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Abstract. We present new side-channel attacks on RSA and ElGamal
implementations that use sliding-window or fixed-window (m-ary) mod-
ular exponentiation. The attacks extract decryption keys using a very low
measurement bandwidth (a frequency band of less than 100 kHz around
a carrier under 2 MHz) even when attacking multi-GHz CPUs.
We demonstrate the attacks’ feasibility by extracting keys from GnuPG
(unmodified ElGamal and non-blinded RSA), within seconds, using a
nonintrusive measurement of electromagnetic emanations from laptop
computers. The measurement equipment is cheap and compact, uses
readily-available components (a Software Defined Radio USB dongle or
a consumer-grade radio receiver), and can operate untethered while con-
cealed, e.g., inside pita bread.
The attacks use a few non-adaptive chosen ciphertexts, crafted so that
whenever the decryption routine encounters particular bit patterns in the
secret key, intermediate values occur with a special structure that causes
observable fluctuations in the electromagnetic field. Through suitable
signal processing and cryptanalysis, the bit patterns and eventually the
whole secret key are recovered.
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1 Introduction

1.1 Overview

Even when a cryptographic scheme is mathematically secure and sound, its im-
plementations may be vulnerable to side-channel attacks that exploit physical
emanations. Such emanations can leak information about secret values inside the
computation and have been exploited by attacks on many cryptographic imple-
mentations (see [8,25,27] for surveys). Most research on physical side-channel at-
tacks has focused on small devices such as smartcards, FPGAs and other simple
embedded hardware. On general-purpose PCs (laptop and desktop computers,
servers, etc.), software-based side-channel attacks on PCs (e.g., exploiting tim-
ing and CPU cache contention) have been extensively studied. But physical side
channels in PCs received less academic attention, and involve several difficulties:



1. Complexity. As opposed to small devices, which often contain a single
main chip and some auxiliary components, PCs are highly complex systems
containing multiple large chips, numerous electric components, asynchronous
mechanisms, and a complicated software stack.

2. Acquisition Bandwidth. Typical side-channel approaches require the ana-
log leakage signals to be acquired at a bandwidth greater than the device’s
clockrate. For the case of PCs running a GHz-scale CPU, recording such high-
bandwidth signals requires expensive, cumbersome, and delicate-to-operate
lab equipment, and a lot of storage and processing power.

3. Signal Integrity. Multi-GHz bandwidths are also hard to acquire with
high fidelity, especially non-intrusively, since such high frequencies are usually
filtered close to their source using cheap and compact components and are
often subject to rapid attenuation, reflections, and so forth. Quantization
noise is also a concern, due to limited ADC dynamic range at such frequencies
(typically under 8 bits, as opposed to 16 or more bits at low frequencies).

4. Attack Scenario. Traditional side-channel attacks often require that the
attacker have undeterred access to the target device. These scenarios often
make sense for devices such as smartcards, which are easily pilfered or even
handed out to potential attackers (e.g., cable-TV subscription cards). Yet
when attacking other people’s PCs, the physical access is often limited to
brief, nonintrusive access that can go unobserved.

Physical side-channel attacks on PCs have been reported only at a low bandwidth
leakage (less than a MHz). Emanations of interest have been shown at the USB
port [30] and through the power outlet [12]. Recently, low-bandwidth physical
side-channel key-extraction attacks on PCs were demonstrated [20,21], utilizing
various physical channels. These last two works presented two different low-
bandwidth attacks, with different equipment and attack time requirements:

– Fast, Non-Adaptive MF Attack. A non-adaptive chosen-ciphertext at-
tack exploiting signals circa 2 MHz (Medium Frequency band), obtained dur-
ing several decryptions of a single ciphertext. While both ElGamal and RSA
keys can be extracted using this attack in just a few seconds of measurements,
the attack used expensive low-noise lab-grade signal acquisition hardware.

– Slow, Adaptive VLF/LF Attack. Adaptive chosen-ciphertext attack ex-
ploiting signals of about 15–40 kHz (Very Low / Low Frequency bands) ob-
tained during several decryptions of every ciphertext. Extraction of 4096-bit
RSA keys takes approximately one hour, using common equipment such as a
sound card or a smartphone.

This leaves a practicality gap: the attacks require either expensive lab-grade
equipment (in the non-adaptive case), or thousands of adaptively-chosen cipher-
texts decrypted over an hour (in the adaptive case). See Table 1 for a comparison.

Another limitation of [20, 21] is that they target the square-and-multiply
algorithm. These attacks do not work for sliding-window or fixed-window expo-
nentiation, used in most RSA and ElGamal implementations nowadays.
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Scheme Algorithm Ciphertext Number of Time Frequency Equipment Ref.
choice Ciphertexts

RSA square and Adaptive
key bits

4 1 hour 50 kHz common [21]

multiply

RSA, square and Non- 1 seconds 2 MHz lab-grade [20]
ElGamal always multiply adaptive

RSA sliding/fixed Non- 16 seconds 2 MHz, 100 kHz common This

ElGamal window adaptive 8 bandwidth work

Table 1. Comparison of physical key extraction attacks on PCs. #ciphertexts counts
the number of distinct ciphertexts; measurements may be repeated to handle noise.

1.2 Our Contribution

In this work we make progress on all fronts outlined above. We present and
experimentally demonstrate a new physical side-channel key-extraction attack,
which is the first to achieve the following:

1. Windowed Exponentiation on PCs. The attack is effective against RSA
and ElGamal implementations that use sliding-window or fixed-window (m-
ary) exponentiation, as in most cryptographic libraries, and running on PCs.

Moreover, the attack concurrently achieves all of the following properties (each
of which was achieved by some prior work on PCs, but never in combination
with the other properties, and not for sliding-window exponentiation):

2. Speed. This attack uses as few as 8 (non-adaptively) chosen ciphertexts
and is able to extract the secret key in just several seconds of measurements.

3. Low Frequency and Bandwidth. The attack measures signals at a fre-
quency of merely 2 MHz, and moreover at a low bandwidth (less than 100 kHz
around the carrier). This makes signal acquisition robust and inexpensive.

4. Small, Cheap and Readily-Available Setup. Our attack can be mounted
using simple and readily available equipment, such as a cheap Software De-
fined Radio USB dongle attached to a loop of cable and controlled by a laptop
or a small SoC board (see Figures 8(a) and 7). Alternatively, in some cases
all that is required is a common, consumer-grade radio, with its audio output
recorded by a phone (see Figure 8(b)). In both cases, we avoid the expen-
sive equipment used in prior attacks, such as low-noise amplifiers, high-speed
digitizers, sensitive ultrasound microphones, and professional EM probes.

Approach. Our attack utilizes the fact that, in the sliding-window or fixed-
window exponentiation, the values inside the table of ciphertext powers can be
partially predicted. Using a suitable ciphertext, we cause the value at a specific
table entry to have a certain structure. This structure, coupled with a subtle con-
trol flow difference deep inside GnuPG’s multiplication code, causes a difference
in the leakage whenever a multiplication by this structured value occurs. Such
a ciphertext is crafted separately for each table index. During its decryption, we
nonintrusively measure the EM leakage, focusing on a narrowband frequency-
modulated signal around 1.5–2 MHz. After filtering, demodulation, distortion
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compensation and averaging, a clean aggregate trace is produced for that table
index, revealing all the locations inside the secret exponent where the specific
table entry is selected by the bit pattern in the window. We then recover the
key by combining the (misaligned but partially-overlapping) aggregate traces.

1.3 Vulnerable Software and Hardware

Similarly to [20, 21], this work targets commodity laptop computers. We have
tested numerous laptops of various models and makes. In this paper our examples
use Lenovo 3000 N200 laptops, which exhibit a particularly clear signal.

GnuPG. We focused on GnuPG 1.4.18 [3], which is the latest version at the
time of writing this paper. We compiled GnuPG using the MinGW GCC 4.6.2 [5]
and ran it on Windows XP.3 GnuPG 2.1 (developed in parallel to GnuPG 1.x),
as well as its underlying cryptographic library, libgcrypt (version 1.6.2), utilize
very similar cryptographic codes and thus may also be vulnerable to our attack.

Following past attacks [20, 21], GnuPG uses ciphertext randomization for
RSA (but not for ElGamal; see Section 4). To test our attack on RSA with
sliding-window exponentiation, we disabled that countermeasure, making GnuPG
decrypt the ciphertext directly. The ElGamal attack applies to unmodified GnuPG.

Current Status. We worked with the authors of GnuPG to suggest several
countermeasures and verify their effectiveness (see CVE-2014-3591 [29]). GnuPG
1.4.19 and Libgcrypt 1.6.3, resilient to these attacks, were released concurrently
with the public announcement of the results presented in this paper.

Chosen Ciphertext Injection. GnuPG is often invoked to decrypt external
inputs, from numerous frontends, via emails, files, chat and web pages. The
list of GnuPG frontends [4] contains dozens of such applications, each of them
can be potentially exploited for our attack. Concretely, as observed in [20, 21],
Enigmail [17], a plugin for the Mozilla Thunderbird e-mail client, automatically
decrypts incoming emails, passing them to GnuPG. Thus, it is possible to inject
ciphertexts into GnuPG by sending them as a PGP/MIME-encoded e-mail [16].

1.4 Related Work

Side-channel attacks have been demonstrated on numerous cryptographic imple-
mentations, via various channels (see [8, 25,27] and the references within).

EM Side Channel. The electromagnetic (EM) side channel has been exploited
for attacking smartcards and other small devices (e.g., [7, 19, 33]). On PCs, [39]
observed EM leakage (but did not show cryptanalytic applications), and [20]
demonstrated EM attacks on a side-channel protected PC implementation of
the square-and-multiply exponentiation of RSA and ElGamal.

Attacks on Sliding Window Exponentiation. While most attacks on public
key schemes focus on variants of the square-and-multiply algorithm, several focus
on attacking sliding window exponentiation on small devices (sampling much
faster than the target’s clockrate). These either exploit high-bandwidth operand-
dependent leakage of the multiplication routine [13,23,24,35] or utilize the fact
that it is possible to distinguish between squarings and multiplications [6, 18].

3 Similar effects where observed on other version of Windows as well as on Linux.
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Neither of the above approaches fits our case. The first approach requires
very high-bandwidth leakage the acquisition of which, even for small and slow
embedded devices, requires expensive lab equipment. Non-intrusive acquisition of
such signals for the PC class of devices (running multi-GHz CPUs) is especially
difficult. The second approach is blocked by a countermeasure to the attack
of [37]: GnuPG uses the same code for squaring and multiplications (and the
resulting EM leakage indeed appears indistinguishable at low bandwidth).

Side-channel Attacks on PCs. Physical side-channel attacks of PCs were
demonstrated by observing leakage through the USB port [30] or through the
power outlet [12]. Key extraction attacks have been presented on PCs, utiliz-
ing timing differences [10] and cache access patterns [9, 31, 32]. Recently, low-
bandwidth key-extraction attacks that utilize physical channels such as sound [21]
and chassis potential [20] were demonstrated on GnuPG running on PCs.

Cache Attacks in GnuPG. Yarom and Falkner [37] presented an L3 cache
attack on the square-and-multiply algorithm, achieving key extraction by di-
rectly observing the sequence of squarings and multiplications performed. In a
concurrent work, Yarom et al. presented [38] an attack on sliding-window expo-
nentiation by observing the access patterns to the table of ciphertext powers.

2 Cryptanalysis

2.1 GnuPG’s Sliding-Window Exponentiation Routine

GnuPG uses an internal mathematical library called MPI (based on GMP [2]) in
order to perform the big-integer operations occurring in ElGamal and RSA. In
recent versions, exponentiation is performed using a sliding-window algorithm.
MPI stores big integers as arrays of limbs (32-bit words, in our case). Algorithm 1
is a pseudocode of the exponentiation routine. The function size in limbs(x)
returns the number of limbs in the t-bit number x, namely dt/32e.

Consider lines 8–12. For a fixed value of w, these compute a table indexed by
1,3,5, . . . ,2w− 1, mapping each odd w-bit integer u to the group element gu. We
will show how to exploit this table to create exponent-dependent leakage during
the main loop of Algorithm 1, leading to full key extraction.

2.2 ElGamal Attack Algorithm

We start by describing the attack algorithm on GnuPG’s ElGamal implemen-
tation, which uses sliding-window exponentiation. At the end of the section we
discuss the fixed-window version.

Let SM-sequence denote the sequence of squaring and multiplications per-
formed in lines 18, 22 and 25 of Algorithm 1. Note that this sequence depends
only on the exponent d. If an attacker were to learn the SM-sequence, and more-
over obtain for each multiplication in line 22 the corresponding table index u
used to index into the table, then the exponent could be recovered.

Revealing the Locations of a Table Index. We now discuss how, for any
given table index u, the attacker can learn the locations where multiplications
by gu, as performed by line 22, occur inside the SM-sequence. In what follows,
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Algorithm 1 GnuPG’s modular exponentiation (simplified).

1: procedure mod exp(g, d, p) . return gd mod p
2: if size in limbs(d) > 16 then . compute w, the window size
3: w ← 5
4: else if size in limbs(d) > 8 then
5: w ← 4

. . .
6: else
7: w ← 1
8: g0 ← 1, g1 ← g, g2 ← g2

9: for i← 1 to 2w−1 − 1 do . precompute table of small powers of g
10: g2i+1 ← g2i−1 · g2
11: if size in limbs(g2i+1) > size in limbs(p) then
12: g2i+1 ← g2i+1 mod p

13: a← 1, j ← 0
14: while d 6= 0 do . main loop for computing gd mod p
15: j ← j + count leading zeros(d)
16: d← shift left(d, j) . shift d to the left j bits
17: for i← 1 to j + w do
18: a← a · a mod p . using multiplication, not squaring

19: t← d1 · · · dw
20: j ← count trailing zeros(t)
21: u← shift right(t, j) . shift t to the right j bits
22: a← a · gu mod p
23: d← shift left(d,w) . shift d to the left w bits

24: for i← 1 to j do
25: a← a · a mod p . using multiplication, not squaring

26: return a

for any given table index u, we shall refer to such locations as SM-locations. For
3072-bit ElGamal, GnuPG chooses a secret exponent of about 400 bits. Thus
w = 4, so the table indices are odd 4-bit integers. Given an odd 4-bit integer
u, the attacker chooses the ciphertext so that multiplications by gu produce
different side-channel leakage compared to multiplications by gu′ for all u′ 6= u.

First, the attacker selects a number y ∈ Z∗p containing many zero limbs and
computes its u-th root, i.e., x, such that xu ≡ y (mod p). It is likely that for all
other odd 4-bit integer u′ 6= u, there are few zero limbs in xu

′
mod p (otherwise,

the attacker selects a different y and retries). Finally, the attacker requests the
decryption of (x, δ) for some arbitrary value δ and measures the side channel
leakage produced during the computation of mod exp(x, d, p).

Distinguishing Between Multiplications. The above process of select-
ing x given an odd 4-bit integer u allows an attacker to distinguish multi-
plications by gu from multiplications by gu′ for all u′ 6= u, during the main
loop of mod exp(x, d, p). Indeed, by the code of Algorithm 1 we have that
gu = xu mod p = y, which contains many zero limbs. Conversely, for any u′ 6= u,
gu′ = xu

′
mod p which contains few (if any) zero limbs. The number of zero limbs

in the second operand of the multiplication can be detected via side channels,

6



as observed by [20,21]. Thus, it is possible to distinguish the multiplications by
gu in line 22 of Algorithm 1 from multiplications by gu′ where u′ 6= u.

Distinguishing Between Squarings and Multiplications. GnuPG imple-
ments the squaring in lines 18 and 25 using the same multiplication code used
for line 22 (this is a countermeasure to the attack of [37]). In the case of squar-
ing, the argument a supplied to the multiplication routine is an intermediate
value which is unlikely to contain any zero limbs. Thus, the squaring operations
will produce similar leakage to that produced by multiplications by gu′ for some
u′ 6= u. Thus the attacker can still determine the SM-locations of gu.

Key Extraction. Applying this method across all ciphertexts, the attacker
learns the SM-locations of multiplications by gu performed in line 22 for all
possible u. Since u is an odd 4-bit number, only 8 possible values of u exist.
Any remaining locations must correspond to a squaring operation performed by
lines 18 or 25. At this point, the attacker has learned the entire SM-sequence
performed by Algorithm 1 and obtained the corresponding value of u for each
multiplication performed by line 22, allowing him to recover the secret exponent.

Attacking the Fixed-Window Method. The fixed-window (m-ary) expo-
nentiation method (see [28, Algorithm 14.109]) avoids the key-dependent shifting
of the window, thus reducing side-channel leakage. The exponent is split into con-
tiguous, fixed-size m-bit words. Each word is handled in turn by performing m
squaring operations and a single multiplication by an appropriate value selected
from a precomputed table using the current word as the table index.

In attacking fixed-window ElGamal, each table index u may be targeted
similarly as in the sliding window case by having the attacker select a number
y ∈ Z∗p containing many zero limbs and compute the u-th root of y, x, such that
xu ≡ y. Like in the sliding window case, for any other m-bit word u′ 6= u, it is
likely that xu

′
mod p will contain few (if any) zero limbs. The remainder of the

attack—leakage analysis and key extraction—is the same as for sliding window.

2.3 RSA Attack Algorithm

Unlike ElGamal, the security of RSA already breaks down if the top half of
the bits of any of the secret exponents (dp, dq) is leaked [15]. We now adapt
the ElGamal attack presented in Section 2.2 to RSA, first for GnuPG’s sliding
window implementation, and then for the fixed window version.

Revealing the Location of Table indices. For 4096-bit RSA since GnuPG’s
RSA uses the CRT, the exponents dp and dq 2048 bits long; hence, w = 5.
Given an odd 5-bit table index u, the attacker wishes to learn the SM-locations
of multiplications by gu performed during the modular exponentiation routine.
Unlike for ElGamal, the attacker does not know p and cannot select a number
y with many zero limbs and compute x such that xu ≡ y (mod p). Neither can
he compute u-th roots modulo N to compute xu ≡ y (mod N), as this would
contradict the security of RSA with public exponent u.

Approximating the Location of Table indices. However, locating the pre-
cise locations is not, in fact, necessary. Instead, we relax the requirements so that,
given a 5-bit odd integer u, the attacker learns all the SM-locations of multiplica-
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tion by gu′ for some u′ ≤ u. To this end, the attacker no longer relies on solving
modular equations over composite-order groups, but rather on the fact that, dur-
ing the table computation phase inside GnuPG’s exponentiation routine, as soon
as the number of limbs of some table value gu exceeds the number of limbs in
the prime p, the table value gu is reduced modulo p (see line 11 of Algorithm 1).
Thus, given a 5-bit odd integer u, the attacker requests the decryption of a num-
ber t such that t contains many zero limbs and that tu ≤ 22048 < tu+1. The
two above requirements are instantiated by computing the largest integer k such
that k · u ≤ 2048 and requesting the decryption of 2k. Finally, the side-channel
leakage produced during the computation of mod exp(2k, dp, p) is recorded.

Distinguishing Between Multiplication. Fix an odd 5-bit integer u and let
k be the largest integer such that (2k)

u ≤ 22048. The SM-sequence resulting from
the computation of mod exp(2k, dp, p) contains three types of multiplication
operations, creating two types of side-channel leakage.

1. Multiplication by gu′ where u′ ≤ u. In this case (2k)
u′

≤ (2k)
u ≤ 22048

and therefore gu′ = 2k·u
′

mod p does not undergo a reduction modulo p. Thus
gu′ = 2k·u

′
, which is a number containing many zero limbs.

2. Multiplication by gu′ where u′ > u. In this case 22048 < (2k)
u′

and
therefore gu′ = 2k·u

′
mod p undergoes a reduction modulo p, making it a

random-looking number that will contain very few (if any) zero limbs.

3. Multiplication resulting from squaring operations. As mentioned in
Section 2.2, GnuPG implements the squaring in lines 18 and 25 using the same
multiplication code used for line 22. In the case of squaring, the argument a
supplied to the multiplication routine is a random-looking intermediate value.
Thus, the squaring operations will produce similar leakage to case 2 above.

Next, as in the attack presented in Section 2.2, since the leakage produced by
GnuPG’s multiplication routine depends on the number of zero limbs in its
second operand, it is possible to distinguish between multiplications by gu′ where
u′ ≤ u (case 1 above) and all other multiplications (cases 2 and 3 above). Thus,
the attacker learns the SM-locations of all multiplications by gu′ where u′ ≤ u.

Key Extraction. Applying the above for every table index u (since u is
an odd 5-bit integer, only 16 possible values of u exist). The attacker deduces
the SM-locations of all multiplication performed by line 22. Moreover, for each
multiplication, by finding the lowest u such that the leakage of the multiplication
corresponds to case 1 above, the the index of its second operand is also deduced.

The attacker has now learned the sequence of table indices (i.e., odd 5-bit
values) that occur as the sliding window moves down the secret exponent dp.
To recover the secret exponent, the attacker need only discover the amounts
by which the window slides between these values (due to runs of zero bits in
dp). This sliding is realized by the loops in lines 18 and 25 of Algorithm 1,
and can thus be deduced from the SM-locations of the squaring operations in
lines 18 and 25. These SM-locations are simply the remaining SM-locations after
accounting for those of the multiplications in line 22, already identified above.
The attacker has now learned the position and value of all bits in dp.
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(a) A loop antenna (handheld) attack-
ing a target laptop (left). The antenna
is connected to an SDR receiver don-
gle attached to the attacker’s computer
(right).

(b) The loop antenna is held 50cm
above the target, and is connected to
a low-pass filter, followed by a pair of
amplifiers, leading to the SDR receiver
dongle and the attacker’s computer.

Fig. 1. The SDR-based setup attacking a Lenovo 3000 N200 target.

Attacking the Fixed-Window Method. As for ElGamal case, this attack
can also be applied to the fixed-window (m-ary) exponentiation case. This is done
by modifying the attack above to approximate the location of all m-bit table
indexes (as opposed to only odd m-bit indexes). The remainder of the attack—
leakage analysis and key extraction—is the same as for the sliding window case.

3 Experimental Results

3.1 SDR Experimental Setup

Our first setup uses Software Defined Radio to study EM emanations from laptop
computers at frequencies of 1.5–2 MHz, as detailed below (see also Figure 1(a)).

Probe. As a magnetic probe, we constructed a simple shielded loop antenna
using a coaxial cable, wound into 3 turns of 15 cm diameter, and with suitable
conductor soldering and center shield gap [34]. The placement of the EM probe
relative to the laptop influences the measured signal. We measured the EM ema-
nations close to the CPU’s voltage regular, located on the laptop’s motherboard,
yet without case intrusion. The voltage regulator is typically located in the rear
left corner, and placing the probe there usually yields the best signal.

Receiver. We recorded the signal using a FUNcube Dongle Pro+ [1] SDR
receiver. The FUNcube Pro+ is an inexpensive (GBP 125) USB dongle that
contains a software-adjustable mixer and a 192 Ksample/sec ADC.

Amplification. In order to extend the attack range, we added a 50dB gain
stage using a pair of inexpensive amplifiers (Mini-Circuits ZFL-500LN+ and
ZFL-1000LN+ in series, USD 175 total) between the loop antenna and the SDR
receiver. We also added a low-pass filter before the amplifiers. See Figure 1(b).
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0xFD

0xFDFF

0xFDFFF

unaltered

Fig. 2. EM measurement (0.5 sec, 1.49–1.57 MHz) of four GnuPG ElGamal decryptions
executed on a Lenovo 3000 N200 laptop. The exponent is overridden to be the 3072-bit
number obtained by repeating the bit pattern written to the right. In all cases, the
modulus p is the same and the ciphertext c is set to be such that c15 ≡ 23071 (mod p).
Note the subtly different side lobes around the 1527 kHz carrier.

Attack range. Using our loop antenna and SDR receiver we achieved key ex-
traction from a range of about 20 cm (Figures 1(a) and 8(a)). Using a cheap mini-
circuits amplifiers we extended the attack range to half a meter (Figure 1(b)).

3.2 Signal Analysis

Exponent-Dependent Leakage. Confirming the dependence of leakage on
exponents, Figure 2 shows how ElGamal decryptions using different exponents
can be distinguishable by their EM leakage. The same holds for RSA.

Demodulation. As can be seen in Figure 2, when using periodic exponents the
leakage signal takes the form of a central peak surrounded by distinguishable side
lobes. This is a strong indication that the secret bit exponents are modulated by
the carrier. As in [20], the carrier signal turned out to be frequency modulated.

Different targets produce such FM-modulated signals at different, and often
multiple, frequencies. In each experiment, we chose one such carrier and applied
a band-pass filter around it. We then sampled the signal using our SDR, and per-
formed digital signal demodulation. After additional digital filtering, we received
a demodulated trace as shown in Figure 3(a).

Signal Distortions. In principle, a single demodulated trace is needed per
chosen ciphertext. However, the signals obtained with our setup (especially those
recorded from afar) have insufficient signal-to-noise ratio for key extraction.

Moreover, there are various distortions in the signal, making key extraction
difficult. The signals are corrupted every 15 msec, by the timer interrupt on the
target laptop. Each interrupt corrupts the trace for a duration of several bits,
and may also create a time shift relative to other traces (see Figures 3(b) and 4).
Also, traces exhibit a gradual drift, increasing the duration between two adjacent
peaks (relative to other traces), making signal alignment even more problematic.

The attack of [20], targeting square-and-always-multiply exponentiation, over-
came interrupts and time drift using the fact that every given stage in the decryp-
tion appears in non-corrupted form in most of the traces. They broke the signal
down into several time segments and aligned them using correlation, thereby re-
solving shift issues. Since, in their case, the baseband signal reflected a sequence
of random-looking key bits, correlation proved sufficient aligning trace segments.
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(a) A segment of the demodulated
trace. Squaring is marked by S, and
multiplication by the used table index
u (here, 0xD or 0xF). When u = 0xF,
dips occur. Algorithm 1 main-loop iter-
ations are marked by vertical lines.

(b) Demodulation of the signal obtained
during the entire decryption. The inter-
rupts, occurring every 15 ms, are marked
by arrows.

Fig. 3. Frequency demodulation of the first leakage signal from Figure 2. The exponent
is overridden to be the 3072-bit number obtained by repeating the bit pattern 0xFD,
and the ciphertext c is set to be such that c15 ≡ 23071 (mod p).

However, this approach is inadequate for our attack. Here, the demodulated
traces are mostly periodic, consisting of similar peaks that change when the cor-
responding table index is used. Correlating such signals produces an ambiguity
as to the actual shift compensation required for proper alignment. The problem
is exacerbated by the low bandwidth of the attack: had we performed clockrate-
scale measurements, consecutive peaks would likely have been distinguishable
due to fine-grained data dependency, making alignment via correlation viable.

Aligning the Signals. As a first attempt to align the signals and correct dis-
tortions, we applied the “Elastic Alignment” [36] algorithm to the demodulated
traces; however, for our signals the results were very unreliable. For more robust
key extraction, we used a more problem-specific algorithm.

Initial Synchronization. We first aligned all traces belonging to decryp-
tions of the same ciphertext. We used the fact that the computations performed
just prior to the exponentiation produced a consistent pattern at the start of
each trace. Correlation was used to align this pattern in all traces relative to
a reference trace, chosen randomly from the trace set. Next, we independently
compared each trace to the reference trace, correcting distortions as follows.

Handling Interrupts. In order to align the signals despite the interrupt-
induced shifts, a search for interrupts was performed across both the current and
reference trace, from beginning to end. Interrupts are easily detected, as they
cause large frequency fluctuations. Whenever an interrupt was encountered, the
delay it induced was estimated by correlating a short segment immediately fol-
lowing the interrupt in both signals. The samples corresponding to the interrupt
were then removed from the interrupted signal, to locally restore alignment. This
process was repeated until the signals were fully aligned. Note that the delay cre-
ated by the interrupts was usually shorter than the peaks in the demodulated
trace, so there was no ambiguity in the correlation and resulting delay estimate.
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Fig. 4. FM demodulation of an EM measurement during two ElGamal decryptions of
the same ciphertext and key. The red signal is shifted relative to the blue signal.

Handling Drifts. The slow drifts were handled by adding another step to the
above process. Between each pair of interrupts, we performed a periodic compar-
ison (by direct correlation) and compensated for the drift by removing samples
from the appropriate signal. In order to avoid ambiguity, the comparisons were
made frequently so that the drift never created a delay longer than half a peak.

Aggregating Aligned Traces. The foregoing process outputs fully-aligned
traces that still contain occasional interrupts (since the interrupt duration is
usually several peaks long but creates a delay of no more than one peak, the
compensation process does not completely remove the interrupt). In order to
obtain a clean aggregate trace, the signals were combined via a mean-median
filter. At each time point, the samples from different traces were sorted, and
the highest and lowest several values discarded. The remaining values were aver-
aged, resulting in an interrupt free trace. Finally, even after we combined several
aligned traces, the peak amplitudes across each aggregate trace varied greatly. To
facilitate peak detection, the peak amplitudes were equalized by extracting the
signal envelope, followed by low-pass filtering and smoothing. See Figure 5(a).

3.3 ElGamal Key Extraction

When attacking ElGamal, we first iterated over the 8 table indices, and for each
measured and aggregated multiple traces of decryptions of that ciphertext. This
resulted in 8 aggregate traces, which were further processed as follows.

Peak Detection. For each aggregate trace corresponding to a table index
u, we derived a vector of binary values representing the peaks and dips in this
trace. This was done by first detecting all local maxima exceeding some threshold
amplitude. The binary vector then contains a bit for every consecutive pair of
peaks, set to 1 if the peaks are close (below some time threshold), and set to 0
if they are further apart, meaning there is a dip between them; see Figure 5(b).

Revealing the ElGamal SM-sequence. Observing that dips occur during
multiplication by operands having many zero limbs, coupled with the analysis
of Section 2.2, we expect the 0 value to appear in this vector only at points
corresponding to times when multiplication by gu is performed.

Across all ciphertexts, these binary vectors allow the attacker to deduce the
exact SM-sequence and, moreover, to obtain, for each multiplication performed
by line 22 of Algorithm 1, the corresponding value of the table index u. As
explained in Section 2.2, the key is then easily deduced.
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(a) After peak amplitudes equalization (the horizontal axis is given in miliseconds)

(b) After peak detection (the horizontal axis is the peak/dip number and the vertical
axis is “high” for peaks and “low” for dips)

Fig. 5. Aggregate traces for table indices 1,3,5 obtained during our ElGamal attack.

Overall Attack Performance. Applying our attack to a randomly-generated
3072-bit ElGamal key by measuring the EM emanations from a Lenovo 3000
N200 laptop, we extracted all but the first three bits of the secret exponent. For
each chosen ciphertext, we used traces obtained from 40 decryption operations,
each taking about 0.1 sec. We thus measured a total of 8 · 40 = 320 decryptions.

3.4 RSA Key Extraction

Analogously to the above, when attacking RSA following Section 2.3, we ob-
tained 16 aggregate traces, one for each table index and its chosen ciphertext.

Peak Detection. As in the ElGamal case, for each aggregate trace correspond-
ing to a table index u, we derived a vector of binary values representing the peaks
and dips in this trace by detecting peaks above some amplitude threshold and
comparing their distances to a time threshold. Figure 6(a) depicts some of the
aggregated traces obtained during the RSA attack presented in Section 2.3. As
predicted in Section 2.3, any dip first appearing in some trace corresponding to
some table index u also appears in traces corresponding to table indices u′ > u.

However, note that in each subsequent trace the length of each dip gets pro-
gressively shorter and harder to observe. This is because the larger the value
u′ − u is, the shorter the value stored in the u-th table index during the de-
cryption of the ciphertext targeting the u′-th table index (and in particular this
value contains less zero limbs). Eventually, the dips become so short as to be
indistinguishable from the regular distance between two peaks (with no dip in
between), making the dip impossible to observe. Thus, the extracted vectors
inevitably contain missing dips, requiring corrections as described next.

Inter-Window Dip Aggregation. In order to recover the undetected dips, we
had to align all the aggregate vectors (corresponding to different table indices).
Luckily, even though the dips get progressively shorter, in adjacent vectors there
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(a) Before peak detection (the horizontal axis is given in miliseconds)

(b) After peak detection (the horizontal axis is the peak/dip number and the vertical
axis is “high” for peaks and “low” for dips)

Fig. 6. Aggregate traces for table indices 3,5,7 obtained during our RSA attack.

are many common dips to allow for alignment. Thus, the following iterative
process was performed for every two adjacent vectors: First, the current vector
was aligned to the previous one. Next, going from left to right, all missing dips
were copied from the previous vector to the current one, as follows: going over
the vectors from start to end, as soon as a dip was located in the previous vector
that was missing from the current vector, it was copied to the current vector,
shifting all other vector elements one coordinate to the right. See Figure 6(b).

Revealing the RSA SM-Sequence. Note that each multiplication corre-
sponds to a dip in one of the vectors obtained in the previous stage. Thus, since
in the above aggregation process dips are propagated across adjacent vectors, the
last vector contains all the SM-locations, where each multiplication is marked
with a dip and each squaring is marked with a peak. In order to recover the
key, it remains for the attacker to learn the table index corresponding to every
multiplication in the SM-sequence. Since each vector contains all the dips of all
previous vectors, for each multiplication, the corresponding table index is the in-
dex of the vector where the dip appeared for the first time. Thus, as mentioned
in Section 2.3, the attacker has all the data required to recover the key.

Overall Attack Performance. Applying our attack to a randomly generated
4096-bit RSA key by measuring the EM emanations from a Lenovo 3000 N200
laptop, we extracted the most-significant 1250-bits for dp except for the first 5
bits. For each chosen ciphertext, we used traces obtained from 40 decryptions,
each taking about 0.2 sec. We thus measured a total of 16 ·40 = 640 decryptions.

3.5 Untethered SDR Attack

The low bandwidth nature of our attack allows us to simplify and shrink the
analog and analog-to-digital portion of the setup, compared to prior works. Our
prototype, the Portable Instrument for Trace Acquisition (Pita), is built of
readily-available electronics and food items (see Figures 8(a) and 7).
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Controller
Rikomagic MK802 IV

Antenna tuning capacitor

SDR receiver
FUNcube
Dongle Pro+

Power
4xAA batteries

WiFi
antenna

Loop antenna

MicroSD card

Pita bread

Fig. 7. Portable Instrument for Trace Acquisition (Pita), a compact untethered mea-
surement device for low-bandwidth electromagnetic key-extraction attacks.

(a) Portable Instrument for Trace Acqui-
sition (Pita), measuring the target and
streaming the filtered signal over WiFi.

(b) Experimental setup using a con-
sumer AM radio receiver, placed near the
target and recorded by a smartphone.

Fig. 8. Two of our experimental setups for key extraction.

Functionality. The Pita can be operated in two modes. In online mode, it
connects to a nearby station via WiFi and provides real-time streaming of the
digitized signal. The live stream helps optimize probe placement and allows
adaptive recalibration of the carrier frequency and SDR gain adjustments (see
Figure 8(a)). In autonomous mode, the Pita is configured to continuously mea-
sure the electromagnetic field around a designated carrier frequency; it records
the digitized signal into an internal microSD card for later retrieval, by physical
access or via WiFi. In both cases, signal analysis is done offline, on a workstation.

Hardware. The Pita uses an unshielded loop antenna made of copper wire,
wound into 3 turns of diameter 13 cm, with a tuning capacitor chosen to max-
imize sensitivity at 1.7 MHz (see Figure 7). These are connected to an SDR
receiver dongle. We controlled the SDR using a small embedded computer, the
Rikomagic MK802 IV. This is an inexpensive (USD 68) Android TV dongle
supporting USB host mode, WiFi and flash storage. We replaced the operating
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system with Linux in order to run our software, which operates the SDR receiver
via USB and communicates via WiFi. Power was provided by 4 AA batteries.

Overall Attack Performance. Applying our attack to a randomly generated
3072-bit ElGamal key, we extracted all the bits of the secret exponent, except
the most significant bit and the three least significant bits, from a Lenovo 3000
N200 laptop. As before, we used a total of 320 decryptions, taking 0.1 sec each.

3.6 Consumer-Radio Attack

Despite its low cost and compact size, assembly of the Pita still requires the
purchase of an SDR device. We now show how to improvise a side-channel attack
setup for extracting ElGamal keys, using common household items.

As discussed, the leakage signal is frequency modulated (FM) around a car-
rier circa 1.7 MHz. While the signal processing can be performed in software,
we could not find any household item able to digitize external signals at such
frequencies. Since the bandwidth of the demodulated signal is only a few kHz, an
alternative approach is to perform demodulation in hardware and then digitize
the result. While most household radios can demodulate FM, the frequencies
used in commercial FM broadcasting are 88–108 MHz. Even when using lab-
grade equipment, we did not observe key-dependent leakage within the commer-
cial FM band. Despite this, we managed to use a plain consumer-grade radio
receiver to acquire the desired signal, as described below, replacing the magnetic
probe and SDR. After appropriate tuning, all that remained was to record the
radio’s headphone jack output, and digitally process the signal. See Figure 8(b).

Demodulation Principle. Most consumer radios are able to receive amplitude
modulated (AM) broadcasts in addition to FM. AM radio broadcasts typically
use parts of the Medium Wave band (0.5–1.7 MHz), in which our signal of interest
resides. AM signals are routed through a different analog path than the FM
signals, so the radio’s FM demodulator cannot be used in these ranges. It is
possible, however, to use the AM analog chain to perform unconventional FM
demodulation. The AM path consists of an antenna, a tuning filter, and an
AM demodulation block. In normal operation, the filter is set so that its center
frequency exactly matches that of the incoming signal. An FM signal would
pass through the tuning filter unchanged, but be completely suppressed by the
AM block since its amplitude is essentially constant. But by setting the center
frequency of the tuning filter to a few kHz away from the FM carrier, the slope of
the filter effectively acts as an FM to AM converter, transforming the frequency
changes of the signal into changes in amplitude. The AM demodulation block
then extracts and amplifies these amplitude changes. See Figure 9.

Experimental Setup. This setup requires an AM radio receiver and an audio
recorder (such as a smartphone microphone input or a computer’s audio input).
We used a plain hand-held radio receiver (”Road Master” brand) and recorded its
headphone output by connecting it to the microphone input of an HTC EVO 4G
phone, sampling at 48 Ksample/sec, through an adapter cable (see Figure 8(b)).
The radio replaced the magnetic probe, SDR and digital demodulation.
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modulated signal

Frequency and 
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Fig. 9. FM to AM conversion using the AM tuning filter slope. The top signal is
some periodic baseband signal. The middle signal is an FM modulation of the top
signal. The bottom signal is obtained by filtering the FM-modulated signal through a
slightly skewed bandpass filter; the resulting signal is both AM and FM modulated.
The baseband signal can be reconstructed by extracting the envelope of the resulting
signal. (For visual clarity, we compensate for the filter’s time delay and attenuation.)

Further Digital Signal Processing. The radio’s headphone jack produced a
signal at 8 kHz, which is similar to the frequency of the peaks Figure 4. After low-
pass filtering at 16 kHz, traces similar to Figures 4 and 3(a) were obtained. We
then applied the remainder of the signal processing algorithms from Section 3.2.

Overall Attack Performance. Applying our attack to a randomly generated
3072-bit ElGamal key by measuring the EM emanations from a Lenovo 3000
N200 laptop, we extracted all but the first bit of the secret exponent. For each
chosen ciphertext, we used traces obtained from 40 decryption operations, each
taking about 0.1 sec. Similar results were obtained by directly connecting the
radio’s output to a computer’s audio input, recording at 48 Ksample/sec.

4 Discussion

We presented and experimentally demonstrated new side-channel attacks on
cryptographic implementations using sliding-window and fixed-window exponen-
tiation. Our techniques simultaneously achieve low analog bandwidth and high
attack speed, and the measurement setup is compact, cheap and unintrusive.

The attack does not rely on detecting movement of the sliding window, but
detects the key-dependent use of specific table entries “poisoned” by a cho-
sen ciphertext. Thus, the attack is applicable to exponentiation algorithms that
have a fixed schedule of squarings and multiplications, such as the fixed-window
method. Likewise, it is oblivious to cache-attack mitigations that fix or random-
ize the table access patterns.

Future Work. In order to achieve key extraction, our attack requires traces
obtained during 40 decryption operation for each chosen ciphertext. We leave
the task of reducing the total number of required traces as an open problem.

Next, while public key encryption schemes were proven to vulnerable to phys-
ical low-bandwidth chosen-ciphertext key-extraction attacks on PCs, attacks on
other public key primitives (such as digital signatures), as well as non-chosen
ciphertext attacks were not yet demonstrated for the case of PCs.
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Finally, physical key extraction attacks on symmetric key primitives were
also never demonstrated for the PCs. Presumably since the frequencies of the
externally-available leakage is too low given the high execution speed of such
primitives. We leave the task of attacking such primitives as an open problem.

Software Countermeasures. Our attack chooses ciphertexts that target spe-
cific table indices. For a targeted table index, the attacker learns the locations of
the index in the sequence of squarings and multiplications. Since the sequence of
squarings and multiplications only depends on the secret exponent, the attacker
is able to reconstruct the secret exponent after recovering the location of all
table indices in the sequence of squarings and multiplications.

One class of countermeasures is an exponent randomization, which alters
the sequence of squarings and multiplications between invocations of the modu-
lar exponentiation. One such method is multiplicative exponent randomization,
adding a random multiple of p − 1 to the secret exponent (see [26]). Unfortu-
nately, in the case of GnuPG’s ElGamal implementation this incurs significant
slowdown, since the secret exponent is selected to be short (about 400 bits), but
adding a multiple of p− 1 increases it to over 3072-bits, incurring a slowdown of
×3072/400 ≈ 7. A cheaper exponent randomization alternative is additive expo-
nent randomization, in which the exponent is additively divided into two shares
(see [11, 14] and a related patent [22]). In GnuPG’s ElGamal, this requires two
exponentiations with 400 bit exponents, incurring a ×2 slowdown.

Another countermeasure that generally blocks chosen ciphertext attacks is
ciphertext randomization (blinding), which randomizes the base of the exponenti-
ation. For RSA decryption, this is a common countermeasure with low overhead:
instead of decrypting a ciphertext c by directly computing cd mod n, one gen-
erates a random r, computes re (which is cheap since the encryption exponent e
is small, typically 65537), decrypts re · c and divides by r to obtain cd. Current
versions of GnuPG already do this for RSA, preventing Section 2.3’s attack.

For ElGamal, ciphertext randomization is more expensive. Instead of comput-
ing γ−χ·δ mod p directly, one generates a random r and computes y1 = rχ mod p,
y2 = (γ · r)−χ mod p and finally y1 · y2 · δ mod p. For GnuPG’s ElGamal, this
requires two exponentiations with 400-bit exponents, plus an inversion, incurring
again a ×2 slowdown. A new version of GnuPG, implementing this countermea-
sure, was released concurrently with the public announcement of our results.
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