]) ;

4 S[1..160] = S[1..160]⊕ T ′, Update64 18 times;

5 Processing M : (z, SK)← KeyGen(`M + 3);

6 if 64 divides |M | then V = z`M ‖z`M+2 ;

7 else V = z`M+1‖z`M+3;

8 C = M ⊕ z, T = EHC(4,`M )(SK ;M)⊕ V ;
9 return (C, T ) ;

Module KeyGen(`):
10 for i = 1 to `: zi = KeyExt64, SKi = A[1..64], Update64 ;
11 return (z1‖ · · · z`, SK1‖ · · ·SK`) ;

Algorithm 5: TriviA Authenticated Encryption Scheme: Given a binary string x, we
define x := x‖10d where d is the smallest non-negative number such that |x| + d + 1
is a multiple of 64 and we write `x = |x|/64. The nonce N is chosen unique for each
encryption. Here C = M ⊕ z means that we xor M with the first |M | bits of z.

1. Advprf
AE (q, σ, t) ≤ Advprf

SC(q, σ, t′) + q2ε and

2. Advauth
AE (q, qf , σ, t) ≤ Advprf

SC(q + 1, σ, t′) + (1 + q2)ε.

Where t′ ≈ t+ tH and tH is the total time required for hashing all queries.
How Our Construction Differs from AEK,τ . The above construction re-
quires two keys K and τ . In our construction, we generate the key τ from the
stream cipher and hence we require only one key K. As the stream cipher gen-
erates run time output bit stream, we can apply those universal hash functions
requiring variable length keys, which are more efficient than those hash func-
tions based on a single small key. For example, Poly-Hash [14, 15, 34] is not as
hardware efficient as EHC and provides a weaker security bound.

4.2 Discussions

Authenticated Encryption for larger message/associate data. We can
further extend TriviA for computing the intermediate data and the tag for ar-
bitrary length message and associated data. The extended algorithm of TriviA
for handling larger messages is functionally almost the same as TriviA, except
that it uses xEHC(d,`) to compute the intermediate data (line 3 of Algorithm 5)
and the tag, and the KeyGen algorithm will generate keystream according to the
length of the codeword computed by ECCode∗d. The algorithm also selects the
part of the key z that appears in the same clock cycles with the message blocks
so that we do not need to hold the key. This part of z is xored with the message
to produce the ciphertext as before.

Nonce Misuse Scenario. We generalize the EHC hash to incorporate 160 bits
hash for processing associate data. This would allow some room for repetition of
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Fig. 4.1. TriviA-SC Stream Cipher

the nonce (but no repetition of nonce, associated data pair) without degrading
the security (see the privacy and authenticity bound for TriviA in Sect. 5).

5 Security Analysis

5.1 Security Against Known Attacks

Cube-Attack and Polynomial Density: The Cube Attack [17] is the best
known algebraic attack on reduced round versions of Trivium [16]. Note that
the output bits from the stream cipher can be described by a polynomial over
the key and the nonce bits. The cube attack tries to analyze the polynomial
P (k1, · · · , kn; iv1, · · · , ivp) corresponding to the first output bit, where k1, · · · , kn
are the secret key bits and iv1, · · · , ivp are the public nonce bits. Given a subset
S = {ivv1 , · · · , ivvk} of the set of all public nonce bits, P can be written as
P = ivv1 · · · ivvkPS + PR, where no monomial of PR is divisible by ivv1 · · · ivvk .
PS is called the superpoly yielded by S and ivv1 · · · ivvk is called the maxterm if
PS is linear. The TriviA-SC with the recommended 1152-rounds initialization has
no maxterm of size less than or equal to 29. Moreover, for the 896 and 832-round
initialization version we have not found any maxterm of size 29 or less. But for
the 768-round initialization version we have found some linear superpoly with
cube size 20. This justifies our recommendation of the 1152-round initialization
for TriviA-SC. We have also applied the Moebious Transform technique described
by Fouque et al. [20] to estimate the polynomial density of the output boolean
function. We restrict polynomial to 30 IV variables and the density of the mono-
mials of degree less than 30 in the restricted polynomial has been calculated. The
result is given in Table 2. For a random Boolean function, we expect 50% den-
sity. The statistical tests on TriviA-SC have been performed by observing the
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Table 2. Monomial densities of TriviA-SC with 1152, 960, 896 and 832 Rounds.

Monomial Size 25 26 27 28 29
1152 0.49 0.49 0.5 0.52 0.4
960 0.5 0.5 0.5 0.51 0.36
896 0.5 0.49 0.5 0.47 0.5
832 0.43 0.36 0.29 0.14 0.03

output bit stream using the NIST Test Suite [6] and no weeknesses were found.
We have also performed the same tests on a version of TriviA-SC where the key
is a random 384-bit string and no weaknesses were found.

Resistance against guess-then-find attack [27]: The attack by Maximov
et al. [27] works in two phases. The first phase guesses some internal state and
makes linear approximations of some of the nonlinear state updation. This would
help to produce a set of linear equations (and also several second degree equa-
tions) on the unguessed state bits using the output stream. In the second phase
we simply solve all state bits provided we have sufficient number of equations.
This idea is applicable for both reduced round versions of Trivium and Trivia-SC.

One possible approach of the first phase for the Trivium is an exhaustive guess
on one-third of the state (96 bits with the indices that are a multiple of 3 stored

in a set τ
(t)
0 out of 288 bits). As the output bits are linear in the state bits, it is

sufficient to guess 72 state bits and the remaining 32 state bits can be recovered
easily. This actually happens, as indices of the bits in the output polynomial
are multiple of 3 and the lifetime of a state bit in the internal state is at least
66 rounds before it is mixed with other bits. Using the guesses, we can obtain
n1 = 100 linear equations and n2 = 61, 2-degree equations on the remaining
state bits by observing the output stream. So the complexity for the second
phase, denoted c, would be costly as we do not have sufficient linear equations.

There is an optimized version of the first phase which further makes linear
approximation of the nonlinear terms in the state update functions to construct

several other linear equations on the state bits in τ
(t)
0 . The complexity of the

first phase for this version of the attack is 283.5 and it forms n1 = 192 linear
equations. Thus, the complexity in the second phase would be small.

Unlike Trivium, TriviA-SC has a nonlinear function in the output stream so
to obtain n1 = r linear equations one has to approximate r nonlinear equations
(“AND” gate). In fact, as long as r ≤ 96, the indices involved in these linear
approximations are completely disjoint. Thus, the probability that all of these
linear approximations hold is (3/4)r. Now if we follow a similar approach men-
tioned above, we first make a guess of one-third of the internal state (128 bits out
of 384). However, one can simply guess 106 state bits and the remaining 22 bits
can be recovered from the output stream. As the output is nonlinear, we have
to make a linear approximation for 22 round outputs. So the complexity of the
first phase would be about 2128−22 × (4/3)22. Now if we want to obtain n1 = 32
linear equations for the second phase (which is in fact much less than sufficient
linear equations to recover all unguessed state bits), the total complexity for the
first phase becomes 2106 × (4/3)22 × (4/3)32 > 2128. So we can not perform the
above guess-then-find attack strategy in our stream cipher.
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5.2 Privacy of TriviA

An adversary is called nonce-respecting if it makes encryption queries with all
distinct nonce. A relaxed nonce-respecting adversary makes queries such that
the pairs (N,D) are distinct over all q encryption queries. In the following two
theorems we assume that Trivia-SC generates a pseudorandom bit stream.

Theorem 1. Let A be a relaxed nonce-respecting adversary which makes at most
q encryption queries. Moreover we assume that A can make at most 232 queries
with a same nonce. Then, Advpriv

TriviA(A) ≤ q
2129 .

Proof. LetAmakes q queries (N1, D1,M1), . . . , (Nq, Dq,Mq) such that (Ni, Di)’s
are distinct and let Zi and (Ci, Ti) be the respective key stream (including the
state bit extraction) and final responses. Moreover let T ′i denote the intermediate
tag obtained from the associated data which are inserted in the state after pro-
cessing associated data. Let N = {N : ∃i N = Ni} denote the set of all distinct
nonces. We denote m = |N |. For each N ∈ N , we write IN = {j : Nj = N} and
|IN | = qN . Note that, qN ≤ 232 for all nonces N and

∑
N∈N qN = q. By our

assumption on the stream cipher output, the key stream Zi’s would be indepen-
dently distributed whenever we have distinct nonces. Thus, we define an event
coll: there exists i 6= j such that Ni = Nj and T ′i = T ′j . If the coll event does not
hold, then by using the ideal assumption of the stream cipher, all key streams Zi’s
(even with same nonce) are independent and uniformly distributed. As (Ci, Ti)’s
are injective functions of the key-stream Zi, the distribution of (Ci, Ti)’s are in-
dependent and uniform. So the privacy advantage is bounded by the probability
of the event coll. In Proposition 2 below, we show that the collision probability
is bounded above by q

2129 and hence the result follows. ut

Proposition 2. Pr[coll] ≤ q
2129 .

Proof. Fix a nonce N ∈ N . The probability that there exists i 6= j with
Ni = Nj = N such that T ′i = T ′j is bounded by

(
qN
2

)
× 2−160. This actually

holds as this collision implies that EHC5(Di) = EHC5(Dj) and EHC5 is a 2−160-
∆U hash (the underlying code ECCode5 is MDS as shown in Proposition 1).
Summing up the probability for all choices of nonce N , we have

Pr[coll] =
∑

N∈N
q2
N/2

161 ≤ 232
∑

N∈N
qN/2

160 = q/2129 .

5.3 Authenticity of TriviA

Now we show the authenticity of TriviA.

Theorem 2. Let A be a relaxed nonce-respecting adversary which makes at most
q queries such that nonce can repeat up to 232 times. In addition, A is making
at most qf forging attempt. If the stream cipher Trivia-SC is perfectly secure then

Advauth
TriviA(A) ≤ q

2129
+

qf
2124

.
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Proof. Let the q queries be (Di, Ni,Mi) and the corresponding responses be
(Ci, Ti) with intermediate tags T ′i , 1 ≤ i ≤ q. We also denote the key stream for
the ith query be Zi. By applying the privacy bound, which is q/2129, we may
assume that all the q key streams Z1, . . . , Zq are uniformly and randomly dis-
tributed. We consider two cases depending on a forging attempt (N∗, D∗, C∗, T ∗).

Case A. The adversary makes a forging attempt (N∗, D∗, C∗, T ∗) with a fresh
(N∗, D∗). In this case, let I = {i : Ni = N∗}. By the restriction, |I| ≤ 232. Note
that for all j 6∈ I, the Zj ’s are independent from Z∗ the key-stream for the forging
attempt. For all i ∈ I, the Zi’s also would be independent from Z∗ provide that
the intermediate tag T ′i ’s do not collide with the intermediate tag T ∗ for the
forging attempt. This can happen with probability at most 232/2160 = 2−128.
Whenever Z∗ behaves like a random string, the forging probability will be 2−128

(as the tag size is 128). So the total forging probability, in this case, will be at
most 2−128 + 2−128 = 2−127.

Case B. Suppose the adversary makes a forging attempt with (N∗, D∗) =
(Ni, Di) for some i. Note that one of the key-streams Zi and Z∗ would be a
prefix of the other (depending on the length of the ciphertext). Note that for all
other Zj ’s, j 6= i would be independent of Z∗ and so we can ignore the responses
of the other queries. So the forging probability is the same as

p := Pr[(Ni, Di, C
∗, T ∗) is valid | (Ci, Ti) is response of (Ni, Di,Mi)] . (3)

Claim p ≤ 2−124 .

We postpone the proof of the claim. Assuming this claim, any forging at-
tempt is successful with probability at most 2−124 (as the Case-A has lower
success probability). Since A makes at most qf attempts and adding the pri-
vacy advantage the forging probability would be bounded by q

2129 +
qf

2124 . This
completes the proof.

Proof of the Claim. Let M∗ be the message corresponding to C∗. We prove it
by considering different cases based on ` := `Mi

and `∗ := `M∗ . For simplicity,
we assume that both Mi and M∗ are complete block messages. The proof for
incomplete message blocks is similar. We also write Z into a pair (SK, z) where
SK denotes the state key and z denotes the output stream. Note that, the z-
values can be leaked through the ciphertext and some of the z-values may be also
used to compute the tag. We mainly need to handle different cases depending
on how the z-values are leaked.

Case 1: `∗ = ` In this case, the conditional forging event can simply be
written as EHC4,`(SK;Mi)⊕EHC4,`(SK∗;M∗) = δ := Ti⊕T ∗. As, `∗ = `, thus
SK = SK∗. By using the known fact that EHC is a 2−128-∆U hash [32] we have
p ≤ 2−128.

For the case 2 and 3, we denote, EHC4,`(z;Mi) = (H1, H2) and similarly

EHC4,`∗(z∗;M∗) = (H∗1 , H
∗
2 ) where Hi and H∗i s are 64-bit strings. We similarly

parse T and T ∗ as (T1, T2) and (T ∗1 , T
∗
2 ).
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Case 2: `∗ = ` + 1 In this case, all of the variable keys z are distinct and are
not leaked through the ciphertext Ci. So the forging probability is equivalently
written as

p = Pr[H∗1 ⊕ z`+1 = T ∗1 , H
∗
2 ⊕ z`+3 = T ∗2 | H1 ⊕ z` = T1, H2 ⊕ z`+2 = T2] .

Thus, by using the entropy of z`, z`+1, z`+2 and z`+3, we get the bound.

Case 3: `∗ > ` + 1 Except the case `∗ = ` + 2, this case is same as before
as all variable keys z are distinct and are not leaked through the ciphertext Ci.
When `∗ = `+ 2 we have three variable keys z`, z`+2 and z`+4 which are masked
to define the tags. So the forging probability is equivalently written as

p = Pr[H∗1 ⊕ z`+2 = T ∗1 , H
∗
2 ⊕ z`+4 = T ∗2 | H1 ⊕ z` = T1, H2 ⊕ z`+2 = T2] .

The independence of the z values implies,

p = Pr[H∗2 ⊕ z`+4 = T ∗2 ]× Pr[H∗1 ⊕H2 = T ∗1 ⊕ T2 := δ]

= 2−64 × Pr[H∗1 ⊕H2 = T ∗1 ⊕ T2 := δ] .

Now the effect of the state keys SK`+4, SK`+5 is not present in H∗1 but they
influence H2. By using 2−31-balancedness of the pseudo-dot-product hash, we
conclude that Pr[H∗1 ⊕H2 := δ] ≤ 262 and so p ≤ 2−126.

Case 4: `∗ < ` − 2 In this case, the variable keys are different for both
computations. Since one set of variable keys are leaked through the ciphertext
and the other has full entropy we use the fact that EHC is 2−124-balanced. Using
this one can show that p ≤ 2−124.

Case 5: `∗ = ` − 1 Again, all four variable keys are distinct and one of
them is leaked. So we can apply the argument (using balancedness of one 64-bit
equation) to show that p ≤ 2−126.

Case 6: `∗ = ` − 2 Again, by simplifying the forging event with the notation
described in case 3 we have

p = Pr[H∗1 = z`−2 ⊕ T ∗1 , H∗2 ⊕ z` = T ∗2 | H1 ⊕ z` = T1, H2 ⊕ z`+2 = T2].

Here note that, unlike in case 2, the value of z`−2 is leaked in the ciphertext.
The above probability is the same as Pr[H∗1 = c1, H

∗
2 ⊕H1 = c2] for some 64-bit

constants c1 and c2. Based on the balanced property of H∗1 (based on the state
key SK1, . . . , SK`+1) and the balanced property of H1 (based on the state key
SK`+2, SK`+3) we can conclude that p ≤ 2−124.

Thus, we prove that p ≤ 2−124 which concludes the proof of the claim. ut

6 Hardware Implementation of TriviA-ck

6.1 Cycles Per Byte (cpb) Analysis

The TriviA design targets high speed implementation and requires 47 clock cycles
to authenticate and encrypt one message block of 64 bits. 18 cycles are required
for the initialization phase where the state register is updated in every cycle
along with Z, the associated data AD is loaded and processed in 1 cycle, and
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during the checksum phase instead of loading the block, the checksum computed
in an earlier stage is used as the input. The overall computation requires 4 cycles
and an additional cycle is required to update the tag and the state register during
AD processing. For message (msg) encryption, again, the same number of cycles
are required but AD is replaced by msg. The rest of the process is the same with
one minor difference, now the checksum is calculated only 3 times instead of 4
before the tag update. Analytically, the cycle count is represented below

cycle count = (init count ∗ 2) +
adlen

8
+
msglen

8
+ 4 + 1 + 3 + 1 , (4)

where init count is 18 in TriviA, adlen and msglen are in bytes instead of bits.
The corresponding cpb can be calculated using the following formula

cpb =
cycle count

msglen
. (5)

Pipelining: So far, our analysis is done based on a design without any pipeline.
Pipelining is a well-known technique to improve the throughput for a digital
design. A three-stage pipelined design is employed for TriviA, which is explained
later in this section. Pipelining affects latency adversely. In our case, the cycle
count to authenticate and encrypt one message block of 64 bits increases to 49.
Two additional clock cycles are required to flush the pipeline registers. The rest
of the data processing flow remains the same. Similarly the cycle count for a
pipelined design can be represented in the following manner.

cycle count = (init count ∗ 2) +
adlen

8
+
msglen

8
+ 9 + (pipe stages− 1) , (6)

where pipe stages is equal to 3 in our case. As the number of pipe stages in-
creases, the corresponding cycle count will increase accordingly. The cpb can be
calculated using Eq. (5).

6.2 Hardware Architectures

We have implemented two different architectures of TriviA: a base implementa-
tion without any pipelining, and a three-stage pipelined implementation. The
implementation is performed in a modular manner, which offers excellent scal-
ability. Due to the similarity in the operations for processing AD, and msg, the
same hardware modules are used to process both kinds of data. A single bit
switch is used to distinguish between the type of input data. The TriviA archi-
tecture consists of the following modules:

1. State Registers: The state registers are used to store the intermediate states
after each iteration. The state registers are used for 384-bit State Update,
256-bit Z register, 64-bit block, 160-bit tag, and 256-bit checksum.

2. State Update: The State Update module is nothing but a combination of Up-
dated64, KeyExt64 which are used to update the current state of the stream
cipher and generate key-stream. This module is used in each iteration during
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initialization, encryption, and finalization. It takes 128-bit key, 128-bit nonce
(which is further divided into two 64-bit parts, namely pub and param) and
a 384-bit state register as inputs and updates the stream cipher state.

3. Field Multiplication: The Field multiplication module takes two 32-bit inputs,
calculates the pseudo dot product on the input, and produces a 32-bit output.

4. VHorner32: This module is used for Horner’s multiplication for the 32-bit
Vandermonde Matrix Multiplication (i.e. in the computation of VMultα,5).
It takes two inputs, a 32-bit value from the field multiplication, and 160-bit
tag value. It processes the input to generate a new tag of 160-bits. During the
processing of AD, it processes all the 160-bits of the tag to give the output,
whereas, for the message processing, only 128 bits are used.

5. VHorner64: This module is used for Horner’s multiplication for the 64-bit
Vandermonde Matrix Multiplication while computing the checksum for the
error correcting code. It takes an input block of 64-bits, and the current
checksum value of 256 bits as input. It generates a 256-bit checksum value
as output. This modules executes its operations on 256 bits of the checksum
when working on AD, otherwise it uses only 192 bits.

Fig. 6.1. TriviA basic hardware implementation

Base Implementation: We start with a base implementation of TriviA that
exploits the parallelism inherent in the algorithm and processes 64 bits in each
cycle, as shown in Fig. 6.1. The critical path is shown using a dotted line. Prior
to initialization, the state register is loaded with Key, param, pub and 1 in the
remaining bits on reset. Once the state registers are initialized, the initialization
process starts where state register is updated in each cycle with State Update
operation. After the initialization process, 8 bytes of AD are fetched to the
block register, which feeds the Field Multiplication module after performing an
exclusive OR between the 64-bit block and the 64-bit state register. In parallel,
an exclusive OR is also performed between the 64-bit block and the 64-bit Z
to produce the ciphertext. The Field Multiplication module is followed by the
VHorner32 module which generates the new tag. The Field Multiplication module
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has 64 many 2× 1 32-bit MUXes in series. The VHorner32 block diagram can be
seen in Fig. 6.2.

The checksum is updated in the VHorner64 module which is also executed in
parallel. When the AD is finished, the checksum is calculated hence we require a
4× 1 64-bit MUX which fetches 64 bits of the checksum at a time to update the
tag. Since the checksum is calculated at the end, we can share resources using
a 2× 1 64-bit MUX. The first input of the MUX comes from the block register,
while the second input comes in chunks of 64 bits from the checksum. All these
operations are parallel, hence one round can be executed in a single cycle. At the
end, after processing the checksum, the tag and the state register are updated
in single cycle. We require a 4×1 MUX at the input of state register and a 3×1
MUX at the input of the tag register. The state register takes input from four
sources, initialization values on reset, State Update after each cycle, the result
of an exclusive OR between the state register and the tag, and a feedback path.
Similarly, tag takes values from three sources, initialization on reset, output of
VHorner32, and Z exclusive ORed with tag.

Fig. 6.2. EHC Block Diagram

The control of the complete design is implemented using a finite state machine
(FSM), not shown in the schematic for the sake of simplicity. The FSM consists of
6 states, starting with an idle state followed by initialization. After initialization,
FSM enters the processing state and stays there until all the data has been
processed. Then it jumps to checksum processing, followed by tag update, and
pipeline flush. A 3-bit register is required to store the state of the FSM.

The combinational logic can be easily reduced for lowering the area further
by first, sharing computing resources and second, performing computation on
smaller bit-widths. Consequently, the throughput will decrease leading to an
area-delay trade-off.

Pipelined Implementation: After analyzing the basic implementation, we
identified the critical path, and split that to achieve higher operating frequency.
All the operations are unit operations except for the tag generation. Tag gen-
eration requires two operations in series, which are using multiple MUXes in
series. This long chain of MUXes reduces the clock speed of the whole de-
sign, hence other modules which can operate at higher frequencies are also lim-
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ited by this. We break the critical path and insert a pipeline register after the
Field Multiplication module. To balance the design, we also insert a pipeline reg-
ister after the Z register. Using the pipelined architecture, as shown in Fig. 6.3,
we could achieve higher throughput for TriviA.

Fig. 6.3. TriviA pipelined hardware implementation

Enc/Dec Implementation: Due to the similar structure of encryption and
decryption algorithms, a combined hardware can also be designed with a small
increase in area, while getting the same throughput. The encryption or decryp-
tion mode is selected using a mode select signal. When the mode select is set to
0, the hardware operates in encryption mode, whereas when mode select is set
to 1, the hardware operates in decryption mode.

6.3 Performance Results and Comparison

TriviA Results. The architectures of TriviA are described in Verilog HDL and
synthesis is done with the Synopsys Design Compiler J-2014.09 using Faraday
standard cell libraries in topographical mode. We used UMC 65nm logic SP/RVT
Low-K process technology node for synthesis. The implementation is performed
till gate-level synthesis hence, the reported results are pre-layout. The area re-
sults are reported in terms of equivalent NAND gates. The area for the base
implementation of TriviA was 23.6 KGE at a frequency of 1150 MHz, with 7.2
KGE required for sequential logic and 16.4 KGE required for combinational logic.
The corresponding throughput turns out to be 73.9 Gbps, and the area-efficiency
(throughput/area) is 3.13 Mbps/GE. The area utilization is shown in Table 3
where each module and its respective area is shown. The registers for Tag, block,
and checksum are instantiated in the top-module, hence their distribution is not
listed in the table.

The synthesis for pipelined implementation was performed under similar op-
erating conditions, tools, and libraries. The design was successfully synthesized
at 1425 MHz for an area of 24.4 KGE, with 7.7 KGE in sequential and 16.7
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KGE in combinational logic. The design successfully achieved a throughput of
91.2 Gbps with an area-efficiency of 3.73 Mbps/GE. The module-wise break-
down of area is shown in Table 3. The registers for Tag, block, checksum, and
pipeline registers are instantiated in the top-module, hence their distribution is
also not listed in the table. For performance measures, different message lengths

Table 3. Area utilization without pipeline stage, TriviA

Module
Base implementation Pipelined implementation
Area (GE) % Area (GE) %

Field Multiplication 6275 26.0 6890 28.0
Update State 7214 30.0 7208 29.5

FSM 1260 5.3 1296 5.3
VHorner32 675 2.8 387 1.5
VHorner64 573 2.4 576 2.4

were considered to calculate cycles per byte, taking associated data length as a
small value of 8 bytes. When the message length is 8 bytes, the overhead of
initialization is very large in both the cases, base implementation and pipelined
implementation, giving a high cycles per byte count. As we increase the message
length, the overhead becomes smaller resulting in 0.12 cycle per byte for a very
long message. This is shown in the Table 4. Hence, as we increase the message
length the cycles per byte of both designs converge. Note that, if we assume that
the associated data is of the same length as the message, then the cycle per byte
doubles. For example, if both the message and AD are of 8192 bytes then 0.25
cycles per byte are required.

Table 4. TriviA performance (in clocks per byte or cpb)

Algorithm
Message length (Bytes)

8 16 32 64 128 256 512 1024 2048 8192 16384
TriviA-pipelined 6.12 3.12 1.62 0.87 0.50 0.31 0.21 0.17 0.14 0.13 0.12

Comparison: The results for algorithms marked with a (*) in Table 5 have been
scaled assuming a 2× improvement of achievable maximum clock frequency for
every two generations of CMOS technology node, thus roughly following Moore’s
law [30]. Admittedly, this is a very rough comparison, without considering the
effects of physical synthesis, diversity of cells in different technology libraries
and synthesis constraints. The unavailability of the RTL code and the synthesis
details in the presented papers makes the task even harder. Nevertheless, the
performance gap is at least an order of magnitude in the area-efficiency, hence
unlikely to close.

To the best of our knowledge, not all CAESAR candidates have hardware
implementations in ASIC so far, and there is no other hardware implementa-
tion of TriviA as well, so, the comparison done with the known results listed
in Table 5 shows that, the TriviA has a better throughput, cycles per byte and
area-efficiency. Particularly, for the area-efficiency, the TriviA is at least 3.8 times
better compared to the closest entry Ascon. We will offer the hardware imple-
mentation to the CAESAR candidates and also request corresponding RTL for
a fair evaluation in similar technology settings.
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Table 5. Benchmarking TriviA in ASIC

AE Schemes
ASIC Implementation

Cycles/ Byte
(cpb)

Area
(KGE)

Throughput
(Gbps)

Efficiency
(Mbps/ GE)

TriviA Base 23.6 73.9 3.13 0.12
TriviA Pipelined 24.4 91.2 3.73 0.12

Scream, iScream [22] 17.29 5.19 0.30 -
NORX* [8] 62 28.2 0.45 -
Ascon* [21] 7.95 7.77 0.98 0.75

AEGIS [13, 37]

AO1 20.55 1.35 0.07 6.67
AO2 60.88 37.44 0.61 0.33
TO1 88.91 53.55 0.60 0.20
TO2 172.72 121.07 0.70 0.07

Besides CAESAR candidates, it is also interesting to benchmark TriviA against
state-of-the-art authenticated encryption engines that are commercially avail-
able. We take one particular example from [7], which provides high-speed au-
thenticated encryption hardware based on AES-CCM mode. Based on the data
provided at [7], for 130 nm CMOS technology, AES-CCM achieves > 800 Mbps
at < 19K gates. Even with an optimistic technology scaling, this is still one order
of magnitude inferior compared to the performance achieved with the TriviA.

More detailed results are provided at [7] for different FPGA platforms. There,
the performance results reported are for AES-CCM cores which require 128-bit
key, and 48 cycles to generate output cipher text. In order to benchmark, we
performed pre-layout logic synthesis done for TriviA under typical conditions
using Xilinx ISE 14.7. The results are collectively reported in Table 6. It can be
noted that the area occupied for TriviA is generally larger compared to [7], since
the computation in TriviA is done in parallel, processing 64 bits in 1 cycle. In
comparison, [7] requires 48 cycles. When comparing the area-efficiency figures,
it is clear that TriviA is much superior by showing at least 5.4× improvement for
TriviA pipelined implementation compared to AES-CCM implementation of [7].

Table 6. Benchmarking TriviA in FPGA

Xilinx
FPGA

Platform

AES-CCM [7] TriviA-Base
TriviA-

Pipelined

#
Slices

Gbps
Area-

Efficiency
(Mbps/ Slice)

#
Slices

Gbps
Area-

Efficiency
(Mbps/ Slice)

Area-
Efficiency

(Mbps/ Slice)
Spartan-6 -3 272 >0.57 2.09 815 7.6 9.3 11.29
Virtex-5 -3 343 >0.78 2.27 637 11.7 18.3 20.3
Virtex-6 -3 295 >0.87 2.95 725 16 22 25
Kintex-7 -3 296 >1 3.38 714 16.89 23.65 24.31
Virtex-7 -3 296 >1 3.38 714 16.89 23.65 24.31

7 Conclusion

This paper introduces a hardware efficient authenticated encryption scheme
TriviA. The structure of TriviA is simple and achieves high provable security. Our
proposal uses a stream cipher and a pairwise independent hash function. We have
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constructed a stream cipher TriviA-SC, which is a variant of a well known stream
cipher Trivium [16]. Trivium is well studied and very efficient in both hardware
and software. We have also used a hardware efficient ∆-Universal hash function
EHC, which requires minimum number of field multiplications to process a mes-
sage. We have integrated these two primitives in an efficient way, such that the
resultant construction is highly efficient in both hardware and software as well
as it provides high security of 128-bits for privacy and 124-bits for authenticity.
This work provides the details of the hardware implementation of TriviA and
hardware comparison between TriviA and some of the CAESAR candidates. We
have observed that, TriviA is very hardware efficient in terms of throughput, cy-
cles per byte and area-efficiency. More specifically the area-efficiency of TriviA is
at least 3.8 times better than the closest CAESAR candidate Ascon.
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