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Abstract. We propose statistical cryptanalysis of discrete-logarithm
based authentication schemes such as Schnorr identification scheme or
Girault-Poupard-Stern identification and signature schemes. We consider
two scenarios where an adversary is given some information on the nonces
used during the signature generation process or during some identifica-
tion sessions. In the first scenario, we assume that some bits of the nonces
are known exactly by the adversary, while no information is provided
about the other bits. We show, for instance, that the GPS scheme with
128-bit security can be broken using only 710 signatures assuming that
the adversary knows (on average) one bit per nonce. In the second sce-
nario, we assume that all bits of the nonces are obtained from the correct
ones by independent bit flipping with some small probability. A detailed
heuristic analysis is provided, supported by extensive experiments.
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1 Introduction

Since the introduction of the ElGamal signature scheme [6], many works have
been devoted to design digital signatures and identification schemes, based on
the discrete logarithm problem in a finite cyclic group G of order q (e.g. [14]).
After Schnorr’s proof of knowledge for discrete logarithms in groups of known
prime order [22] (that can be used as an interactive identification scheme or be
converted into a digital signature scheme using the Fiat-Shamir paradigm [8]),
many other signature schemes have been designed, including the standard DSA
[17]. Another variant, proposed by Girault [9] and further analysed by Poupard
and Stern [21, 10] – called GPS – allows to use groups of unknown order.

All these signature and identification schemes perform randomized authenti-
cation: they use a nonce (or ephemeral key) r in {0, 1, . . . , q−1} for each message
(or identification session) and compute gr with g some generator of G. These
random nonces can be generated using either a (true) random number generator



or a pseudo-random one. Obviously extreme care is required in sampling such
nonces since a predictable (or reused) output of the (pseudo)random generator
may lead to a total break of the scheme. As an example, Bellare, Goldwasser
and Micciancio mounted [2] a polynomial time key-recovery attack against the
DSA signature scheme when the random nonces are generated using a (trun-
cated) linear congruential generator. In [5], Bleichenbacher found a bias in the
original DSA pseudorandom number generator specification, that could reveal
the signer’s private key and this attack was made practical recently [16].

Using side-channel attacks, partial information can be obtained on the nonce
r from the run of the algorithm that computes gr. In [15], Kuwakado and Tanaka
proposed a polynomial-time algorithm that recovers the signer’s private key given
only two signatures with nonces smaller than √q or where half of the nonces’ bits
are known to the adversary. Nguyen and Shparlinski [18] presented a polynomial-
time algorithm that recovers the secret key of the signer when a few consecutive
bits of the nonces are known for several signatures. Their algorithm runs in
polynomial time when approximately

√
log q bits are known for a number of

signatures in O(log q). Note that in practice, side-channel attacks will not gener-
ally reveal consecutive bits of the nonces used. Moreover, if countermeasures are
used, only noisy information on the secrets may leak through power consumption
(or other side-channel attacks) and an adversary may obtain partial information
on the nonces (but not with perfect certainty).

In [11], it was reported that memory persistence times can be increased with
simple cooling techniques and that an attacker with physical access to a machine
may be able to recover some random part of cryptographic key information.
Motivated by this work, Heninger and Shacham presented in [13] a new method
for recovering RSA private keys given a fraction of private data (see also [20]).
Their method succeeds with good probability in quadratic time if a fraction of
at least 0.27 of the private key bits are known with certainty. In [12], Henecka,
May and Meurer addressed the situation where no RSA private key bits are
known with certainty but where a candidate for each secret key bit is known
to the adversary in such a way that most bits are correct but some of them
(unknown to the adversary) are flipped (in a symmetric way). In [19], Paterson,
Polychroniadou and Sibborn brought a coding-theoretic viewpoint to bear on
this problem. In particular, they highlighted the fact that the papers [13] and
[12] considered the problem of error-correcting noisy RSA private keys in the
binary erasure channel and the binary symmetric channel (respectively). This
coding-theoretic viewpoint enabled them to design a new algorithm in another
channel model more relevant for the so-called “cold-boot attacks” from [11] and
to derive bounds on the performance of the proposed algorithms.

Contributions of the paper. We propose attacks on discrete-logarithm based
authentication schemes where an adversary has some information on the nonces
used in the signature generation or in some identification sessions. This informa-
tion may come from the use of a biased (pseudo)random generator, a side-channel
attack or a cold-boot attack. Using the coding-theoretic viewpoint from [19], we
consider the following two scenarios:



– erasure correction scenario: we assume that some bits of the nonces are
known exactly by the adversary, while no information at all is known about
the other bits. This is defined in terms of a parameter δ representing the
fraction of erasures. In standard coding terminology, this corresponds to an
erasure model for errors, and an erasure channel.

– error correction scenario: we assume that all bits of the nonces are obtained
from the correct ones by independent bit flipping with probability defined
by a parameter also denoted δ. In coding-theoretic terms, this corresponds
to a (memoryless) binary symmetric channel with crossover probability δ.

Our attacks apply to discrete-logarithm based authentication schemes where
the “authentication relation” holds over the integers (instead of modulo the group
order q). In particular, they can be applied readily to the GPS identification
and the GPS signature schemes. However, they can also be mounted against
Schnorr identification protocol if the adversary is first allowed to interact with
the prover in a “dishonest” way before trying to impersonate her. In this active
attack model [7, 4], which is the standard de facto security notion, an adversary
can simply choose small challenges in the identification session in order to obtain
an authentication relation that holds over the integers (after a small brute force
search of the size of the chosen challenge).

In the erasure correction scenario, we provide an algorithm that, given t
signatures or identification sessions (with t ≥ 2) and partial information on
the corresponding nonces with a fraction of erasures δ ' ln(2)/t, recovers the
corresponding secret key in (heuristic) quadratic time. The algorithm recovers
the nonces bit-by-bit, starting from the least significant bit to the most significant
one, by growing a search tree and pruning it to remove partial solutions which
do not match the known key bits. The algorithm is similar to the one proposed
in [13] but works for any t ≥ 2 and requires a more complex analysis. We
implemented it and performed extensive experiments; in particular, we attack
a 128-bit security level instantiation of GPS signature scheme that uses 512-bit
nonces [21, 10] with δ ' 1/512 (i.e. with on average only one nonce bit known for
each signature). Our analysis guarantees that the private key can be recovered
given only 710 signatures and a very naive implementation actually gives the
secret key in a few minutes. In the error correction scenario, we provide an
algorithm that, given t signatures or identification sessions (with t ≥ 2) and
partial information on the corresponding nonces with a fraction of errors δ '
1/2−

√
ln(2)/2t, recovers the corresponding secret key in (heuristic) quadratic

time. We implemented our algorithm and performed extensive experiments using
it. The attack analysis is simpler and follows closely the one presented in [12].

2 Preliminaries

Schnorr Identification. Let G = 〈g〉 be a group of (known) prime order q and
P and V denote a prover and a verifier. By engaging in the protocol, P proves
to V that she knows the discrete logarithm x of a public group element y = gx.
The protocol has three simple moves:



Commitment P selects a random r ∈ {0, 1, . . . , q − 1} and sends k = gr to V .
Challenge V picks a random c ∈ {0, 1, . . . , q − 1} and sends c to P .
Response P computes and sends s = r + cx mod q to V .

Eventually, V checks that gs · y−c = k and recognizes that P knows x if the
equality holds. Schnorr’s scheme is one of the most important ingredients in the
design of cryptographic protocols and proofs of knowledge. It readily gives rise to
an identification scheme where P proves her knowledge of the discrete logarithm
of her public key.

The strongest form of attack against an identification scheme is an active
attack, where the adversary (that wants to impersonate P ) interacts with P ,
posing as V , but not necessarily following V ’s protocol. Since active attacks are
quite feasible in practice, this model has become the standard de facto security
notion for identification scheme. In [4], Bellare and Palacio proved that Schnorr
identification scheme is secure against active attacks assuming the one-more
discrete logarithm assumption in G (see [3]).

GPS Identification and Signature scheme. The GPS schemes were pro-
posed by Girault in [9] and further analysed by Poupard and Stern [21, 10]. The
schemes are similar to Schnorr’s but allow to use groups of unknown order. Given
a group G = 〈g〉 generated by g, of (possibly) unknown order and three param-
eters R,S,C ∈ N, the protocol has three simple moves to prove the knowledge
of x ∈ {0, . . . , S} such that y = gx:

Commitment P selects a random r ∈ {0, 1, . . . , R} and sends k = gr to V .
Challenge V picks a random c ∈ {0, 1, . . . , C} and sends c to P .
Response P computes and sends s = r + cx to V .

Eventually, V checks that gs = kyc and recognizes that P knows x if the equality
holds and s ∈ {0, 1, . . . , R + CS}. GPS signature scheme is derived from the
identification scheme using the Fiat-Shamir heuristic [8]: to sign a message m ∈
{0, 1}∗, the signer selects a random r ∈ {0, 1, . . . , R}, computes k = gr, computes
c = H(m, k) where H : {0, 1}∗ −→ {0, 1, . . . , C} is a cryptographic hash function
and outputs the pair (s, c) where s = r + cx as the signature of the message m.
The security of the signature scheme against existential forgeries under chosen
message attacks was proven (when H is modelled as a random oracle) in [10]
under the assumption that computing discrete logarithms in G with exponents
in {0, 1, . . . , S} is hard. For a k-bit security level, the analysis requires to use
S ' 22k, C ' 2k and R ' 24k.

Authentication relation. In the following, we call the authentication rela-
tion of a discrete-logarithm based authentication scheme, the relation used in
the Response phase of the three-move identification scheme (or in the signature
generation protocol). Our attacks apply to all discrete-logarithm based authenti-
cation scheme for which this authentication relation holds over the integers. This
is obviously the case for GPS identification and signature schemes. However, our



attack also applies to Schnorr identification if one considers an adversary al-
lowed to mount an active attack and that has access to partial information on
the nonce bits used in the different identification sessions. Such an adversary
posing as V can indeed pick small challenges c (e.g. always c = 1). Since we have
s = r + cx mod q in Schnorr identification scheme, we obtain s = r + cx + αq,
where α ∈ Z− and |α| ≤ c. By performing an exhaustive search on the small
set of values for α (e.g. α ∈ {−1, 0} when c = 1), the adversary obtains an
authentication relation that holds over the integers.

Note that for all these discrete-logarithm based schemes, the knowledge of
the random values generated during the signature process/identification session
provides precious information on the signer’s secret key. In particular, if an
adversary is given access to a valid signature/identification transcript σ = (s, c)
(possibly for some message m), and to the nonce r such that gs = gryc then he
can retrieve the value of the signer’s secret key x in polynomial time. Therefore, in
the following, we will focus on attacks that aim to recover a complete nonce from
partial information on nonces used in several signatures/identification sessions.

3 Erasure correction scenario

In this section, we focus on the erasure correction scenario described in the
introduction where part of the bits of the random value r generated during the
signature process are revealed to the attacker. To be more precise, we denote
the binary decomposition of r as r0 + r12

1 + · · ·+ rn−12
n−1 and we introduce a

parameter δ, with 0 ≤ δ ≤ 1, to define the probability that, at a given position
i ∈ {0, . . . , n− 1}, the bit ri is known to the adversary (and probability (1− δ)
that bit ri is unknown).

Assuming that t signatures have been processed, we determine a lower-bound
on δ allowing the attacker to fully recover the secret key x in (heuristic) poly-
nomial time. We focus on the particular case of the GPS signature scheme, but
as explained previously any other signature or identification scheme using au-
thentication relations defined over the integers can be attacked similarly. In the
following we first focus on the simple case of two signatures, and then generalize
the study for a higher number of signatures.

3.1 The Attack Knowing Two Signatures

We assume that the adversary is given access to two valid signatures σ1 = (s1, c1)
and σ2 = (s2, c2), respectively related to the messages m1 and m2. According to
the description of the GPS scheme, provided in Section 2, the following relations
hold:

s1 = r1 + c1x and s2 = r2 + c2x (1)

where r1 and r2 are nonces generated during the signature process and ci =
H(mi, g

ri) (for i ∈ {1, 2}). Eliminating the unknown x in (1), we get:

C = r1c2 − r2c1 (2)



where C = s1c2−s2c1. Our algorithm will construct all pairs (ϑ1, ϑ2) that satisfy
(2) and match the known partial information on (r1, r2) - in the sequel we denote
as L the list of such elements - and eventually, select, among them, the one that
verifies the relations (1).

General Idea. Following [13], our method to construct the set L consists in
performing an exhaustive search on all pairs (ϑ1, ϑ2) satisfying Equation (2),
guessing each of their bits from the least significant one to the most significant,
and detecting invalid candidates during the process. Given a pair (ϑ1, ϑ2) for
which the relation (2) holds, if we denote ϑ(i)α = ϑα,0+2ϑα,1+ · · ·+ϑα,i2

i where
ϑ
(i)
α = ϑα mod 2i+1 and ϑα,j ∈ {0, 1} for α ∈ {1, 2} and j ∈ {0, . . . , i}, we get:

C = ϑ1,0c2 − ϑ2,0c1 mod 2
C = (ϑ1,0 + 2ϑ1,1)c2 − (ϑ2,0 + 2ϑ2,1)c1 mod 22

...
C = (

∑n−1
i=0 ϑ1,i2

i)c2 − (
∑n−1
i=0 ϑ2,i2

i)c1 mod 2n

(3)

Thus one can verify, at each step of the bit generations of ϑ1,i and ϑ2,i, for i
from 0 to (n − 1), whether the equation modulo 2i+1 of System (3) holds for
the pair. If not, the corresponding bit-values for (ϑ1,i, ϑ2,i) are not kept as valid
ones in the sequel of the bit-generations of (ϑ1,j , ϑ2,j) for j going from (i + 1)
to (n − 1). This technique allows to reduce the size of the list L containing all
final potential candidates (ϑ1, ϑ2). In the following, we show that, in fact, this
method leads to a polynomial time algorithm.

Description of the Technique. Let us now explain how to construct the list
L. In the analysis that follows, we use the notation L(k) to refer to the state
of list L at step k of the algorithm. Such a list will be defined as containing
elements (ϑ1, ϑ2) that are reduced modulo 2k+1.

The basic principle of the algorithm can be sum up that way: the list L(0) is
first initialized with all pairs of bits (ϑ1,0, ϑ2,0) that satisfy Equation 1 of System
(3) modulo 2 and that coincide with the bit-values preliminary known by the
adversary on r1 and r2. All pairs (ϑ1,0, ϑ2,0) in L(0) are then lifted to construct
values modulo 22. To do so, one has to generate all possible values for pairs of bits
(ϑ1,1, ϑ2,1) (which again coincide with the bits known by the adversary on r1,1
and r2,1) and to construct ϑ(1)1 and ϑ

(1)
2 respectively as ϑ1,0+2ϑ1,1 and ϑ2,0+2ϑ2,1.

From now the obtained values (ϑ(1)1 , ϑ
(1)
2 ) are checked to determine whether they

satisfy Equation 2 of System (3) modulo 22. In case of an invalid answer, the
corresponding bit-values for (ϑ1,1, ϑ2,1) are evicted and all remaining valid pairs
(ϑ

(1)
1 , ϑ

(1)
2 ) are put in L(1). The process then continues from a bit-position i to the

following one, taking all pairs (ϑ(i)1 , ϑ
(i)
2 ) belonging to L(i) at step i, lifting them

by generating all possible bit-pairs (ϑ1,i+1, ϑ2,i+1) that coincide with the known
bits on r1,i+1 and r2,i+1 and by creating new values ϑ(i+1)

1 = ϑ
(i)
1 +2i+1ϑ1,i+1 and



ϑ
(i+1)
2 = ϑ

(i)
2 + 2i+1ϑ2,i+1, and checking whether Equation (i+ 2) of System (3)

is satisfied modulo 2i+2. Again, invalid solutions are evicted and the remaining
pairs constitute the set L(i+1). The algorithm finally stops when i equals n. A
description of the whole process is provided in Algorithm 1.

Algorithm 1 Generic Attack on Two Signatures
Require: c1, c2, C and δ : partial bit information on r1 and r2
Ensure: L a list of pairs (ϑ1,ϑ2) possible candidates for (r1, r2)

1: L(0) = {}
2:

—–/* Initialisation - Case i = 0 */—–
3: Generate all bit pairs for (ϑ1,0,ϑ2,0): E = (0, 0), (1, 0), (0, 1), (1, 1)
4: for each element (ϑ1,0,ϑ2,0) ∈ E do
5: if (ϑ1,0,ϑ2,0) coincides with knowledge of (r1,0, r2,0) then
6: if (ϑ1,0,ϑ2,0) satisfies Equation (1) of System (3) modulo 2 then
7: Add element (ϑ1,0,ϑ2,0) to L(0)

8:
—–/* Main loop for i from 1 to n− 1 */—–

9: for i from 1 to n− 1 do
10: L(i) = {}
11: Generate all bit pairs for (ϑ1,i,ϑ2,i): E = (0, 0), (0, 1), (1, 0), (1, 1)
12: for each element (ϑ1,i,ϑ2,i) ∈ E do
13: if (ϑ1,i,ϑ2,i) coincides with knowledge of (r1,i, r2,i) then
14: for each element (ϑ

(i−1)
1 ,ϑ

(i−1)
2 ) ∈ L(i−1) do

15: Lift ϑ
(i)
1 = ϑ

(i−1)
1 + 2iϑ1,i and Lift ϑ

(i)
2 = ϑ

(i−1)
2 + 2iϑ2,i

16: if (ϑ
(i)
1 ,ϑ

(i)
2 ) satisfies Equation (i+ 1) of System (3) modulo 2i+1 then

17: Add (ϑ
(i)
1 ,ϑ

(i)
2 ) to L(i)

18: return L(n−1)

Complexity Analysis. Estimating the overall complexity of Algorithm 1 can
be reduced to the cost of constructing the list L(n−1). Since this list has been built
recursively from the previous ones L(n−2),L(n−3), . . . ,L(0), we have to evaluate
the expected cardinal of all L(i) for i going from 0 to (n− 1) (denoted N (i)).

Let us first count the number of elements belonging to L(0). By definition,
this list contains all bit pairs (ϑ1,0, ϑ2,0) coinciding with the (possible) knowledge
of (r1,0, r2,0) and satisfying Equation (1) of System (3). In fact, the number of
solutions to that equation strongly relies on the parity of both c1 and c2. Indeed,
two even values would give four pairs of solutions (in the general case) opposed
to only two for odd values c1 and c2. For this reason, we have to split the analysis
that follows in two scenarios, depending on the 2-adic valuation1 of both c1 and
c2. In the sequel, we denote as `1 (resp. `2) the 2-adic valuation of c1 (resp. c2).

• First analysis when `1 = `2

Before coming back to the evaluation of the cardinality of the list L(0), let us
first see how the relation `1 = `2 impacts the shape of the equations belonging
to System (3). When `1 and `2 are equal, Equation (2) can be simplified by
dividing both sides of the equality by 2`1 . Indeed as this can be done for c1 and
1 We remind that the 2-adic valuation of a number c denotes the largest power of 2
dividing c.



c2, this is obviously also the case for C. Thus, the shape of the relation does
not change and the new obtained constants c1/2`1 and c2/2

`1 are odd. In the
following, for the sake of simplicity (and as this does not change the analysis, at
the cost of renaming the variables), we still work with Equation (2) (and thus
with System (3)) but assuming that the constants c1 and c2 are odd.

From now on, one can easily describe the elements that belong to L(0) as
bit-values of the form (ϑ1,0, ϑ2,0) satisfying C = ϑ1,0 + ϑ2,0 mod 2, and such
that (ϑ1,0, ϑ2,0) coincide with possible knowledge of (r1,0, r2,0). This description
allows to evaluate N (0), see Lemma 1 (a proof can be found in the full version
of the paper [1]).

Lemma 1. We have N (0) = δ2 − 2δ + 2.

We now have to find, for a fixed i between 1 and (n − 1), an expression of
N (i) in function of N (i−1). By definition L(i) can be described as the set of
elements (ϑ

(i)
1 , ϑ

(i)
2 ) defined as ϑ

(i)
1 = ϑ

(i−1)
1 + 2iϑ1,i and ϑ

(i)
2 = ϑ

(i−1)
2 + 2iϑ2,i

with (ϑ
(i−1)
1 , ϑ

(i−1)
2 ) ∈ L(i−1), (ϑ1,i, ϑ2,i) ∈ {0, 1}2 and satisfying Equation (i+1)

of System (3), namely:

C = (ϑ
(i−1)
1 + 2iϑ1,i)c2 − (ϑ

(i−1)
2 + 2iϑ2,i)c1 mod 2i+1 (4)

Moreover, the pairs (ϑ1,i, ϑ2,i) should coincide with possible information on
(r1,i, r2,i). Knowing that (ϑ

(i−1)
1 , ϑ

(i−1)
2 ) belong to L(i−1), the relation C =

ϑ
(i−1)
1 c2 − ϑ

(i−1)
2 c1 mod 2i necessarily holds. As a consequence, there exists an

integer k ∈ Z such that C = ϑ
(i−1)
1 c2 − ϑ

(i−1)
2 c1 + k2i. Putting this relation into

Equation (4) and simplifying the whole expression allows to reach the following
new condition:

k = ϑ1,i + ϑ2,i mod 2 (5)

The choice of (ϑ1,i, ϑ2,i) solutions to (5) and coinciding with possible information
on (r1,i, r2,i), strongly depends on whether (ϑ(i−1)1 , ϑ

(i−1)
2 ) equals (r(i−1)1 , r

(i−1)
2 )

or not. Indeed, if these values are equal, namely (ϑ
(i−1)
1 , ϑ

(i−1)
2 ) is the beginning

of the right solution, then when r1,i and r2,i are known, Equation (5) necessarily
holds (obviously as this is the searched solution). In that case, one will choose
(ϑ1,i, ϑ2,i) = (r1,i, r2,i). To the contrary, when (ϑ

(i−1)
1 , ϑ

(i−1)
2 ) 6= (r

(i−1)
1 , r

(i−1)
2 ),

a value is fixed for k and the knowledge of (r1,i, r2,i) does not necessarily make
Equation (5) be satisfied. In that case, the choice (r1,i, r2,i) will not be main-
tained. As we cannot determine whether Equation (5) would be satisfied or
not, we introduce a new parameter γ ∈ [0, 1], which is only defined when
(ϑ

(i−1)
1 , ϑ

(i−1)
2 ) 6= (r

(i−1)
1 , r

(i−1)
2 ), corresponding to the probability that Equa-

tion (5) holds. A detailed discussion on the value of γ is given in Section 3.3 (see
also the full version of the paper [1]).

We can finally express the number of elements belonging to L(i) in function
of those of L(i−1), as claimed by the following lemma.

Lemma 2. Under our heuristic, we have N (i) = N (i−1)(γδ2−2δ+2)+δ2(1−γ).



A proof of this lemma can be found in the full version of the paper, see [1].
Combining Lemmas 1 and 2, we obtain:

N (n−1) = N (n−2)(γδ2 − 2δ + 2) + δ2(1− γ)
...
= (γδ2 − 2δ + 2)n−1(δ2 − 2δ + 2) + δ2(1−γ)

2δ−γδ2−1 (1− (γδ2 − 2δ + 2)n−1)

The goal of the adversary being to construct the set L(n−1) in polynomial time,
this attack will only be made practical if the quantity (γδ2 − 2δ + 2) is strictly
smaller than 1. In that case, the cardinality of the list L(n−1) will not grow too
fast when n tends toward infinity. Since γ is unknown, we have to evaluate it
in order to reach some necessary condition on δ. Setting γ to 1/2 seems to be a
reasonable choice, see Section 3.3. We finally reach the condition 1

2δ
2−2δ+2 < 1,

which is satisfied for δ > 2−
√
2 ' 0.59. By taking this value as a lower bound

on δ, we are able to determine the expected size of the set L(n−1), namely (3−
2
√
2)n+1. Knowing that n refers to the bit-size of the random values generated

during the signature process, we thus obtain a polynomial time complexity for
our attack.

Theorem 1 (Two Signatures and `1 = `2). An adversary able to learn a
proportion of δ = (2−

√
2) bits of the random nonces used during the generation

of two known signatures can (heuristically) break the scheme in polynomial time.
In that case, the expected space required for performing the attack is (3−2

√
2)n2+

1 ' 0.17n2 + 1.

• Second analysis when `1 6= `2.

The study is a bit more tedious here, but the analysis can be adapted to prove
Theorem 2. The entire proof is provided in the full version of the paper [1].

Theorem 2 (Two Signatures and `1 < `2). An adversary, able to learn a
proportion of δ = (2−

√
2) bits of the random nonces used during the generation

of two known signatures, can (heuristically) break the scheme in polynomial time.
In that case, the expected space required for performing the attack is (

√
2−1)n2+

1 ' 0.41n2 + 1.

When comparing Theorem 1 and Theorem 2, one notices that the lower
bound on δ is the same for both cases “`1 = `2” and “`1 < `2”. However the
space required to construct the sets L(i) is higher when `1 6= `2 than in the
other case. This actually impacts the efficiency of the attack since the number
of constructed solutions is larger.

3.2 The Attack Knowing t Signatures

Let us now consider the case of an adversary that is given access to t signatures
σ1, . . . , σt corresponding to known messages m1, . . . ,mt. We denote σi = (si, ci)



the signatures and ri the nonces used in their generation (s.t. ci = H(mi, g
ri))

for i in {1, . . . , t}. We denote ri,j the j-th bit of ri for each j in {1, . . . , n} and i
in {1, . . . , t}. We have si = ri + ci · x for i ∈ {1, . . . , t} and we obtain:

C1,2 = r1c2 − r2c1
...

C1,t = r1ct − rtc1
(6)

where C1,j = s1cj−sjc1 for j ∈ {2, . . . , t}. As above, our algorithm retrieves the
nonces r1, . . . , rt by collecting all tuples (ϑ1, . . . , ϑt) satisfying System (6) and
coinciding with possible knowledge on the bits ri,j . As previously, L denotes the
set containing such elements2. The complexity of the attack can thus be reduced
to the cost of constructing L.

General Idea. As for the “two-signature case”, a way to retrieve (r1, . . . , rt)
would consist in performing an exhaustive search on all bit-values ri,j , for i going
from 1 to t and j from 0 to (n− 1), using some possible additional information
on the bits ri,j , and to detect the invalid candidates during the process. The
technique consists in generating all tuples (ϑ

(k)
1 , . . . , ϑ

(k)
t ) satisfying System (6)

modulo 2k+1 and to select among them, the one that can be lifted to solutions
modulo 2k+2. Of course, these operations should be consistent with the possible
knowledge on some bits of the ri’s. In this algorithm, parameter k will vary from
0 to (n− 1). At the end of the procedure, the set L(n−1) containing all elements
(ϑ

(n−1)
1 , . . . , ϑ

(n−1)
t ) satisfying System (6) modulo 2n and coinciding with known

information on the bits ri,j , is in fact the desired one: L. A precise description
of the whole method is provided in Algorithm 2.

Complexity Analysis. Let us now determine the number of elements belonging
to L by evaluating the expected cardinal of all L(i) for i going from 0 to (n −
1) (denoted N (i)). We start with L(0) which, by definition, contains all tuples
(ϑ1,0, . . . , ϑt,0) in {0, 1}t coinciding with possible knowledge on bits (r1,0 . . . , rt,0)
and verifying System (6) modulo 2. One notices that the number of such solutions
strongly depends on the 2-adic valuations of c1, . . . , ct. For this reason, and
similarly to the “two signatures case”, we split the analysis in two configurations
depending on whether the 2-adic valuations of c1, . . . , ct are all equal or not. In
the rest of the paper, we denote as `i the 2-adic valuation of ci (for i ∈ {1, . . . , t}).

• First analysis with `1 = `2 = · · · = `t

When the 2-adic valuations are all equal, System (6) can be simplified by dividing
each equation by 2`1 . One thus reaches a new system involving simpler equations,
2 Obviously once (r1, . . . , rt) has been retrieved, the signers’ secret key x can easily
be recovered. Theoretically only one of the ri’s is really necessary to retrieve x, but
we see in the following that recovering one such element requires in fact to retrieve
all ris simultaneously.



Algorithm 2 Generic Attack on t Signatures
Require: (c1, . . . , ct), (C1,1, . . . , C1,t), δ and partial bit information on (r1, . . . , rt)
Ensure: L a list of tuples (ϑ1, . . . ,ϑt) possible candidates for (r1, . . . , rt)

1: L(0) = {}
2:

—–/* Initialisation - Case k = 0 */—–
3: Generate all bit tuples for (ϑ1,0, . . . ,ϑt,0), say E = {0, 1}t
4: for each element (ϑ1,0, . . . ,ϑt,0) ∈ E do
5: if (ϑ1,0, . . . ,ϑt,0) coincides with knowledge of (r1,0, . . . , rt,0) then
6: if (ϑ1,0, . . . ,ϑt,0) satisfies System (6) modulo 2 then
7: Add element (ϑ1,0, . . . ,ϑt,0) to L(0)

8:
—–/* Main loop for k from 1 to n− 1 */—–

9: for k from 1 to n− 1 do
10: L(k) = {}
11: Generate all bit tuples for (ϑ1,k, . . . ,ϑt,k), say E = {0, 1}t
12: for each element (ϑ1,k, . . . ,ϑt,k) ∈ E do
13: if (ϑ1,k, . . . ,ϑt,k) coincides with knowledge of (r1,k, . . . , rt,k) then
14: for each element (ϑ

(k−1)
1 , . . . ,ϑ

(k−1)
t ) ∈ L(k−1) do

15: Lift ϑ
(k)
1 = ϑ

(k−1)
1 + 2kϑ1,k

16:
...

17: Lift ϑ
(k)
t = ϑ

(k−1)
t + 2kϑt,k

18: if (ϑ
(k)
1 , . . . ,ϑ

(k)
t ) satisfies System (6) modulo 2k+1 then

19: Add (ϑ
(k)
1 , . . . ,ϑ

(k)
t ) to L(k)

20: return L(n−1)

say C ′1,j = r1dj−rjd1 where C ′1,j = C1,j/2
`1 is known to the attacker. To simplify

the analysis that follows - and since it does not change anything but renaming
the variables - we assume that we keep working with System (6) but using odd
values ci. Now if we come back to our analysis on the set L(0), namely considering
System (6) modulo 2, we reach the following new system:

C1,2 = ϑ1,0 + ϑ2,0 mod 2
...

...
C1,t = ϑ1,0 + ϑt,0 mod 2

(7)

It now becomes easy to count the number of elements belonging to L(0). Indeed,
either none of the ri,0 is known by the adversary, and in that case there are two
possible values for ϑ1,0, say 0 or 1 and each of them fixes the rest for ϑ2,0, . . . , ϑt,0.
In the second configuration, when there is at least one of the ri,0 which is known
by the attacker (say r1,0 for instance3), the value ϑ1,0 is fixed to r1,0 and thus the
other values ϑ2,0, . . . , ϑt,0 are fixed too (see System (7)). As a consequence, there
is unique solution for the uple (ϑ1,0, . . . , ϑt,0). The construction of the whole set
L(0) is summed up in Algorithm 2a, which can be seen as an adaptation of the
initialisation phase of Algorithm 2 when all `i are equal (process to a replacement
of lines 3–7 of Algorithm 2 by Algorithm 2a).
The expected cardinal N (0) of the list L(0) can thus be expressed easily:

– when none of the ri,0’s is known, which holds with probability (1−δ)t, there
are two candidates for (ϑ1,0, . . . , ϑ1,t).

3 One can easily reorder the random values ri to make such an assumption true.



Algorithm 2a Init. phase of Algorithm 2 when `1 = · · · = `t (lines 3–7)
if (None of the ri,0’s is known) then

Add {(0, C1,2 mod 2, . . . , C1,t mod 2), (1, C1,2 + 1 mod 2, . . . , C1,t + 1 mod 2)} to L(0)

else
/*At least one of the ri,0’s is known, say for instance r1,0*/
Add (r1,0, C1,2 + r1,0 mod 2, . . . , C1,t + r1,0 mod 2) to L(0)

– when at least one of the ri,0 is known, what happens with probability 1 −
(1− δ)t, there is a unique solution for (ϑ1,0, . . . , rt,0).

One can thus reach N (0) = 2(1− δ)t + 1− (1− δ)t = 1 + (1− δ)t. We will now
determine by induction the expected sizeN (k) fromN (k−1) for k ∈ {1, . . . , n−1},
knowing that it contains all elements of the form (ϑ

(k)
1 , . . . , ϑ

(k)
t ) coinciding with

possible knowledge on (r1,k, . . . , rt,k) and satisfying:
C1,2 = (ϑ1,0 + · · ·+ ϑ1,k2

k) · c2 + (ϑ2,0 + · · ·+ ϑ2,k2
k) · c1 mod 2k+1

...
...

C1,t = (ϑ1,0 + · · ·+ ϑ1,k2
k) · ct + (ϑt,0 + · · ·+ ϑt,k2

k) · c1 mod 2k+1

(8)

Putting such expressions inside System (8) finally leads to the following new
relations:

kj = ϑ1,k + ϑj,k mod 2 for j ∈ {1, . . . , t} (9)

Now it is easier to determine the number of solutions (ϑ1,k, . . . , ϑt,k) that will
be chosen to lift elements (ϑ(k−1)1 , . . . , ϑ

(k−1)
t ) from L(k−1) to L(k). Nevertheless

one should be careful during this analysis, since it strongly depends on whether
the chosen element (ϑ(k−1)1 , . . . , ϑ

(k−1)
t ) equals (r(k−1)1 , . . . , r

(k−1)
t ) or not. Indeed

when this condition is not satisfied, the choice of an element (ϑ(k−1)1 , . . . , ϑ
(k−1)
t )

fixes all integers k1, . . . , kt implying some possible invalid restrictions on the val-
ues ϑ1,k, . . . , ϑt,k. As a consequence, when some of the ri,k’s are known (precisely
more than two), the corresponding equalities in (9) are not necessarily satisfied.
Since we do not know in advance when it happens, we assume each equation in
(9) holds independently with some fixed probability γ ∈ [0, 1] during the whole
run of our algorithm4. In the other case, namely when the ri,k’s are unknown
or when the element (ϑ

(k−1)
1 , . . . , ϑ

(k−1)
t ) corresponds to the right solution, the

lifting process behaves as usual, see the “two signatures case”. Taking all these
considerations into account, one can finally determine the size of the set L(k),
see Algorithm 2b for a precise description (this algorithm can be seen as an
adaptation of the main loop of Algorithm 2, lines 10 –19).
From now on, we are able to deduce the size N (k) of the set L(k), knowing that:

– when the adversary does not know any of the ri,k, what holds with proba-
bility (1− δ)t, there are 2N (k−1) solutions;

– when exactly one of the ri,k is known, which happens with probability tδ(1−
δ)t−1, there are N (k−1) solutions;

4 We remind that γ is only defined when (ϑ
(k−1)
1 , . . . , ϑ

(k−1)
t ) 6= (r

(k−1)
1 , . . . , r

(k−1)
t )



– in the other case, this number depends on the element (ϑ(k−1)1 , . . . , ϑ
(k−1)
t ).

When this element is equal to (r
(k−1)
1 , . . . , r

(k−1)
t ) (this is the right candi-

date), there is a unique solution. In the other case, there are γ(N (k−1) − 1)
solutions when exactly two ri,k are known, what holds with probability(
t
2

)
δ2(1− δ)(t−2); there are γ2(N (k−1) − 1) solutions when exactly three ri,k

are known, which holds with probability
(
t
3

)
δ3(1− δ)(t−3); and so on; there

are γt−1(N (k−1) − 1) solutions when all the ri,k are known, what happens
with probability

(
t
t

)
δt.

Algorithm 2b Main loop of Algorithm 2 when `1 = · · · = `t (lines 10 – 19)
L(k) = {}
if none of r1,k, . . . , rt,k is known then

for each element (ϑ
(k−1)
1 , . . . ,ϑ

(k−1)
t ) ∈ L(k−1) do

for each element ϑ1,k in E = {0, 1} do
Construct ϑ

(k)
1 = ϑ

(k−1)
1 + 2 · ϑ1,k

for each index j in {2, . . . , t} do
Compute kj such that kj · 2k = C1,j − ϑ

(k−1)
1 2k−1cj − ϑ

(k−1)
j 2k−1c1

Compute ϑj,k = ϑ1,k + kj mod 2 ; construct ϑ
(k)
j = ϑ

(k−1)
j + 2ϑj,k mod 2k+1

Add element (ϑ
(k)
1 , . . . ,ϑ

(k)
t ) in L(k)

else if there exists a unique i such that ri,k is known /*say for instance r1,k*/ then
for each element (ϑ

(k−1)
1 , . . . ,ϑ

(k−1)
t ) ∈ L(k−1) do

Construct ϑ
(k)
1 = ϑ

(k−1)
1 + 2 · ϑ1,k

for each index j in {2, . . . , t} do
Compute kj such that kj · 2k = C1,j − ϑ

(k−1)
1 2k−1cj − ϑ

(k−1)
j 2k−1c1

Compute ϑj,k = ϑ1,k + kj mod 2 ; construct ϑ
(k)
j = ϑ

(k−1)
j + 2ϑj,k mod 2k+1

Add element (ϑ
(k)
1 , . . . ,ϑ

(k)
t ) in L(k)

else
/*two or more ri,k are known, assume r1,k is concerned*/
for each element (ϑ

(k−1)
1 , . . . ,ϑ

(k−1)
t ) ∈ L(k−1) do

for each index j in {1, . . . , t} do
Compute kj such that kj · 2k = C1,j − ϑ

(k−1)
1 2k−1cj − ϑ

(k−1)
j 2k−1c1

Set ϑ1,k = r1,k
for each index j in {2, . . . , t} do

Compute ϑj,k = ϑ1,k + kj mod 2
if (ϑ1,k, . . . ,ϑt,k) coincide with possible knowledge on (r1,k, . . . , rt,k) then

for each index j in {1, . . . , t} do
Compute ϑ

(k)
j = ϑ

(k−1)
j + 2 · ϑj,k mod 2k+1

Add element (ϑ
(k)
1 , . . . ,ϑ

(k)
t ) to L(k)

By combining all these results, we obtain the following formula for N (k):

2(1− δ)tN (k−1) + (1− (1− δ)t) + 1

γ
(N (k−1) − 1)

∑
i=1,...,t

(
t

i

)
(γδ)i(1− δ)t−i

Evaluating the quantity inside the summation leads to the following relation:

N (k) = N (k−1)

(
1

γ
(γδ + 1− δ)t + (2− 1

γ
)(1− δ)t

)
+1− 1

γ
(γδ+1−δ)t+

(
1

γ
− 1

)
(1−δ)t



Denoting as A(γ, δ) the quantity 1
γ (γδ+1− δ)t+ (2− 1

γ )(1− δ)
t and using the

formula obtained for N (0), we reach:

N (n−1) = (1 + (1− δ)t)A(γ, δ)n−1
+
(
1− 1

γ (γδ + 1− δ)t + ( 1γ − 1)(1− δ)t
)∑

i=0...n−2A(γ, δ)i

The goal of the adversary being to construct the set L(n−1) in polynomial time,
this attack will only be made practical if the quantity A(γ, δ) is strictly smaller
than 1. In that case, the size of the list L(n−1) will not grow too fast when n tends
toward infinity. Setting γ to 1/2 (see Section 3.3 for experimental results on that
point) leads to the condition 2(1− δ

2 )
t < 1, which is satisfied for δ > 2− 21−1/t.

By taking this value as a lower bound on δ, we are able to determine the expected
maximum size of the set L(n−1), namely (21−

1
t − 1)tn+ 1.

Theorem 3 (t signatures and `1 = · · · = `t). An adversary able to learn a
proportion of δ = 2−21−1/t bits of the random nonces used in the generation of t
known signatures can (heuristically) break the scheme in polynomial time. In that
case, the expected space required for performing the attack is (21−

1
t − 1)tn2 +1.

• Second analysis when some of the `i’s are different.

The analysis is more tedious here but can still be adapted to the case when some
of the `i’s are different, see Theorem 4 below (the proof is provided in the full
version of the paper [1]).

Theorem 4 (t signatures with `i different). An adversary able to learn a
proportion of δ = 2−21−1/t bits of the random nonces used in the generation of t
known signatures can (heuristically) break the scheme in polynomial time. In that
case, the expected space required for performing the attack5 is (21−

1
t − 1)en2+1.

Remark 1. Using the coding viewpoint from [19], one can obtain limits on the
performance of any algorithm for selecting candidate nonces in the erasure cor-
rection scenario. Their argument is based on the converse to Shannon’s noisy-
channel coding theorem 6. The underlying code is made of the 2n words on tn
bits obtain by the naive algorithm without pruning (i.e. with code rate 1/t) so
simple variants of our algorithm cannot be efficient for δ < 1/t and our algorithm
is optimal up to the multiplicative constant ln(2).

3.3 Experimental Results

To confirm the validity of the attack and of our heuristic, extensive experiments
have been performed for various values of t and δ. For each pair (t, δ), the attack
5 Here, the index e is defined such that `1 = `2 = · · · = `e < `e+1 ≤ · · · ≤ `t.
6 This theorem states that no combination of code and decoding procedure can jointly
achieve arbitrarily reliable decoding when the code rate exceeds the capacity of the
channel.



has been launched and its complexity has been measured by counting the sum
of the cardinality of the sets L(i) for i in {0, . . . , n}. The obtained results are
analysed below.

With 32 and 64 signatures. We performed experiments using 32 and 64
signatures (using a security parameter κ equal to 128). Since the experiments
were time-consuming, we performed 1000 experiments for each pair (t, δ). The
results for t = 32 are provided on Figure 1, for values of δ varying from 0.04
to 0.06 and the ones for t = 64 are illustrated on Figure 2, for values of δ
between 0.02 and 0.04 (namely from 2% to 4%). These experiments show that
it works better in practice than what was predicted. Indeed, the bounds below
which the attack begins to become unpractical are approximately 0.04 for t = 32
signatures and 0.02 for t = 64. These values are better than the ones reached by
the theoretical analysis, say 2− 21−1/32 ' 0.043 and 2− 21−1/64 ' 0.022.
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Fig. 1. Total number of constructed
(ϑ1, . . . , ϑ32) in function of δ (t = 32
and κ = 128).

(×10−2) 43.532.52
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Fig. 2. Total number of constructed
(ϑ1, . . . , ϑ64) in function of δ (t = 64
and κ = 128).

With 710 signatures. We finally considered the case where the adversary
knows (on average) only one bit per nonce ri (i.e. δ = 1/512). For a security
parameter κ equals to 128, our theoretical analysis claims that an attacker will



be able to break the scheme knowing 710 signatures. In this case, our attack
succeeded in a few minutes (using a very naive implementation) with a total size
of generated elements equal to 2437. To go further, we also tried to launch the
attack for a smaller number of signatures, but still keeping δ = 1/512. The cases
t = 650 and t = 600 were also successful. The time required for the last case
was approximately a few hours and the total sum of elements was 53770 (again
using a very naive implementation).

Impact of γ. The formula obtained in Section 3.1 and 3.2 strongly depend on
the value of the parameter γ. In our theoretical analysis, we decided to take
γ = 1/2. In practice, several tests have been launched to determine whether this
assumption is correct. In every experiments we performed, the observed value
for γ was very near from 1/2, what confirms our initial assumption.

4 Error correction scenario

In the erasure correction scenario (see previous sections), we compared each
nonce candidate with its given fragmentary version in order to determine the
nonce uniquely with overwhelming probability. In this section, the error cor-
rection scenario, we proceed similarly: we assume an adversary obtain some
error-prone nonces in a discrete-logarithm based authentication scheme which
are derived from the actual nonces by flipping each bit individually with some
fixed probability δ ∈ [0, 1/2). Intuitively, if δ is below 1/2, then among all nonce
candidates, the Hamming distance between the least significant bits of the ac-
tual nonces and the nonces with noise should be minimal. The analysis is simpler
than in the previous section and relies on the technique proposed by Henecka,
May and Meurer in [12].

We consider the case of an adversary that is given access to t signatures (or
authentication sessions) σ1, . . . , σt corresponding to known messagesm1, . . . ,mt.
Again, each signature σi is defined as a pair (si, ci) where si = ri+cix and x is the
signers’ secret key. Moreover we assume that each bit of each nonce ri is known
with some error: to formalize this model we denote by δ the probability that for
each nonce ri, its j-th bit ri,j is flipped (for j in {1, . . . , n}). By definition, the
bit ri,j is correct with probability (1− δ).

Making the quantity x disappear from all the expressions, one reaches the
simple system of equations (6). The adversary can retrieve the nonces r1, . . . , rt
by collecting all tuples (ϑ1, . . . , ϑt) satisfying System (6) and minimizing the
Hamming distance with the bits ri,j . The algorithm performs a clever exhaustive
search, consisting in generating all tuples (ϑ

(k)
1 , . . . , ϑ

(k)
t ) satisfying System (6)

modulo 2k+1 and then selecting among them, those that can be lifted to solutions
modulo 2k+2. These operations should minimize the distance with the knowledge
on some bits of the ri’s.

Contrary to the erasure correction scenario, one cannot easily prune partial
solutions that do not coincide with the known secret key bits. Indeed this process
may discard the correct solution, since this solution does not fully agree with



the noisy nonce material. Thus, in this scenario, we do no longer compare bit
by bit but we compare larger blocks of bits. More precisely, we grow subtrees
of depth T (for some parameter T ) for each t-tuple of nonce candidate. We will
see that this results in 2T new candidates which we all compare with our noisy
nonce material. If the Hamming distance with this material in these T bits is
above some threshold parameter d we keep the candidate, otherwise we discard
it. The only difficulty here consists in estimating these parameters T and d:

– the parameter T cannot be chosen too large since in each iteration the search
tree grows by a factor 2T ;

– the parameter T has to be sufficiently large in order to guarantee that the
actual t-tuple of nonces has a small Hamming distance with the noisy nonce
material (in each block of successive T bits) but incorrect t-tuples of nonces
are separable by the threshold parameter d ;

– the threshold parameter d has to be large enough to guarantee that with
probability close to 1 the actual t-tuple of nonces will never be discarded
during the execution of the algorithm ;

– the parameter d cannot be chosen too large since otherwise we obtain too
many faulty t-tuples candidates for the next iteration.

• First analysis with `1 = `2 = · · · = `t.

As above, one can assume we are using odd values ci. We have to determine
the size N (k) of the sets L(k). For k = 0, since none of the ri,0 is known for
sure by the adversary, there are two possible values for the bit ϑ1,0 and each of
them fixes the other bits ϑ2,0, . . . , ϑt,0 (using System (7)). Therefore, we obtain
N (0) = 2. Similarly, using System (9), one can see that if there is no pruning at
the depth k then N (k) is simply equal to 2N (k−1).

• Second analysis when some of the `i’s are different.

In this case, we can still show that N (0) = 2 and that we have, before
pruning7, N (T−1) = 2T at iteration T (see [1] for a complete proof of this result).

We now consider the pruning phase. Let us define a random variable Xc

for the number of matching bits between the actual t-tuple of nonces and the
noisy nonce material in a block of T consecutive bits. Clearly Xc is the binomial
distribution with parameters tT and probability (1− δ): Pr[Xc = m] =

(
tT
m

)
(1−

δ)mδtT−m for m in {0, . . . , tT}.
Considering an incorrect partial solution for the t-tuple of nonces, we denote

Xb for the number of matching bits between the expansion of this incorrect
solution by T bits and the noisy nonce material in the corresponding block of T
consecutive bits. We make use of the following heuristic assumption.

Heuristic 1 Every solution generated by applying the expansion phase to an
incorrect partial solution is an ensemble of T randomly chosen bit slices.
7 In particular, in both cases, one gets before pruning N (T−1) = 2T at iteration T
(instead of N (T−1) = 2tT for a naive approach).



Therefore every expansion of an incorrect candidate in the expansion phase re-
sults in tT uniformly random bits. We verified the validity of this heuristic exper-
imentally. Under this assumption, we obtain Pr[Xb = m] =

(
tT
m

)
(2)−tT for m ∈

{0, . . . , tT}.
Henecka, May and Meurer proved in [12, Main Theorem 7] that these con-

ditions are sufficient to insure the existence of an expansion parameter T and a
threshold parameter d such that the two distributions are sufficiently separated
and the growing factor 2T in the expansion phase is polynomial.

Theorem 5 ([12]). Under the previous heuristic, for every ε > 0, the following

holds: let n, t ≥ 2 be two integers, let T =
⌈
ln(n)
tε2

⌉
, γ =

√
(1 + 1/T ) ln(2)2t , and d =

tT
(
1
2 + γ

)
. An adversary able to learn (in the error correction scenario) the in-

dividual bits of random nonces of t known signatures of length n with probability
δ < 1

2 − γ − ε can recover the nonces (and therefore the secret key) in expected
time O(n2+ln(2)/tε2) with success probability at least 1− (mε2/ ln(n) + 1/n).

Remark 2. The following table gives the limit crossover probability δ (i.e. with
ε −→ 0 and T −→ +∞) in the error correction scenario depending on the number
of signatures/identification sessions available t known to the adversary:

t 2 3 4 5 6 7 8 9 t

δ 0.084 0.160 0.205 0.237 0.260 0.277 0.292 0.303 1/2−
√

ln(2)/2t

δ∗ 0.110 0.174 0.214 0.243 0.264 0.281 0.295 0.306 H−12 (1− 1/t)

The value δ∗ corresponds to the optimal value of δ one can derive from the
converse to Shannon’s noisy-channel coding theorem as in Remark 1 using the
fact that the channel capacity of (memoryless) binary symmetric channel with
crossover probability δ is 1−H2(δ) where H2(δ) = −δ log2(δ)−(1−δ) log2(1−δ)
is the entropy function. For a 128-bit security level, with nonces of binary length
512, each signature provides only one bit of information for δ ' 1/2− 10−4 and
one needs in theory around 70 · 106 signatures in order to recover the secret key.

5 Conclusion

In this paper, we proposed attacks on discrete-logarithm based authentication
schemes where an adversary has some information on the nonces used during
the signature generation process or during some identification sessions, in the
erasure correction scenario and the error correction scenario. The following table
sums up the limit crossover probability δ in the two scenarios depending on the
number Nr of signatures/identification sessions known to the adversary:

Nr 2 3 4 5 6 7 t
δ (erasure correction) 0.586 0.413 0.318 0.259 0.218 0.188 ' ln(2)/t

δ (error correction) 0.084 0.160 0.205 0.237 0.260 0.277 1/2−
√
ln(2)/2t

Our methods can be generalized to the Z-channel considered in [19].
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