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Abstract. Asymmetric-key cryptographic algorithms when implemented
on systems with branch predictors, are subjected to side-channel attacks
exploiting the deterministic branch predictor behavior due to their key-
dependent input sequences. We show that branch predictors can also
leak information through the hardware performance monitors which are
accessible by an adversary at the user-privilege level. This paper presents
an iterative attack which target the key-bits of 1024 bit RSA, where in
offline phase, the system’s underlying branch predictor is approximated
by a theoretical predictor in literature. Subsimulations are performed
to classify the message-space into distinct partitions based on the event
branch misprediction and the target key bit value. In online phase, we as-
certain the secret key bit using branch mispredictions obtained from the
hardware performance monitors which reflect the behavior of the under-
lying predictor hardware. We theoretically prove that the probability of
success is equivalent to the accurate modelling of the theoretical predic-
tor to the underlying system predictor. Experimentations reveal that the
success-rate increases with message-count and reaches such a significant
value so as to consider side-channel from the performance counters as a
real threat to RSA-like ciphers due to the underlying branch predictors
and needs to be considered for developing secured-systems.
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1 Introduction

Micro-architectural features leave footprints in the processor which is often cap-
tured by side-channels. Side-channel attacks allow malicious user to gain access
to sensitive data of the system under attack by monitoring power consumption,
timing, or electro-magnetic radiation of the microprocessor. In recent micro-
processors, various architectural components are incorporated in the system to
improve the system performance and these are emerging as new sources of side-
channel leakage.



In the pioneering work in [7] it was first shown that the time to process
different inputs can be used as a side-channel information to find the exponent
bits of the secret keys for RSA, Diffie-Hellman, DSS etc. In [1], the penalty for
mispredicted branches in number of clock cycles is observed as side-channel to
identify the data dependent operations of the public-key cryptosystem. On a
standard RSA implementation, four different types of attacks were performed
exploiting the Branch Prediction Unit (BPU) by using both synchronous and
asynchronous techniques. Using timing as the side-channel in [1], the mispredic-
tion information is modeled to identify the secret key. While in the synchronous
and asynchronous attacks the Branch Target Buffer (BTB) is modified by the
attacker to surface the attack.

Hardware performance counters (HPCs) are a set of special- purpose registers
to store the counts of hardware-related activities within the microprocessor.
These counters contain rich source of information of the internal activities of the
processor and hence can find usage for both attacks and their countermeasures.
In [12], [11], these HPCs are exploited as side-channels for time based cache
attacks. HPC L1 and L2 D-cache miss counters have been exploited as side-
channels in [12] for performing timing based cache attacks on symmetric-key
algorithms, like AES. While the paper shows that the HPCs can be used as
potential source of leakage, the attacks were sensitive to noise introduced through
loops, branches and also compiler optimizations to retain the tables. In this
paper, we show that asymmetric ciphers like RSA, which does not have tables
and have several branches and due to the underlying algorithm and the internal
multipliers used, can be successfully attacked by monitoring the event branch
miss through HPCs.

In this attack, we target the branch-predictors which were previously shown
to lead to attacks using timing as side-channel [1]. Several research work has been
developed to thwart these attacks by fuzzying the timestamp counters, adding
noise etc. However, we show that powerful side-channels may still exist through
the HPCs which monitor the branch misses at the user-privilege. Interestingly,
we show through real experiments that though the underlying branch predictors
are unknown, the attacker can approximate them by theoretical models which
correlate well with the actual statistics of branch misses. Using these approxi-
mations, one can launch an attack and successfully recover a full 1024-bits key of
RSA algorithm implemented with key bit dependent conditional operations. The
modular exponentiation of RSA has been implemented using both näıve square
and multiply and Montgomery ladder, while the underlying multiplication and
squaring has been implemented using Montgomery’s method. The attack itera-
tively recovers the key bits and has two distinct phases:

– An offline phase, during which the system branch predictor is approximated by
a theoretical model (namely, two-bit, two-level adaptive predictor) and is used to
classify the message space into distinct partitions based on the event of branch
misprediction and assuming the value of the ith key bit.

– In the online phase, we perform the actual attack to ascertain the ith key bit using
the branch mispredictions obtained from the values of the performance monitors



which provides us with the real information of the branch miss due to the actual
predictor hardware in the architecture.

We provide a theoretical proof to justify that the probability of success is
equivalent to how closely the theoretical predictor models the underlying system
predictor hardware to guess the ith bit correctly. It is also noted that success
probability increases with number of messages and reaches a significant value to
consider the side-channels due to performance counters a real threat to RSA-
like ciphers exploiting the underlying branch predictors. What makes this result
more relevant is the fact that protections which fuzz the timing channels are not
sufficient to thwart these attacks, and presents performance counters as a distinct
side-channel which needs to be considered for developing secured systems.

In the later part of this paper, we extend our attack to the RSA-OAEP ran-
domized padding procedure where we target the decryption phase of the imple-
mentation and the branch miss side-channel information of the entire decoding
procedure can be successfully exploited to reveal the secret exponent.

The organization of the paper is as follows:- The following Section 2 provides
a brief idea on modular exponentiation algorithms and some well-known predic-
tor algorithms. In Section 3 we demonstrate the vulnerability due to the event
“branch-misses” as side-channel. The attack algorithm is described in Section 4
with the detailed analysis on the retrieval of secret key bits in two phases. A for-
mal analysis on the success of the algorithm is presented in Section 5. Section 6
provides the experimental validation for the attack strategy. A brief discussion
on the future prospects of the work and some probable countermeasures are
provided in Section 7 and final section concludes the work we present here.

2 Preliminaries

In this section, we provide a background on some key-concepts, which include
some implementation algorithms for public-key ciphers and some well-known
branch predictors which have been subjected to attack.

2.1 Exponentiation Algorithms and Underlying Multiplication
Primitive

In RSA-like asymmetric-key cryptographic algorithms, inputs(M) are encrypted
and decrypted by performing modular exponentiation with modulus N on public
or private keys represented as n bit binary string. While during encryption the
exponent(e) is public, the target for attackers is the exponentiation carried out
while decryption, where the secret key(d) is used as the exponent. The most pop-
ular algorithm to implement modular exponentiation is the square and multiply
algorithm. The square and multiply algorithm as described in Algorithm 1, per-
forms squaring at each step, while there is a conditional multiplication operation
which is performed only if the exponent bits are set. This algorithm performs
unbalanced instruction execution conditioned on the exponent bits. Due to this



Algorithm 1: Binary version of Square & Multiply Exponentiation

begin

S ← M ;
for i from 1 to n− 1 do

S ← S ∗ S mod N ;
if di = 1 then

S ← S ∗M mod N ;
end

end

return S ;

end

Algorithm 2: Montgomery Ladder Algorithm

begin

R0 ← 1
R1 ← M
for i from 0 to n− 1 do

if di = 0 then

R1 ← (R0 ∗ R1) mod N
R0 ← (R0 ∗ R0) mod N

end

else if di = 1 then

R0 ← (R0 ∗ R1) mod N
R1 ← (R1 ∗ R1) mod N

end

end

return R0
end

extra computation step(which is being conditioned on the secret exponent bit),
simple power attacks (SPA) and timing attacks exploit this conditional instruc-
tion execution and eventually retrieves the secret exponent.

A näıve modification to protect the side-channel leakage of square and mul-
tiply exponentiation algorithm is to have a balanced instruction execution and
is proposed in the Montgomery ladder algorithm [6] explained in Algorithm 2.
This algorithm performs the entire exponentiation by alternatively modifying
the values of two dummy variables depending on the exponent bits. Algorithm 2
has both “if” and “else” statements, and everytime one of the two possible sets
of instructions are getting executed. Unlike the square and multiply, here the
number of squarings and multiplications executed will always be constant and
equal to the length of the key which inhibits simple power and timing attack.

A highly efficient algorithm for performing modular squaring and modular
multiplication operation (in these modular exponentiation algorithms) is the
Montgomery Multiplication Algorithm [9], since it avoids the time consuming
integer division operation. Montgomery Multiplication as in Algorithm 3 com-
putes modular multiplication of form a ∗ b(modN). If the RSA modulus N is a
k-bit number then a variable R is assumed to be 2k. Montgomery Multiplication
calculates Z = A ∗B ∗R−1(modN) where A = a ∗R(modN), B = b ∗R(modN)
and R−1 ∗R = 1(modN). There is an extra reduction step at the 4th line of the
Algorithm 3 which is particularly of interest to the attackers. The conditional
execution of the reduction statement depend on the inputs, thus can be exploited
in modular exponentiation scenario to surface a timing attack.

In situations when both public key exponent e and input m are small then the
modular exponentiation can be reverted efficiently and the encryption fails to ful-



Algorithm 3: Montgomery Multiplication Algorithm

begin

S ← A ∗ B ;

S ← (S + (S ∗ N−1
mod R) ∗ N)/R ;

if S > N then

S ← S −N ;
end

return S ;

end

fill the criteria for asymmetric key ciphers. RSA being a deterministic algorithm
is not semantically secure and an intelligent adversary can launch known cipher-
text attacks on this cipher. This effectively leads to message padding schemes
which encodes messages first then allows encryption on these encoded messages.
In the next subsection a brief overview of randomized message padding proce-
dure is provided.

2.2 RSA-OAEP Randomized Padding Scheme

RSA encryption along with PKCS#1 v1.5 encoding was shown to be insecure
in [3] as it reveals information regarding the plaintexts by examining the ci-
phertext in polynomial time. To overcome this security problems of the chosen
ciphertext attacks, OAEP encoding scheme was introduced to detect any ma-
nipulation while decrypting the ciphertext and outputs an error message if any
tampering with the ciphertext is performed.

In RSA-OAEP randomized padding procedure, the public key encryption(as
in modular exponentiation) is performed on the encoded message (which we re-
fer to as the plaintext) instead of the original message(though in the previously
stated algorithms the plaintext is same as the message). The decryption and
decoding procedure in RSA-OAEP is reverse to the encryption process and is
illustrated in Figure 9. The input ciphertext is decrypted with the secret key
to reveal the plaintext. The plaintext while decoded as in Figure 9 refuses to
output any message if the specifications of the decrypted ciphertext string is not
met. The criteria are illustrated in diagonal boxes in the Figure 9 and if vio-
lated, the decoding process outputs ”error message”. The detailed specifications
to the Mask Generation Function(MGF), hash function, selection of parame-
ter and seed generation are provided in [10]. The existing side-channel attacks
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Fig. 1. Decryption in RSA-OAEP procedure [8]



against this scheme exploits fault and timing analysis on three checking condi-
tions separately to identify the ciphertexts(which can be decoded to messages
successfully) in Chosen-ciphertext attacks.

This paper evaluates the security of implementations of public-key ciphers on
standard processors using branch misses from the hardware performance coun-
ters(HPCs). The leakage is caused due to the presence of branch predictors in
the modern architecture. Some of the very popular branch predictor algorithms
are explained in the next subsection.

2.3 Dynamic Branch Predictor

The 2-bit dynamic branch predictor state machine is one of the various predictor
algorithms that is most oftenly used in practice [5]. This is a deterministic algo-
rithm predicting next branch to be taken or not taken depending on the history
of previously taken branches. In a 2-bit prediction scheme the predictor must
miss twice before the prediction changes. But conditional branches that occurs
in a regular recurring pattern are not predicted well by this bimodal predictor.

In such cases a two-level adaptive predictor [13] works better as the predictor
remembers the last k occurrences of a branch instruction and uses a s-bit pre-
diction function (such as a s-bit predictor) for each of the 2k history of patterns.
The first level of the two level adaptive predictor uses a branch history register,
which is a shift register storing the history of the last k branches. The branch
history register indices to a second level called pattern history table, which can
hold 2k entries, each of s bits. When a conditional branch B is getting predicted,
content of the k bit history register is the address to pattern history table.

In the next section we will provide a brief motivation for considering branch
misses from performance counters as side-channel to attack public-key ciphers.

3 Modelling Branch Miss as Side-Channel from HPC

3.1 Using event Branch-misses as Side-channel

In this work, hardware performance counters(HPCs) are exploited to monitor
side-channel information of the number of branch misses on the square and
multiply exponentiation algorithm which uses Montgomery multiplication al-
gorithm as subroutine for the operations like squaring and multiplication. As
observed in Algorithm 1, the code while in execution can proceed in any of two
paths, since the multiplication operation is performed only if the particular ex-
ponent bit is set. In addition to this, the Montgomery multiplication subroutine
used for the squaring and multiplication operation also has an extra conditional
reduction statement which gets executed when the intermediate input exceeds
the modulus N . Thus, there exists a side-channel information via the hardware
performance event “branch-misses”. Though timing side-channel can also be
used to monitor the misprediction delays due to branch misses but when we wish
to exploit only the branch mispredictions, measuring the time of a misprediction



delay (of an event when measured from a multitasking system) is less significant
compared to actually monitoring the event branch misses through HPCs.

The side-channel leakage through branch miss is caused due to the presence
of underlying branch predictor in architecture. Branch misses rely on the ability
of the branch predictor to correctly predict future branches to be taken. If the
prediction is false, the instruction pipeline is flushed leading to a branch miss.
Thus the branch predictors play a major role in correctly predicting the next
target instruction and reducing the misprediction penalty.

The performance counters leak information of branch misses while exponen-
tiation operation is performed on the secret exponent bits for the public-key
ciphers. The profiling of the HPCs can be done using performance monitoring
tools and is considered as a side-channel source since it provides a simple user
interface to different hardware event counts.

3.2 Strong correlation between two-bit predictor and system
branch predictor

State machine of the 2-bit dynamic predictor as explained in Section 2.3 has
been extensively used as an underlying predictor in the older versions of the
Intel family of microprocessors [4]. But the actual predictor structure in archi-
tecture(inbuilt in the recent processors) is not disclosed by the processor manu-
facturers. In order to monitor the information of branch misses from the HPCs,
we aim to exploit a strong correlation of branch misses from the actual inbuilt
predictor and some of the well-known predictor algorithms. In order to approx-
imate the branch mispredictions from system’s underlying predictor algorithm,
we first made an installation of Perf tool on Linux OS Ubuntu 12.04.1 LTS to
monitor the event “branch-misses”, which indicates number of branch mispre-
dictions suffered by an executable. The following command can be executed
at the user privilege.

$ perf stat -e branch-misses executable-name
With the aim of approximating the underlying system predictor with the well

known 2-bit dynamic predictor, branch misses for performing exponentiation
are observed on 10000 separate random keystream, each of 1024 bits on Intel i5
platform. An observation on the number of branch misses simulated from the 2-
bit dynamic predictor and the corresponding branch misses as obtained through
performance counter values is illustrated in Figure 2. Two sets of information
are correlated in the following manner

– Each of these 1024 bit random key is simulated on 2-bit dynamic predictor and
the number of branch misses are observed for each of them.

– The number of branch misses are also observed from the performance monitoring
tool over the square and multiply exponentiation algorithm for each of the random
keystreams. The branch miss information for a particular key is averaged after
exponentiations over 1000 inputs to reduce noise.

– The number of branch misses obtained from performance counters is found to be
increasing as the total number of predicted branch misses on a key-stream increases
as in Figure 2.
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Fig. 2. Variation of branch-misses from performance counters with increase in branch miss from
2-bit predictor algorithm

The absolute values of branch misses obtained from HPCs as plotted in Figure 2
are much larger than the theoretically simulated values of the 2-bit predictor
algorithm. It may appear to the observer to be counter-intuitive since the actual
branch predictors in hardware are much sophisticated compared to the primitive
2-bit dynamic predictor. But the rationale behind this may be explained as that
the HPCs report branch miss statistics for the entire execution of the executable
and thus are affected by the environmental running processes as well.

A direct correlation is observed in Figure 2 for the branch misses from perfor-
mance counters and branch misses from the simulated 2-bit dynamic predictor
over a sample of exponent bitstream. This confirms our assumption of 2-bit
dynamic predictor being an approximation to the underlying system branch
predictor and in our work, we modelled this strong effect of the bimodal predic-
tor to exploit the side-channel leakage of branch misses from the performance
counters. As a further extension, we also perform the attack by approximating
the branch predictor by a two level adaptive predictor, where the second level is
a dynamic 2-bit predictor model itself. We later show that the accuracy of our
attack improves with the correlation between the actual and the model assumed,
which is quite high as also supported by our experiments.

4 Attack Algorithm featuring Performance counters

monitoring branch misses

In the attack algorithm, we claim to identify the secret bit by utilizing the be-
havior of the well known predictor algorithms as an approximation to underlying
system branch predictor, to simulate the mispredictions for initial known secret
exponent bits over each input ciphertexts. Later we perform an analysis phase
based on branch misprediction information from actual HPCs to reveal secret
bits. The attack is an adaptation of direct timing attack demonstrated in [1],
where the paper talks about observing a separation in timing between distinct
input sets, the sets being separated by a hypothetical predictor algorithm. The
hypothetical attack scenario presented in [1] cannot be implemented on real
systems until and unless the adversary gets to know the actual structure of the
branch predictor architecture of the target system. None of the leading processor
manufacturers publish their architectural details since this puts their intellectual



property at risk, making the whole idea of proposed attack unrealistic. In this
present work, we extend the attack algorithm and the novelty of the work lies
in the fact that the adversary, inspite of having no knowledge of the underlying
architecture, can actually target real systems and reveal secret exponent bits,
exploiting the branch miss as side-channel from HPCs. In order to target real
systems, we perform the subsimulations on some well-known predictors like 2-bit
dynamic predictor and two-level adaptive predictor as they approximate the real
predictor to a great extent in order to partition the entire ciphertext set into
smaller ones. In the latter phase, we perform actual experiments using branch
misses from HPCs as side-channel to ascertain the secret bit.

4.1 Threat Model for the attack

The basic assumptions of the attack is that the adversary targets the modular
exponentiation while RSA decryption is taking place. The attacker knows the
first i bits of the private key and he wants to determine next unknown bit di of the
key (d0, d1, · · · , di, · · · , dn−1). The attack algorithm runs in two phases, where in
the offine phase for an input m, the attacker can only simulate for the partially
known bits and the assumed target bit. In this phase, the subsimulations for
each input is fed to a predictor model to generate mispredictions and based on
this event misprediction, the entire ciphertext set is partitioned. The adversary
neither has an access to the HPCs nor any access to do a partial computation on
the target machine. Whereas in the online phase, the adversary can only observe
branch misses over entire secret key for various input ciphertexts. In this phase,
the attacker is not allowed to perform any subsimulation on the secret key.

In the next subsection, we present an iterative attack algorithm in two phases
where the following analysis can be performed to identify individual secret key
bits one after another.

4.2 Offline Phase

In this phase, the adversary partitions a sample input set M by simulating the
branch mispredictions for the conditional reduction of Montgomery multiplica-
tion at the (i + 1)th squaring step of Square and multiply algorithm. For any
input m ∈ M , the attacker can simulate the execution of the exponentiation
algorithm for the initial i bits (that are already known) and can generate a
trace of branches as (tm,1, tm,2, · · · , tm,i) following steps of Algorithm 1, 3. Here
tm,i is simulated as either a taken or not taken branch depending whether the
conditional reduction branch statement at the ith squaring operation is being
executed. As we already have the knowledge of bits (d0, d1, · · · , di−1), the trace
of branches can be simulated by the attacker as (tm,1, tm,2, · · · , tm,i).

At this stage, the adversary assumes both di = 0 and 1, and separately does
the following analysis in the offline phase. Under the assumption of di having
value j, where j ∈ {0, 1}, appropriate value of tjm,i+1 is simulated. This situation

is illustrated in Figure 3. The (i+1)th squaring (being executed by Montgomery
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multiplication subroutine), the execution of an extra reduction step at line 4
(of Montgomery Multiplication as in Algorithm 3) is purely dependent on the
sample input m as well as value of unknown di.

For the simulated branch history traces for a random ciphertext m, a mis-
prediction occurs at (i+1)th squaring only if the theoretically predicted branch
for (tm,1, tm,2, · · · , tm,i) observes a mismatch with the tjm,i+1-th branch execu-

tion. Let the theoretical predictor be T and (i + 1)th bit predicted by it be
pm,i+1 = T (tm,1, tm,2, · · · , tm,i). The partitioning of the ciphertext set is per-
formed based on this simulated misprediction. The algorithm for partitioning
is explained step by step in Algorithm 4 and is also illustrated in Figure 3.

So the attacker can create 4 different sets due to a misprediction event during
the Montgomery Multiplication(MM) at (i+ 1)th squaring:

1. M1 = {m|m does not cause a miss during MM of (i+ 1)th squaring if di = 1}
2. M2 = {m|m causes a misprediction during MM of (i+ 1)th squaring if di = 1}
3. M3 = {m|m does not cause a miss during MM of (i+ 1)th squaring if di = 0}
4. M4 = {m|m causes a misprediction during MM of (i+ 1)th squaring if di = 0}

But there may exist a situation for a ciphertext m, such that m ∈ M2 and
m ∈ M4, which may suffer a misprediction when di is assumed to be 0 as well
as 1. Thus these ciphertexts may add to the noise while actually determining
the secret bit, as in this case, the event misprediction does not signify whether
di = 0 or 1. Likewise for the sets M1 and M3. Hence we ensure that there must
be no common ciphertexts in sets (M1,M3) and (M2,M4) and the sets should be
disjoint. The 4 sets of ciphertexts are generated by the attacker in offline phase.

The Offline phase for the Montgomery Ladder algorithm differs to some ex-
tent from subsimulation and misprediction computation of square and multiply.
In the Montgomery Ladder Algorithm 2, both the squaring and multiplication
operations are conditioned on the exponent bits and in addition to this, there
are two sets of squaring and multiplication operations that are getting executed
in Algorithm 2. For a input ciphertext m, when exponent bit is 0 then lines 6,7
are executed otherwise lines 8,9 are getting executed. If we target to observe mis-
prediction for the conditional reductions of the squaring statement, then unlike
the square and multiply algorithm, the subsimulation generates two traces for



Algorithm 4: Adversary Attack Algorithm

Input: (d0, d1, · · · , di−1),M
Output: Probable next bit nbi
begin

Offline Phase;
for ∀m ∈ M do

Generate taken/ not-taken trace for input m as tm,1, tm,2, · · · , tm,i ;

Assume di = 0, generate t0m,i+1 ;

Similarly, assume di = 1, generate t1m,i+1 ;

pm,i+1 = T (tm,1, tm,2, · · · , tm,i) ;

if pm,i+1 = t1m,i+1 then

Add m to M1 ;
end

else

Add m to M2 ;
end

if pm,i+1 = t0m,i+1 then

Add m to M3 ;
end

else

Add m to M4 ;
end

end

Remove Duplicate Ciphertexts in the sets M1,M3 and M2,M4;
Online Phase;
Observe distribution of branch misses from performance counters as MM1

,MM2
,MM3

,MM4
;

if (avg(MM2
) > avg(MM1

)) and (avg(MM4
) < avg(MM3

)) then

nbi = 1 ;
end

if (avg(MM4
) > avg(MM3

)) and (avg(MM2
) < avg(MM1

)) then

nbi = 0 ;
end

return nbi ;

end

taken and not taken branches (two traces correspond to squarings at line 7 and
9 respectively) for the partially known key. Similar to the previous strategy in
order to identify the secret bit di, we assume the target bit di to be both 0 and 1
and separate ciphertext into 4 sets. When we assume di = 0, then mispredictions
are simulated over the trace corresponding to line 7 and alternatively for line
9 when di = 1. The partitioning of ciphertexts as well as the Online phase are
exactly same as explained for the square and multiply algorithm.

4.3 Online Phase

In the Online phase, branch misses from the HPCs are monitored for execution of
cipher over the entire secret key for each ciphertexts in all of the 4 sets while the
RSA decryption is taking place. Let the branch mispredictions observed ∀m ∈ M
from the HPCs for decryption of the cipher, forms a distribution of branch misses
and we denote such distribution as M. Branch misses for exponentiation are
monitored on each ciphertexts for these 4 separate sets M1,M2,M3,M4 for the
entire secret key and results in 4 distinct distributions MM1 , and so on.

Since the ith bit of the exponent can either be 0 or 1 and cannot be both at the
same time, intuitively from these two pair of sets - (M1,M2) and (M3,M4), one
of the pair corresponding to the correct assumption of di will show a consistent
positive difference in the observed branch misses while in the other pair, the
differences will be zero or negative. This is due to the fact, if the classification
is correct, then expected mispredictions of one set (which stores the ciphertexts



causing a misprediction) should be greater than the other set. If the guess is
wrong, the classification being random does not exhibit this statistics.

The probable next bit is decided following the Algorithm 4.

– If(avg(MM2) > avg(MM1)) and (avg(MM4) < avg(MM3)), then the next bit
(nbi) = 1

– Otherwise, if (avg(MM4) > avg(MM3)) and (avg(MM2) < avg(MM1)) then,
next bit (nbi) = 0

5 Formally modelling the Success

In this section we claim that the success of correctly identifying the actual key
bits can be alternatively stated as, how closely the theoretical dynamic 2-bit
predictor follows the real predictor which is inbuilt in the processor.

In the Offline phase of the attack algorithm, for an assumption of the secret
bit the set of ciphertexts M was separated in two disjoint sets based on the
criteria whether they suffer from a simulated misprediction at the conditional
reduction statement of (i + 1)th squaring step. Essentially in the offline phase,
Pr[m1 ∈ M1] = Pr[pm1,i+1 = t1m1,i+1]

Pr[m2 ∈ M2] = Pr[pm2,i+1 6= t1m2,i+1] (assuming di = 1)

and, Pr[m3 ∈ M3] = Pr[pm3,i+1 = t0m3,i+1]

Pr[m4 ∈ M4] = Pr[pm4,i+1 6= t0m4,i+1] (assuming di = 0)

Also, since we remove duplicate elements from (M1,M3) and (M2,M4) in the
Offline Phase, for any input m, if m ∈ M1 then m /∈ M3, thus m ∈ M4. Alter-
natively, we can say, ∀m ∈ M , t0m,i+1 6= t1m,i+1.

While in the Online Phase, let nbi be the bit which the attacker concludes
to be the next secret bit by monitoring branch misses from HPCs for the cor-
responding plaintext sets following the attack algorithm. Let the expectation of
the distribution of branch misses (MM , ∀m ∈ M) be MM . Thus we can decide
the next bit defining the following probabilities, for ∀mi ∈ Mi, i ∈ 1, 2, 3, 4 as:
Pr[nbi = 0] = Pr[(MM4 − MM3 ) > 0 ∧ (MM2 − MM1 ) < 0]

Pr[nbi = 1] = Pr[(MM2 − MM1 ) > 0 ∧ (MM4 − MM3 ) < 0]. These observed mispre-
dictions are actually affected by the deterministic algorithm of underlying real
predictor of the system. Let us assume that the real predictor inbuilt in the
system be R and (i + 1)th bit predicted by the real predictor for the known
trace is rm,i+1 for input m. Let the i+ 1th branch instruction has trace Bm,i+1

for unknown bit di. If di = 0, then Bm,i+1 = t0m,i+1, otherwise if di = 1,

Bm,i+1 = t1m,i+1. Thus we can rewrite the previous equation as

Pr[nbi = 0] = Pr[(MM4 − MM3 ) > 0 ∧ (MM2 − MM1 ) < 0]

= Pr[(rm4,i+1 6= Bm4,i+1) ∧ (rm3,i+1 = Bm3,i+1) ∧ (rm2,i+1 = Bm2,i+1) ∧ (rm1,i+1 6= Bm1,i+1)]

Similarly,

Pr[nbi = 1] = Pr[(MM2 − MM1 ) > 0 ∧ (MM4 − MM3 ) < 0]

= Pr[(rm2,i+1 6= Bm2,i+1) ∧ (rm1,i+1 = Bm1,i+1) ∧ (rm4,i+1 = Bm4,i+1) ∧ (rm3,i+1 6= Bm3,i+1)]



Since an attacker is unaware of the underlying predictor model, the correct-
ness of separation relies on the criteria that how closely the theoretical predictor
approximates the real one. Thus the extent of correct partitioning of the ran-
dom ciphertext set relies on the efficiency of the theoretical predictor model. We
define the event Success as true if the maximum difference in branch misses is
observed from HPCs over input sets for the correct assumption. In other words,

– If difference in average branch miss (MM4 −MM3) > 0, (MM2 −MM1) < 0 and
the secret bit is actually 0.

– If difference in branch miss (MM2 −MM1) > 0, (MM4 −MM3) < 0 and the secret

bit is actually 1. Thus,

Pr(Success) = Pr[nbi = di] = Pr[nbi = 0 ∧ di = 0] + Pr[nbi = 1 ∧ di = 1]

= Pr[nbi = 0 | di = 0] · Pr[di = 0] + Pr[nbi = 1 | di = 1] · Pr[di = 1]

If di = 0, we replace Bm,i+1 = t0m,i+1 in Equation 1 as,

Pr[nbi = 0 | di = 0] = Pr[(rm4,i+1 6= t
0
m4,i+1) ∧ (rm3,i+1 = t

0
m3,i+1) ∧ (rm2,i+1 = t

0
m2,i+1) ∧ (rm1,i+1 6= t

0
m1,i+1)]

= Pr[(rm4,i+1 6= t
0
m4,i+1) ∧ (rm3,i+1 = t

0
m3,i+1) ∧ (rm2,i+1 6= t

1
m2,i+1) ∧ (rm1,i+1 = t

1
m1,i+1)]

(since t
0
m2,i+1 6= t

1
m2,i+1 and t

1
m1,i+1 6= t

0
m1,i+1)

Substituting the events from Offline Phase,

Pr[nbi = 0 | di = 0] = Pr[(rm4,i+1 = pm4,i+1) ∧ (rm3,i+1 = pm3,i+1) ∧ (rm2,i+1 = pm2,i+1) ∧ (rm1,i+1 = pm1,i+1)]

= Pr[(rm,i+1 = pm,i+1)]

Similar calculations reveal,

Pr[nbi = 1 | di = 1] = Pr[(rm,i+1 = pm,i+1)]

Thus, combining equations we get,

Pr(Success) = Pr[rm,i+1 = pm,i+1] · [Pr(di = 0) + Pr(di = 1)]

= Pr[rm,i+1 = pm,i+1]

Thus we conclude from this that the probability of success is equal to the prob-
ability that the theoretical predictor closely models the real predictor.

6 Experimental Validation for the Online Phase of the

Attack

In this section we present the validation of previous discussion through experi-
ments. The experiments are performed on RSA algorithm, the exponents being
1024 bits. The experiments are performed on various Intel processors like Intel
Core-2 Duo E7400, Intel Core i3 M350 and Intel Core i5-3470. We illustrate our
results by varying following parameters:

– Branch misses from performance counters are captured from the statistic reported
by the Perf tool for executables running Square and Multiply algorithm and Mont-
gomery Ladder algorithm using Montgomery multiplication subroutine for per-
forming squaring and multiplications.
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Fig. 4. Branch misses from HPCs on square and multiply correctly identifies secret bit di = 1,
ciphertext set partitioned by simulated misses of two-level adaptive predictor

– The exponentiations are computed for random inputs of 64 bits that are randomly
chosen.

– The performance counter measurements are observed over say L number of inputs.
In between every iteration, we perform dummy exponentiation with randomly gen-
erated key-bits to flush the effect of the previous iterations from the predictor.

– The entire process is repeated for I number of iterations.

The offline phase of the attack separates a big pool of random inputs M into
sets M1, M2, M3 and M4 based on mispredictions being simulated and results
are furnished using 2-bit prediction as well as two-level adaptive predictor.

6.1 Experiments on Square and Multiply and Montgomery Ladder
Algorithm

Initially the attack is performed on the square and multiply exponentiation im-
plementation targeting the conditional reduction of the (i + 1)th squaring step.
Figure 4 shows the correct and incorrect separations for all 4 sets (separated
by simulations over two-level adaptive predictor) for the randomly chosen 548th

bit location of the target key-stream. Figure 4(a) plots average branch misses
observed from performance counters for each elements in set M1 and M2 (each
set having L = 1000 elements) and the experiment is repeated over I = 1000
iterations in order to check the consistency of the output. It is evident from the
figure that in most of the iterations the average branch miss for set M2 is more
than the branch misses for set M1(as expected). On the contrary, Figure 4(b)
plots average branch misses observed from performance counters for each ele-
ments in set M3 and M4. But we observe an incorrect separation as in most of
this case, ciphertexts in set M4 is having lesser branch misses than in set M3

which is incorrect since theoretically it should be the reverse. Thus from this two
figures, the correct exponent can be easily identified showing correct difference
in branch misses.

The offline phase for Montgomery Ladder implementation slightly differs
from the square and multiply algorithm as appears in Section 4.2. The separation
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Fig. 5. Branch misses from HPCs on Montgomery Ladder correctly identifies secret bit di = 1,
ciphertext set partitioned by simulated misses of two-level adaptive predictor

of inputs are performed based on two separate subsimulated traces, and the
misprediction is simulated selecting one of them depending on the assumption of
the secret bit. The online phase of the attack is carried out similar to the previous
experiment having L = 1000 and I = 1000. Figure 5(a), 5(b) shows the correct
and incorrect assumptions of the target location for all the 4 ciphertext sets
(separated by simulations over two-level adaptive predictor), which illustrates
that it can identify the target secret bit correctly. In the following subsection,
timing is used as side-channel instead of branch miss in the same experimental
scenario but unlike branch miss, timing information fails to reveal the secret bit.

6.2 Comparing timing as side-channel to branch misses from HPC

Timing side-channel as compared to branch misses will require significantly
larger number of random inputs so that the adversary can identify next bit
correctly. To establish our claim, similar experiments as previous has been ex-
perimented with parameters L = 1000 and I = 1000 and the execution time
of the exponentiations over the entire secret key is monitored. Figure 6(a), (b)
illustrates that there is no clear demarcation so as to identify the secret bit. The
timing side-channel has to be observed on significantly huge number of inputs to
observe the accuracy that the adversary is able to observe using branch misses
from HPCs. Thus we conclude that branch misses from HPCs can be viewed as
stronger side-channel while exploiting the vulnerabilities of public-key ciphers.

6.3 Variation of parameters such as Number of Inputs (L) and
Iteration (I)

Figure 7, 8 shows the variation of the differences in branch misses for the 4 ci-
phertext sets respectively. In these experiments the ciphertext sets are separated
by simulation from the 2-bit dynamic predictor. Thus, from the experimental
results as illustrated in Figure 7, 8, we can conclude that the identification of
secret bit requires reasonably smaller number of inputs(L) (compared to timing
side-channel) and the results are consistent across several iterations(I).
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Fig. 6. No identification of secret bit is possible using timing as side-channel with L = 1000 and
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Fig. 7. Variation in the separation of branch misses for correct secret bit = 1 showing positive
difference for M1 and M2 with the increase in number of ciphertexts(L), I = 100
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Fig. 8. Variation in the separation of branch misses for correct secret bit = 0 showing positive
difference for M3,M4 with the increase in number of iteration(I), L = 1000

6.4 Revealing Secret Exponent in RSA-OAEP Randomized
Padding Procedure

In this section, we adapt the attack model described in the Section 4 to reveal
the secret exponent in the RSA-OAEP padding procedure. A brief description
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Fig. 9. Branch misses from HPCs on RSA-OAEP implementation, correctly identifies secret bit
di = 1, ciphertext set partitioned by simulated misses of bimodal predictor

of the padding scheme is presented in Section 2.2 and we present its vulnera-
bilities with respect to the present attack scenario. In this paper we target the
decryption phase of the RSA-OAEP algorithm. The correctness check on the
decrypted input is done after the exponentiation over the secret exponent has
been performed. The entire decryption and decoding is operated over a set of
randomly generated ciphertexts which may not output valid messages(as they
might fail to satisfy all criteria to output valid message). But in this process of
the exponentiation operation, the unknown secret exponent gets leaked through
branch mispredictions. The offline phase as in Algorithm 4 can be constructed for
each ciphertext from the randomly generated set and the online measurements
of branch misses over the separate sets eventually reveals the correct guess.

We performed the experiments with a Montgomery Ladder implementation
of RSA decryption followed by the RSA padding check PKCS1 OAEP () func-
tion from the OpenSSL 1.0.0 library which performs the RSA-OAEP decoding.
The experimental results for the RSA-OAEP decryption procedure is illustrated
in Figure 6.4(a) and 6.4(b) which clearly shows that for the actual secret bit
there is a correct separation while incorrect separation can be observed for
the wrong guess. Thus it be stated that, even though Randomized message
padding encryptions make ciphers semantically secure, it cannot guarantee se-
curity against this attack as the side-channel leakage through branch miss event
can be intelligently exploited to reveal the individual key bits one after another,
while the exponentiation operation is being performed on the secret exponent
for each randomly generated ciphertexts.

7 Discussions

Branching and conditional statements has been first targeted by side-channel
cryptanalysts exploiting timing as side-channel. There has been several coun-
termeasures like fuzzying timestamp counters, constant time implementations
which have been proposed in literature to thwart the attacks from timing vari-
ations. But in most of these countermeasures, threat exists through HPCs as



side-channel since the sequence of conditional statements that are being exe-
cuted remains dependent on the key bits. In the present work though we have
illustrated the attacks on RSA-like asymmetric key ciphers but this work can be
extended to standard Double and Add Algorithm which is used to implement
Elliptic Curve Scalar Multiplication. This forms the basis of the future scope of
the study. We propose some of the feasible algorithmic countermeasures which
are capable to thwart the present attack:

– Our attack targets the conditional reduction statement of Montgomery Multiplica-
tion(MM) and identifies secret key bits on observing branch miss distribution over
separate ciphertext sets. If input to MM algorithm is masked such that 2 random
numbers are generated at runtime and inputs are modified as (ar = a + r1) and
(br = b + r2), the branch predictor observes conditional branches which depend
on r1, r2. However the final product is a ∗ b as effect of r1, r2 can be nullified by
adding correction terms. This masking strategy will prevent the adversary from
simulating branch miss, since r1, r2 are randomly generated at run time.

– There are other implementations of RSA, like CRT-RSA, which can be more resis-
tant against the proposed attacks, since the adversary cannot perform the necessary
subsimulations without knowing the prime factors of the RSA modulus.

However in context to such implementations, the performance counters can still
pose a threatening side-channel, if stronger attack models are considered. For
example, if the adversary is capable of introducing a transient bit fault in the
secret exponent, and observes the differences in the values of the performance
counters, leakages due to the branch predictor still occurs [2].

All these experiments, show that HPCs form a threatening side-channel for
the existing implementations of RSA-like public key ciphers and any such im-
plementation which has branching statements conditioned on secret key bits are
vulnerable to attacks exploiting branch misprediction information from HPCs.
This side-channel should also be considered along with other well-known side-
channels like timing, power, and faults. The information provided by the Perfor-
mance Counters should be possibly computed to provide the user means to access
the performance, without providing a mechanism to extract secret information.

8 Conclusion

This paper shows that HPCs, which are used as performance monitors (watch-
men) in modern computer systems can be utilized to retrieve the secret keys
by reasonably modelled adversaries. The attack that we illustrate exploit the
characteristics of branch predictor and show formally that the leakage of the
key increases with the ability of the attacker to model the predictor more accu-
rately. The experimental results clearly present the correct identification of the
secret bits of 1024 bit RSA running on real life Intel platforms. We follow by
a claim that branch misses from HPCs are indeed more significant side-channel
compared to timing. For future work these experiments should be widened to
model secure predictors which will inherently prevent information leakage.
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