
Accelerating Homomorphic Evaluation on
Reconfigurable Hardware

Thomas Pöppelmann1?, Michael Naehrig2, Andrew Putnam2, and Adrian
Macias3

1 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
thomas.poeppelmann@rub.de

2 Microsoft Research, Redmond, Washington, USA
{mnaehrig,anputnam}@microsoft.com

3 Altera Corporation, San Diego, CA, USA
amacias@altera.com

Abstract. Homomorphic encryption allows computation on encrypted
data and makes it possible to securely outsource computational tasks to
untrusted environments. However, all proposed schemes are quite inef-
ficient and homomorphic evaluation of ciphertexts usually takes several
seconds on high-end CPUs, even for evaluating simple functions. In this
work we investigate the potential of FPGAs for speeding up those evalu-
ation operations. We propose an architecture to accelerate schemes based
on the ring learning with errors (RLWE) problem and specifically imple-
mented the somewhat homomorphic encryption scheme YASHE, which
was proposed by Bos, Lauter, Loftus, and Naehrig in 2013. Due to the
large size of ciphertexts and evaluation keys, on-chip storage of all data is
not possible and external memory is required. For efficient utilization of
the external memory we propose an efficient double-buffered memory ac-
cess scheme and a polynomial multiplier based on the number theoretic
transform (NTT). For the parameter set (n = 16384, dlog2 qe = 512)
capable of evaluating 9 levels of multiplications, we can perform a ho-
momorphic addition in 0.94ms and a homomorphic multiplication in
48.67ms.

Keywords: Homomorphic encryption, ring learning with errors, FPGA, recon-
figurable computing

1 Introduction

A homomorphic encryption scheme enables a third party to perform meaningful
computation on encrypted data and a prime example for an application is the
outsourcing of a computational task into an untrusted cloud environment (see,
e.g., [5, 12, 13, 28]). Such schemes come in different flavors, the most versatile

? This work was mainly carried out when the author was an intern in the Cryptography
Research group at Microsoft Research, Redmond.

being a fully homomorphic encryption (FHE) scheme, which allows an unlim-
ited number of operations. The first FHE scheme was proposed by Gentry in
2009 [23] and led to many new schemes optimized for better efficiency or se-
curity (e.g., [6, 8, 16, 24, 26, 30, 39]). FHE schemes usually consist of a so-called
somewhat or leveled homomorphic scheme with limited functionality together
with a procedure to bootstrap its capabilities to an arbitrary number of opera-
tions. The somewhat homomorphic encryption (SHE) schemes are usually a lot
more efficient than their corresponding FHE counterparts because bootstrapping
imposes a significant overhead. Examples of SHE schemes are the BGV [8] and
LTV [30] schemes and the subsequent YASHE [4] scheme, which are relatively
straightforward and conceptually simple as they mainly require polynomial mul-
tiplication and (bit level) manipulation of polynomial coefficients for evaluation
of ciphertexts (i.e., mul, add). But even limited SHE schemes are still slow and
especially for relatively complex computations, evaluation operations can take
several hours, even on high-end CPUs [25, 29]. A natural question concerning
FHE and SHE is whether reconfigurable hardware can be used to accelerate
the computation. However, as ciphertexts and keys are large and require several
megabytes or even gigabytes of storage for meaningful parameter sets, the inter-
nal memory of FPGAs is quickly exhausted, and required data transfers between
host and FPGA might degrade the achievable performance.

These may be reasons that previous work mainly focuses on using GPUs [19,
40,41] and ASICs [21,44], and that FPGA implementations either work only with
small parameters and on-chip memory [11] or explicitly do not take into account
the complexity of transferring data between an FPGA and a host [9,35]. For our
implementation we use the Catapult data center acceleration platform [34], which
provides a Stratix V FPGA on a PCB with two 4 GB memory modules inserted
into the expansion slot of a cloud server. This fits nicely into the obvious scenario
in which homomorphic evaluation operations are carried out on encrypted data
stored in the cloud. Since future data centers might be equipped with such
accelerators, it makes sense to consider the Catapult architecture as a natural
platform for evaluating functions with homomorphic encryption.

Our Contribution. To our knowledge, we provide the first fully functional
FPGA implementation of the homomorphic evaluation operations of an RLWE-
based SHE scheme. Our main contribution is an efficient architecture for per-
forming number theoretic transforms, which is used to implement the SHE
scheme YASHE. Compared to previous FPGA implementations of integer-based
FHE schemes (e.g., [9]) we especially take into account the complexity of us-
ing off-chip memory. Thus we propose and evaluate the usage of the cached-
NTT [2, 3] for bandwidth-efficient computations of products of large polynomi-
als in Zq[X]/(Xn + 1) and the YASHE specific parts of the KeySwitch and Mult
algorithms. The main computational burden is handled by a large integer mul-
tiplier built out of DSP blocks and modular reduction using Solinas primes. An
implementation of the parameter set (n = 16384, dlog2 qe = 512) that can handle
computations on the encrypted data of multiplicative depth up to L = 9 levels
(for t = 1024) roughly matches the performance of a software implementation of

the parameter set (n = 4096, dlog2 qe = 128) supporting just one level [29]. With
only 48.67 ms for a homomorphic multiplication (instead of several seconds in
software) we provide evidence that hardware-accelerated somewhat homomor-
phic cryptography can be made practical for certain application scenarios.

2 Background

2.1 Somewhat Homomorphic Scheme YASHE

The homomorphic encryption scheme YASHE [4] is based on the multi-key FHE
scheme from [30] and the modified, provably-secure version of NTRU in [38].
In [4], two versions of YASHE are presented. We use the more efficient variant.

The system parameters are fixed as follows: a positive integer m = 2k that
determines the ring R = Z[X]/(Xn + 1) and its dimension n = ϕ(m) = m/2,
two moduli q and t with 1 < t < q, discrete probability distributions χkey, χerr

on R, and an integer base w > 1. We view R to be the ring of polynomials
with integer coefficients taken modulo the m-th cyclotomic polynomial Xn + 1.
Let Rq = R/qR ∼= Zq[X]/(Xn + 1) be defined by reducing the elements in R
modulo q, similarly we define Rt. A polynomial a ∈ Rq can be decomposed using
base w as a =

∑`w,q−1
i=0 aiw

i, where the ai ∈ R have coefficients in (−w/2, w/2].
The scheme YASHE makes use of the functions Decw,q(a) = ([ai]w)

`w,q−1
i=0 and

Poww,q(a) = ([awi]q)
`w,q−1
i=0 , where `w,q = blogw(q)c + 1. Both functions take

a polynomial and map it to a vector of polynomials in R`w,q . They satisfy the
scalar product property 〈Decw,q(a),Poww,q(b)〉 = ab (mod q) .

YASHE consists of the following algorithms. Note that homomorphic multi-
plication Mult consists of two parts, the rounded multiplication RMult and the
key switching step KeySwitch.

KeyGen(d, q, t, χkey, χerr, w): Sample f ′ ← χkey until f = [tf ′ + 1]q is invertible
modulo q. Compute the inverse f−1 ∈ R of f modulo q, sample g← χkey and set
h = [tgf−1]q. Sample e, s← χ

`w,q
err , compute γ = [Poww,q(f) + e+h · s]q ∈ R`w,q

and output (pk, sk, evk) = (h, f ,γ).

Encrypt(h,m): For a message m ∈ R/tR, sample s, e ← χerr, scale [m]t by the
value bq/tc, and output c =

[⌊
q
t

⌋
[m]t + e + hs

]
q
∈ R.

Decrypt(f , c): Compute [fc]q modulo q, scale it down by t/q over the rational
numbers, round it and reduce it modulo t, i.e. output m =

[⌊
t
q [fc]q

⌉]
t
∈ R.

Add(c1, c2): Add the two ciphertexts modulo q, i.e. output cadd = [c1 + c2]q.

RMult(c1, c2): Compute c1c2 without reduction modulo q over the integers, scale
by t/q, round the result and reduce modulo q to output c̃mult =

[⌊
t
qc1c2

⌉]
q
.

KeySwitch(c̃mult, evk): Compute the w-decomposition vector of c̃mult and output
the scalar product with evk modulo q: cmult = [〈Decw,q(c̃mult), evk〉]q.

Table 1: YASHE parameter sets and supported number of multiplicative levels
for different plaintext moduli t, using discrete Gaussian error parameter s = 8.

Set n q q′ `w,q Levels
t = 220 t = 210 t = 25 t = 2

I 4096 2124 − 264 + 1 2262 − 256 + 1 2 0 1 1 1
II 16384 2512 − 232 + 1 21040 − 232 + 1 8 6 9 11 14

Mult(c1, c2, evk): First apply RMult to c1 and c2 and then KeySwitch to the
result. Output the ciphertext cmult = KeySwitch(RMult(c1, c2), evk).

In Table 1, we provide the implemented parameter sets and their number
of supported multiplicative levels determined by the worst case bounds given
in [4]. The plaintext modulus in our implementation is t = 1024 for both pa-
rameter sets. Since changing t is relatively easy, we also give the number of
multiplicative levels for various other choices to illustrate the dependence on t
and possible trade-offs. According to the analysis in [29], moduli stay below the
maximal bound to achieve 80 bits of security against the distinguishing attack
with advantage 2−80 as discussed there. The error distribution χerr is the n-
dimensional discrete Gaussian with parameter s = 8 and the key distribution
samples polynomials with uniform random coefficients in {−1, 0, 1}. Note that
one ciphertext requires ndlog2(q)e bits (1 MiB for Set II) and the evaluation key
is (`w,q)ndlog2(q)e bits large (8 MiB for parameter Set II).

2.2 Number Theoretic Transform

Polynomial multiplication can be performed with O(n log n) operations in Zq
using the number theoretic transform (NTT), which is basically an FFT defined
over a finite field or ring. Given a primitive n-th root of unity ω the forward
transformation NTTq(a) of a length-n sequence (a[0], ..,a[n− 1]) with elements
in Zq is defined as A[i] =

∑n−1
j=0 a[j]ωij mod q and the inverse transformation

INTTq(A) as a[i] = n−1
∑n−1
j=0 A[j]ω−ij mod q for i = 0, 1, ..., n− 1 (see [18,31,

45] for more information on the NTT). For efficient multiplication of polynomials
in Rq = Zq[X]/(Xn + 1), one can use the negative wrapped convolution, which
removes the need for zero padding of input polynomials. Let ω be a primitive
n-th root of unity in Zq and ψ2 = ω. For two polynomials a = a[0] + a[1]X +
· · ·+a[n− 1]Xn−1 and b = b[0] +b[1]X + · · ·+b[n− 1]Xn−1 of degree at most
n−1 with elements in Zq, we define d = d[0]+ · · ·+d[n−1]Xn−1 as the negative
wrapped convolution of a and b so that d = a ∗ b mod (Xn + 1). We further
define the representation ŷ = y[0]+ψy[1]X+ · · ·+ψn−1y[n−1]Xn−1 and use it
as â, b̂ and d̂. In this case it holds that d̂ = INTTq(NTTq(â)◦NTTq(b̂)), where
◦ means coefficient-wise multiplication [18,45].

Various algorithms that implement the FFT efficiently and which are directly
applicable for the NTT are reviewed in [14]. A popular choice is a radix-2,

in-place, decimation-in-time (DIT) [15] or decimation-in-frequency (DIF) [22]
algorithm that requires roughly n

2 log2(n) multiplications in Zq (see [1,33,36] for
implementation results). Note that in the FFT context precomputed powers of
the primitive root of unity ω are often referred to as twiddle factors.

The primes q and q′ we use in our implementation are Solinas primes of the
form q = 2y−2z+1, y > z such that q ≡ 1 (mod 2n). In order to find a primitive
2n-th root of unity ψ ∈ Zq that is needed in the NTT transforms as mentioned
above, we simply chose random non-zero elements in a ∈ Zq, until a(q−1)/2n 6= 1
and a(q−1)/2 = −1 and then set ψ = a(q−1)/2n.

2.3 Cached-FFT

The general idea of the cached-FFT algorithm [2, 3], as visualized in Figure 1,
is to divide the FFT computation into epochs (E) after which an out-of-place
reordering step becomes necessary. In an epoch itself the data is split into groups
(G) consisting of C = n/G coefficients and computations require only access to
members of a group but do not interfere with or require values from other groups.
The required computation on a group is just a standard Cooley-Tukey, radix-2,
in-place, DIT FFT/NTT [14,15], denoted as C-NTT and the number of stages or
passes (recursive divisions into sub-problems) of the C-NTT is P = log2(n/G).
Thus one C-NTT on a group requires Pn2G multiplications in Zq. As a consequence,
during the computation of an NTT/FFT on a group, this group can be stored
in a small cache or local memory that supports fast access to coefficients.

For the actual details of the implementation of address generation we refer
to the description in [2, 3]. However, referring to the E = 2 case displayed in
Figure 1, it is easy to see that, with a hardware implementation in mind, it is
necessary to read 2n coefficients from the main memory and to write 2n coeffi-
cients back to the main memory to compute the FFT. However, only two of these
reads/writes are non-consecutive (i.e., the reordering) while two read/writes are
in order.

2.4 Catapult Architecture/Target Hardware

Because a primary application of homomorphic encryption is use in untrusted
clouds, we chose to implement YASHE using a previously proposed FPGA-based
datacenter accelerator infrastructure called Catapult [34]. Catapult augments
a conventional server with an FPGA card attached via PCIe that features a
medium size Stratix V GS D5 (5GSMD5) FPGA, two 4 GB DDR3-1333 SO-
DIMM (small outline dual inline memory module) memory modules, and a pri-
vate inter-FPGA 2-D torus network. In the original work, Catapult was used to
accelerate parts of the Bing search engine, and a prototype consisting of 1,632
servers was deployed. The two DRAM controllers on the board can be used ei-
ther independently or combined in a unified interface. When used independently
the DIMM modules are clocked with 667 MHz. The Catapult shell [34, Section
3.2.] provides a simple interface to access the DRAM and to communicate with
the host server. It uses roughly 23% of the available device resources, depending

Fig. 1: Dataflow diagram of a 64-point cached-FFT split into two epochs with
eight coefficients in each group/cache parameterized as (n=64, E=2, G=8, P=3,
C=8). This figure is based on [3, Figure 3].

on the used functionality like DRAM, PCIe, or 2-D torus network. Application
logic is implemented as a role. For our design, we restrict the accelerator to only
a single FPGA card per server. Spanning multiple FPGAs is a promising avenue
for improving performance, but is left for future work. Note also that none of the
work presented here is exclusive to Catapult and that any FPGA board with two
DRAM channels, a sufficiently large FPGA, and fast connection to a host server
will suffice. However, Catapult is specifically designed for datacenter workloads,
so it presents realistic constraints on cost, area, and power for our accelerator.

3 High Level Description

The goal of our implementation is to accelerate the (cloud) server-based eval-
uation operations Mult and Add of YASHE (and polynomial multiplication in
general) without interaction with the host server using the Catapult infrastruc-
ture. Key generation, encryption, and decryption are assumed to be performed
on a client and are not in the scope of this work. However, we would like to
note that except for a Gaussian sampler, most components required for key
generation, encryption, and decryption are already present in our design.

Our main building block is a scalable NTT-based polynomial multiplier that
supports the two moduli q and q′. The computation of the NTT is by far the
most expensive operation and necessary for the polynomial multiplications in
RMult and KeySwitch, which are called during a Mult operation. Other compu-
tations like polynomial addition or pointwise multiplication are realized using
the hardware building blocks from the NTT multiplier. The modulus q′ > nq2

is used to compute

c1c2 = INTTq′(NTTq′(c1)◦NTTq′(c2))

in RMult exactly without modular reduction as each coefficient of c1 and c2 is
smaller than q and thus each coefficient of the result is guaranteed to be smaller
than nq2. Reductions modulo q are required for the computation of the scalar
product cmult = [〈Decw,q(c̃mult), evk〉]q in KeySwitch and the polynomial addition
in Add. A naive implementation of KeySwitch would require `w,q polynomial
multiplications and `w,q − 1 polynomial additions. By using the NTT and its
linearity we just compute

KeySwitch(c̃mult, evk) = INTTq

`w,q−1∑
i=0

NTTq ([(cmult)i]w) ◦ evki

 (1)

and store the evaluation keys evki in NTT form as evki = NTTq(evki) for
i ∈ [0, `w,q − 1] (similar to [19, Algorithm 2]). To deal with the limited internal
memory when computing the NTT we use the aforementioned cached-FFT algo-
rithm [2,3]. This enables us to exploit the memory hierarchy on Catapult where
we have access to fast but small FPGA-internal memory (≈ 4.9 MiB) and large
but slow external DRAM (two times 4 GB). We also incorporate some of the
optimizations to the NTT proposed in [36]. By merging the multiplication by
powers of ψ into the twiddle factors of the main NTT computation we not only
save n multiplications but also eliminate expensive read and write operations.
To optimally utilize the burst read/write capabilities of the DRAM4 we have
designed our core in a way that we balance non-continuous reorderings and con-
tinuous reads or writes. While we only implemented two main parameter sets,
our approach is scalable and could be extended to even larger parameter sets and
is also generally applicable as we basically implement polynomial multiplication,
which is common in most RLWE-based homomorphic encryption schemes.
4 The throughput of the DRAM is drastically increased if large continuous areas of
the memory are read at once using the so called burst mode.

NttCoreNttMemMgr

NttButterfly

modIqG

ConstDualBuf

EVKSRAM0

TWIDSRAM0

EVKSRAM1

TWIDSRAM1

Dram
Interface1

DRAM0

DRAM1
DataMover1

DataMover0

DataDualBuf

DSBRAM0

DSBRAM1

Odd

Odd

Even

Even

Dram
Interface0

InFifo

OutFifo

AddrFifo

AddrGen

AddrGen

UserIo

InFifo

OutFifo

AddrFifo

InFifo

OutFifo

NttAddrGen

HomomorphicCore PerfMonitor

CatapultShell

modIq

4IGB

4IGB

Fig. 2: Block diagram of our HomomorphicCore core used to implement YASHE.
The design is controlled by a host server using the CatapultShell and has access
to two 4 GB DDR3-1333 DRAMs.

The general architecture of our HomomorphicCore design is shown in Fig-
ure 2. We have divided our implementation into a memory management unit
(NTTMemMgr) and an NTT computation unit (NttCore). The NTTMemMgr com-
ponent loads or stored groups while NttCore is responsible for the computa-
tion of the C-NTT on the cache. Both components have access to the memories
ConstDualBuf and DataDualBuf. The DataDualBuf buffer contains a config-
urable number of groups of a polynomial and the ConstDualBuf buffer contains
the constants (e.g., twiddle factors or evaluation keys) that correspond to the
groups in DataDualBuf. To the NttCore it does not matter which subset of the
cached-NTT has to be computed as this is only determined by the loaded data
and twiddle factors. This makes the design simpler and also easier to test. To
support moduli q and q′ we implemented two butterfly units that share one large
integer multiplier. Both buffers are double-buffered so that the NttCore com-
ponent can compute on one subset of the data while the NTTMemMgr component
can load or store a new subset from or into the other buffer. Ciphertexts, NTT
constants, and keys are held in one of the two DRAMs (Dram0 or Dram1) and
are provided to the core from the outside over the UserIo and CatapultShell
components. The CatapultShell component implements a simple PCI Express
(PCIe) interface that allows the host server to issue commands (e.g., Add, or

Mult) and to transfer data. Evaluated ciphertexts are also stored in the DRAM
and can be read by the host after a computation is finished.

4 Hardware Architecture

In this section we describe our hardware architecture with an emphasis on the
memory bandwidth-friendly cached-NTT polynomial multiplier.

4.1 Implementation of the Cached-NTT and Memory Addressing

A crucial aspect when implementing the cached-NTT is efficient access to the
main memory (i.e., DRAM) and the use of burst transfers. In this section we de-
scribe how data is transferred between the main memory (Dram0 and Dram1) and
the cache memory (DataDualBuf and ConstDualBuf) and how these transfers
are optimized.

General Idea. The cached-FFT has been designed for systems with a small
cache that supports fast access to coefficients during the computation of a C-NTT
on a group. For our core we do not have a transparent cache, like on a CPU, but
implement the fast directly addressable internal on-chip memories DataDualBuf
and ConstDualBuf using BRAMs. As we know exactly which values are required
at which time, we explicitly load a group into the internal memory before and
write it back after a C-NTT computation. The necessary reordering (see Fig-
ure 1) is either performed before or after a computation on a group and done
when reading from or writing data into the DRAM. As the DRAM is large
enough, plenty of memory is available for temporary storage, but one epoch has
to be computed completely and the reordering has to be finished before the next
epoch can be computed. In general, it would be sufficient to just store one group
consisting of C = n/G coefficients in each buffer of DataDualBuf. However, we
allow the storage and computation on K groups/caches (configurable as generic
during synthesis) in D-BRAM0 and D-BRAM1 at the same time (when computing
modulo q). One reason is that for relatively small groups we can then avoid
frequent waiting for the pipeline to clear after a C-NTT has been computed. Ad-
ditionally, storing of multiple groups allows more efficient usage of burst reads
and writes.

For efficiency (due to less memory transfers) and simplicity we restrict our
implementation to a cached-NTT with two epochs5. We thus support only di-
mensions n = 22n

′
for n′ ∈ N. For Set I we use (n=4096, E=2, G=64, P=6) and

for Set II (n=16384, E=2, G=128, P=7).

5 With only one epoch the cached-NTT becomes the standard Cooley-Tukey NTT
and the cache contains all n coefficients.

Supported Commands. To simplify the implementation of homomorphic
evaluation algorithms (see Section 5) and to abstract away implementation de-
tails we support a specific set of instructions to store or load groups or constants
and to compute the C-NTT on such stored groups. A complete set of available
commands is provided in Table 2. These commands could also be used to im-
plement other homomorphic schemes and they can be directly used to realize
polynomial multiplication in Zq[X]/(Xn + 1) and Zq′ [X]/(Xn + 1).

Each command consists of a name, which is mapped to an opcode, and zero,
one, or two parameters that define the source or destination of data to be trans-
ferred or the buffer on which a computation should be performed. A command
either blocks Dram0, Dram1, or NttCore and commands can be executed in par-
allel, in case no resource conflict happens. Memory transfer and computation
commands do not interfere due to the dual-buffering. Additionally, commands
can be configured for specific situations. For commands operating on Dram0 or
Dram1 the configuration describes how a storage operation should be performed.
Supported modes are a continuous burst transfer ([burst]), or bit-reversal of co-
efficients ([bitrev]), and/or cached-NTT reordering ([ro]) during a write or read
operation. The [q] and [q′] configuration determines whether transfers operate
on polynomials modulo q or polynomials modulo q′. When a homomorphic op-
eration has to be performed the top-level state machine also has to provide the
base address of the inputs and the base address of the result memory block.
Each command also supports a specific maximum burst transfer size.

The commands itself are described in Table 2. As an example, the load-
group[burst](t,x) command loads groups x to x+K−1 from the DRAM at base-
address of t into a buffer using the DRAM’s fast burst mode. The store-group[ro,
bitrev](t,x) command stores the groups x to x+K−1 in the DRAM at base-
address of t but performs the reordering of the cached-NTT and also a bit-
reversal. A command used to load constants is the load-twiddles[fwd,q](x, y) com-
mand that loads the twiddle factors required to compute groups x to x+K−1
in epoch y using burst mode. While the previous commands can be used to im-
plement general polynomial multiplication, we also provide the YASHE specific
load-group-expand, load-chunks, and store-chunks commands. The reason is that
the KeySwitch algorithm requires the expansion of one polynomial into `w,q poly-
nomials (from now on also referred to as chunks). For efficiency reasons, the com-
putations are thus performed in parallel on all decomposed polynomials and the
larger amount of data to be transferred is handled by the previously mentioned
commands. The width of the data ports of DataDualBuf and ConstDualBuf is
q′

2 bits so that we can either store one coefficient modulo q in one position or
half of a coefficient modulo q′. As a consequence, the minimal size of D-BRAM0
and D-BRAM1 is dlog2 q

′e·K·n·`w,q

2G bits.

Usage of Burst Transfers. A significant advantage of storing multiple groups
is that this allows the usage of the DRAM’s burst mode. In case memory is
written or read continuously ([burst]) it is straightforward to see that K · C
coefficients can be handled in one burst transfer. But also when performing the

Table 2: Commands that are used to implement YASHE with HomomorphicCore.
Depending on the configuration of each memory transfer command, different
burst widths can be realized.

Command Param. p1 Param. p2 Resource Configuration

load-group-expand DRAM address group Dram0 [burst]

Loads groups p2 to p2 + K − 1 using p1 as base address, performs the decomposition
Decw,q(c̃mult) = ([(c̃mult)i]w)

`w,q−1

i=0 into `w,q polynomials, and stores the decomposed polyno-
mials in the DataDualBuf buffer.

store-chunks DRAM address group Dram0 [burst,q], [burst,q′]

Saves groups p2 to p2+K−1 of all `w,q decomposed polynomials ([q]) or spitted coefficients modulo
q′ ([q′]) stored in DataDualBuf at base address p1.

load-chunks DRAM address group Dram0 [burst,q′], [ro,q′]
[ro,bitrev,q′], [ro,q]

Equivalent to store-chunks.
store-group DRAM address group Dram0 [burst], [ro,bitrev], [ro]

Saves groups p2 to p2+K−1 of the polynomial stored in DataDualBuf at base address p1.
load-group DRAM address group Dram0 [burst], [bitrev]

Equivalent to store-group.
load-twiddles group G epoch E Dram1 [(fwd|inv),q], [(fwd|inv),q′]

Loads the precomputed forward or inverse twiddle factors for modulus q or q′ for groups p1 to
p1 +K and epoch E = p2 into ConstDualBuf using burst read.

load-psis group G - Dram1 [q], [q′]

Loads the powers of ψ−1 for groups p1 to p1 + K − 1 and moduli q or modulus q′ from DRAM
using burst read and saves them in ConstDualBuf.

load-evks DRAM address group Dram1 -

Loads the `w,q different evaluation key parts for groups p2 to p2 +K − 1 stored at base address
p1 into ConstDualBuf using burst read.

ntt-on-buffer chunk - NttCore [q], [q′]

Computes the C-NTT on chunk p1 stored in DataDualBuf using either modulus q or modulus q′ and
requiring Pn

2G multiply accumulate (MAC) operations.
mul-psi chunk - NttCore [(q|q′),round]]

Multiplies chunk p1 stored in DataDualBuf by powers of ψ−1 stored in ConstDualBuf. If configured
with [round] the YASHE rounding operation is performed after the NTT.

mul-evk chunk - NttCore [q]

Multiplies chunk p1 in DataDualBuf by the evaluation keys stored in ConstDualBuf.
accumulate chunk - NttCore -

Adds chunks p1 to chunk 0 stored in DataDualBuf.
mul-point-wise - - NttCore [q], [q′]

Performs point-wise multiplication.

cached-NTT reordering ([ro]) the simultaneous reordering of multiple groups
allows better utilization of burst operations6. By iterating over the groups and
then over the addresses we can write K coefficients using burst mode and thus
reduce memory transfer times significantly. Note that the non-continuous access
to memory in D-BRAM0 or D-BRAM1 does not introduce a performance bottleneck
as the memory is implemented using BRAMs that do not cause a performance
penalty when being accessed non-continuously.

Another improvement is achieved by the combination of the bit-reversal with
the reordering procedure of the cached-NTT ([ro,bitrev]) in which case it is
possible to write a whole group (C = n/G coefficients) using burst mode. As a
consequence, it is even preferable to compute the reordering together with the
bit-reversal instead of only the reordering, as the size of the burst write is even
larger in this case for relevant parameters (i.e., n/G instead of G).

4.2 Computation of the C-NTT on the Cache

The C-NTT is computed on each group in the cache (see the dotted box in
Figure 1) and requires arithmetic operations that dominate the area costs of our
implementation. Each C-NTT on a group requires Pn

2G multiplications in Zq (or
Zq′) and the whole cached-NTT requires EGPn

2G = n log2(n)
2 multiplications in

Zq (or Zq′). The address generation in NttCore, which implements the C-NTT,
is independent of the group or epoch that is processed. This allows a simple
data-path and also testability independently of the memory transfer commands.
To saturate the pipelined butterfly unit of the NTT, two reads and two writes
are required per cycle and we use the well-known fact that the buffer can be split
into two memories, one for even and one for odd addresses (see [32]). While this
approach might lead to wasted space in block memories if small polynomials do
not fill a whole block RAM, as in [33] and optimized in [1,36], it is not a concern
for the large parameter sets we are dealing with. The only input to the NTT,
besides the actual polynomial coefficients, that depend on the current group or
epoch are the constants like twiddle factors, powers of ψ−1, or the evaluation key
evk. We decided to store each constant in a continuous memory region and load
them into the TWID-RAM or EVK-RAM buffers depending on the current group or
epoch. While it would also be possible to compute the twiddle factors on-the-fly
(as in [36]) this approach would require an additional expensive q′×q′ multiplier
and modulo unit. Additionally, we do not exploit redundancies in twiddle factors
or other tricks so that we are able to load constants using the fast burst mode.
The only important observation is that when E = 2 the same set of twiddle
factors is used for the computation of all groups of the first epoch of the NTT.

For best performance of the NTTq our architecture requires a pipelined NTT
butterfly that is able to compute a log2 (q) × log2 (q) multiplication, modular

6 In the following we only discuss the case of writing coefficients from the FPGA
(BRAM) into the external memory (DRAM) in reordered or reordered and bit-
reversed fashion. However, the same ideas can be also applied for loading from the
DRAM and writing into the BRAM on the FPGA.

reduction, and two accumulations per cycle. For the butterfly of the NTTq′ ,
execution in one clock cycle is not necessary as the maximum data width of the
ConstDualBuf and DataDualBuf components is q′

2 . Thus, at least two cycles are
needed to load a coefficient from the buffer in which one coefficient modulo q′ is
split into chunk 0 and chunk 1.

To instantiate the multiplier we used a traditional RTL design that uses
four pipelined 72 × 72-bit multipliers generated using the Altera MegaWizard
to instantiate a 144× 144-bit multiplier. The instantiation of four 144× 144-bit
multipliers yields a 288× 288-bit multiplier and finally a pipelined 576× 576-bit
multiplier. For modular reduction we restrict the moduli q and q′ to Solinas
primes [37] of the form 2y − 2z + 1 for y, z ∈ Z and y > z. A modular reduction
circuit can then be configured by providing the input bit width and the values
y and z as generics/parameters. The implementation only requires a few shifts
and few additions/subtractions to perform a modular reduction.

5 Configuration of our Core for YASHE

For our prototype we have implemented YASHE’s homomorphic evaluation op-
erations Add and Mult using the architecture described in Section 4. As space
is limited we only cover the RMult and KeySwitch functions in detail, which are
essential for the implementation of Mult. All homomorphic evaluation operations
use the hardware architecture described in Section 4 and the commands provided
in Table 2. The commands are executed by a large state machine implemented
in HomomorphicCore, which is also responsible for interaction with the Catapult
shell and host PC.

5.1 Implementation of RMult

For RMult, a standard integer polynomial multiplication in Zq′ [X]/(Xn + 1) is
required after which the result is rounded and reduced modulo q. Selecting q′ >
nq2 guarantees that the product c1c2 of two polynomials c1, c2 ∈ Zq[X]/(Xn+1)
is computed over the integers and not being reduced before it is rounded. Instead
of using a single routine for RMult, the host server can make separate calls to
a single forward transformation c̄i = RMultFwd(ci) so that polynomials to be
multiplied with multiple other polynomials have to be transformed only once
into the NTT domain. The c̃mult = RMultInv(c̄1, c̄2) routine then takes two
transformed polynomials c̄1, c̄2 as input and computes the product by performing
point-wise multiplication, the inverse NTT, and rounding of the result. While we
give up some efficiency (e.g., merging of forward transformation and point-wise
multiplication) by this approach, it seems beneficial to provide this additional
flexibility when computing homomorphic circuits.

The (simplified) sequence of executed commands for RMultFwd is provided in
Algorithm 1, but for the actual implementation load/store operations and NTT
computations are executed in parallel to make use of the double-buffer capability
of the DataDualBuf and ConstDualBuf components. In step 5 of RMultFwd the

Algorithm 1 Forward transformation
of an input polynomial in RMult
1: func RMultFwd(ci)
2: //Epoch 0
3: load-twiddles[fwd,q′](0, 0)
4: forall groups x ∈ 0 . . . G/K − 1:
5: load-group[burst](ci, Kx)
6: ntt-on-buffer[q′](0)
7: store-chunks[burst,q′](t, Kx)
8: //Epoch 1
9: forall groups x ∈ 0 . . . G/K − 1:
10: load-twiddles[fwd,q′](Kx, 1)
11: load-chunks[ro,q′](t, Kx)
12: ntt-on-buffer[q′](0)
13: store-chunks[burst,q′](c̄i, Kx)
14: return c̄i
15: end func

Algorithm 2 Pointwise multiplica-
tion and inv. transformation in RMult
1: func RMultInv(c̄1, c̄2)
2: //Pointwise multiplication
3: forall groups x ∈ 0 . . . G/K − 1:
4: load-chunks[burst,q′](c1, Kx)
5: load-chunks[burst,q′](c2, Kx)
6: mul-point-wise[q′]()
7: store-chunks[burst,q′](t1, Kx)
8: //Epoch 0
9: load-twiddles[inv,q′](0, 0)
10: forall groups x ∈ 0 . . . G/K − 1:
11: load-chunks[ro,bitrev,q′](t1, Kx)
12: ntt-on-buffer[q′](0)
13: store-chunks[burst,q′](t2, Kx)
14: //Epoch 1
15: forall groups x ∈ 0 . . . G/K − 1:
16: load-twiddles[inv,q′](Kx, 1)
17: load-psis[q′](Kx)
18: load-chunks[ro,q′](t2, Kx)
19: ntt-on-buffer[q′](0)
20: mul-psi[q′, round](0)
21: store-group[ro,bitrev](c̃mult, Kx)
22: return c̃mult

23: end func

input polynomial is expected to be saved in bitreversed order already. This is
either ensured by the user when the polynomial is initially transferred to the
device or by our implementation in the last step of KeySwitch. The only execution
of a reordering load operation is performed in step 11 and all other loads or stores
use the burst mode. Thus the second reordering is delayed till the pointwise
multiplication in RMultInv which is given in Algorithm 2. In RMultInv the first
block of operations (step 3 to 7) is responsible for the pointwise multiplication.
Note that the Add operation of YASHE is basically this loop but mul-point-wise
is exchanged by a command for addition in Zq. The first NTT-related load is
performed in step 11 in which the final reordering of the forward transform
together with the bitreversal step is performed. The final rounding operation[⌊

t
q t2

⌉]
q
is included into the mul-psi[q′, round] command. After that the result

c̃mult is in Zq[X]/(Xn+1). Note that it is not possible to merge the multiplication
by powers of ψ−1 into the NTT twiddle factors for the inverse transformation [36]
as we use the Cooley-Tukey butterfly. The multiplication by powers of ψ−1 is
performed by the mul-psi command and the constants are loaded into the memory

space reserved for the evaluation key during the forward transformation by load-
psis. The multiplication by the scalar n−1 is merged into the ψ−1 values.

5.2 Implementation of KeySwitch

Algorithm 3 Key switching in YASHE
1: func KeySwitch(c̃mult, ¯evk)
2: //Fwd. transform and accumulation:
3: load-twiddles[fwd,q](0, 0)
4: //Epoch 0
5: forall groups x ∈ 0 . . . G/K − 1:
6: load-group-expand[burst](c̃mult,Kx)
7: forall chunks y ∈ 0 . . . `w,q − 1:
8: ntt-on-buffer[q](y)
9: store-chunks[burst,q](t1,Kx)
10: //Epoch 1
11: forall groups x ∈ 0 . . . G/K − 1:
12: load-twiddles[fwd,q](Kx, 1)
13: load-evk(¯evk,Kx)
14: load-chunks[ro, q](t1,Kx)
15: forall chunks y ∈ 0 . . . `w,q:
16: ntt-on-buffer[q](y)
17: mul-evk[q](y)
18: accumulate(y)
19: store-group[ro, bitrev](t2,Kx)

20: //Inverse transform:
21: load-twiddles[inv,q](0, 0)
22: //Epoch 0
23: forall groups x ∈ 0 . . . G/K − 1:
24: load-group[burst](t2,Kx)
25: ntt-on-buffer[q](0)
26: store-group[ro](t1,Kx)
27: //Epoch 1
28: forall groups x ∈ 0 . . . G/K − 1:
29: load-twiddles[inv,q](Kx, 1)
30: load-psis[q](Kx)
31: load-group[burst](t1,Kx)
32: ntt-on-buffer[q](0)
33: mul-psi[q](0)
34: store-group[ro, bitrev](cmult,Kx)
35: return cmult

36: end func

The control-flow used to implement KeySwitch based on the commands intro-
duced in Section 4 and Equation 1 is given in Algorithm 3. For the forward trans-
formation (step 2 to step 19) the coefficients of the input polynomial c̃mult can be
loaded using the burst mode as they have already been stored in bitreversed rep-
resentation in RMultInv. The decomposition Decw,q(c̃mult) = ([(c̃mult)i]w)

`w,q−1
i=0

is performed on-the-fly inside the FPGA using the load-group-expand[burst] com-
mand. The NTT is then performed on all `w,q decomposed polynomials in the
buffer. As the twiddle factors are the same for each polynomial we only have
to load and store K sets of twiddle factors into the ConstDualBuf component
(each set containing P · `w,q/2 coefficients). During the NTT computation on
all polynomials the results are accumulated (step 18) and then stored (step 19).
The relatively slow reordering operation load-chunks[ro, q] is performed at the
beginning of the second epoch and not after the first epoch as the accumulation
and multiplication with the evaluation keys takes additional time so that we can
balance the time required for memory transfers and computation. As the forward
transformed polynomials are already stored in the correct order, we just have to
perform a burst read at the beginning of the inverse transformation in step 24.

Additionally, the computation is much less involved as we only have to compute
one INTTq and not `w,q computations of NTTq caused by the decomposition.

6 Results and Comparison

In this section we provide post place-and-route (post-PAR) results and perfor-
mance measurements of our implementation on the Catapult board [34] equipped
with an Altera Stratix V (5GSND5H) FPGA and two 4 GB DRAMs.

6.1 Resource Consumption and Performance

The resource consumption of our implementation is reported in Table 3. Achiev-
ing a high clock frequency for parameter Set II is challenging. One reason seems
to be that, due to our design choices, we have to deal with extremely large
structures like several thousand bit wide adders and a large integer multiplier.
Such structures are tedious to manually optimize and it is hard to determine
an optimal pipeline length. Another reason is that the design is congested and
that placement and fitting have to satisfy strict constraints imposed by the PCIe
and DRAM controllers in the Catapult shell. Still, switching to larger devices to
reduce congestion would also increase costs.

Table 3: Resource consumption of our implementation (including communica-
tion).

Implementation ALM FF DSP BRAM Bits MHz

Set I (n=4096,K= 8) 69,058 (40 %) 144,747 144 (9 %) 8,031,568 (19 %) 100

Set II (n=16384,K=4) 141,090 (82 %) 391,773 577 (36 %) 17,626,400 (43 %) 66

Cycle counts for evaluation operations are given in Table 4 and are obtained
using the PerfMonitor component that logs cycle counts and transfers them
to the host server over PCIe, if requested. The usual approach of obtaining
cycle counts from simulation is not possible as we are using an external DRAM
without a cycle accurate simulation model. Note that theMult operation requires
to execute RMult and KeySwitch. Also note that the runtime does not simply
scale for higher clock frequencies as the DDR memory interface is running in its
own clock domain and thus the memory bandwidth is not significantly increased
by higher clock frequencies of the HomomorphicCore component.

A good indicator for the efficiency of our memory addressing is the saturation
of the log(q)× log(q) modular multiplier. One NTT requires n

2 log2(n) multiply-
accumulate (MAC) operations so that KeySwitch takes at least CKS(`w,q, n) =
(`w,q + 1)(n2 log2(n) + n) cycles assuming one clock cycle per MAC (`w,q for-
ward and one inverse NTT, see Equation 1). For parameter Set II we get

CKS(8, 16384) = 1,179,648 as lower bound on the number of cycles for KeySwitch
which is close to the measured 1,372,519 cycles. For RMult approx. CRM(n) =
3(4n2 log2 n) + 2(4n) cycles are required (three transformations, point-wise and
ψ−1 multiplication; four cycles per MAC) and the saturation of the MAC unit
is CRM(16384)

1,839,987 = 0.82.

Table 4: Cycle counts and runtimes for the different evaluation algorithms of
YASHE measured on the Catapult board.

Implementation Mult Add KeySwitch RMult RMultFwd RMultInv

Set I (n=4096) cycles 675,326 19,057 478,911 196,415 160,693 157,525
100 MHz (K=8) time 6.75 ms 0.19 ms 4.79 ms 1.96 ms 1.61 ms 1.58 ms

Set II (n=16384) cycles 3,212,506 61,775 1,372,519 1,839,987 587,664 664,659
66 MHz (K=4) time 48.67 ms 0.94 ms 20.80 ms 27.88 ms 8.90 ms 10.07 ms

6.2 Comparison with Previous Work

Cao et al. [9] describe an implementation of the integer-based FHE scheme in [16]
on a Virtex-7 FPGA (XC7VX980T) but explicitly do not take into account the
bottleneck that may be caused by accessing off-chip memory. Their implemen-
tation achieves a speed up factor of 11.25 compared to a software implementa-
tion but for large parameter sets, which might promise some performance gains,
the design does not fit on current FPGAs. An FPGA implementation of an
integer multiplier for the Gentry-Halevi [24] FHE scheme is proposed in [43].
The architecture requires about 462,983 ALUs, and 720 DSPs on a Stratix-V
(55GSMD8N3F45I4) and allows 768K-bit multiplications. It is reported to be
about two times faster than a similar implementation on an NVIDA C2050
GPU. Another 768K-bit multiplication architecture is proposed by Wang et al.
in [44] targeting ASICs and FPGAs. An outline of an implementation of a ho-
momorphic encryption scheme is given in [17] using Matlab/Simulink and the
Mathwork HDL coder. The used tools limit the available basic multiplier width
to 128 bits and the design requires multiple FPGAs to deal with long vectors.

An ASIC implementation of a million-bit multiplier for integer-based FHE
schemes is presented by Doröz et al. in [21]. The computation of the product of
two 1,179,648-bit integers takes 5.16 million clock cycles. Synthesis results for
a chip using the TSMC 90 nm cell library show a maximum clock frequency of
666 MHz and thus a runtime of 7.74 ms for this operation, equivalent to that
of a software implementation. This shows, similar to our result, that the biggest
challenges in the implementation of homomorphic cryptography in hardware are
the large ciphertext sizes that do not fit into block RAMs (our case) or caches
instantiated with the standard library (Doröz et al. [21]).

Wang et al. [42] present the first GPU implementation of an FHE scheme
and provide results for the Gentry-Halevi [24] scheme on an NVIDIA C2050
GPU. The results were subsequently improved in [40]. A GPU implementation
of the leveled FHE scheme by Brakerski et al. [8] is given in [41]. In [19] Dai
et al. provide an implementation of the DHS [20] FHE scheme that is based on
the scheme in [30]. For the parameters (n = 16384, log2(q) = 575), they require
0.063 s for multiplication and 0.89 s for relinearization (key switching) on a 2.5
GHz Xeon E5-2609 equipped with an NVIDIA GeForce GTX 690.

A software library that implements the Brakerski-Gentry-Vaikuntanathan
(BGV) [7, 8] scheme is described in [27]. In [29], a software implementation of
YASHE is reported which for the parameter set (n = 4096, q = 2127−1, w = 232)
executes Add in 0.7 ms, RMult in 18 ms, and KeySwitch in 31 ms on an Intel Core
i7-2600 running at 3.4 GHz. So our hardware implementation can evaluate Mult
on a parameter set supporting 9 levels in 48.67 ms while the software requires
49 ms for parameters supporting only 1 multiplicative level.

Roy et al. [35] proposed an implementation of YASHE with n = 215 and
a modulus of log2(q) = 1228 bits. They use a much larger next generation
FPGA (Virtex-7 XC7V1140T) from a different vendor so that a comparison
with our work is naturally hard - especially regarding the economical benefits
of using FPGAs. We see the biggest contribution of the work by Roy et al.
in their efficient implementation of independent processors that use the CRT
to decompose polynomials. This approach avoids large integer multipliers and
simplifies routing and performance tuning. When we designed our core, the added
complexity and the need to lift polynomials from CRT to natural representations
in hardware appeared to be too expensive. However, the authors of [35] do not
consider the costs of moving data between external memory and the FPGA but
just assume unlimited memory bandwidth. This naturally simplifies the design
and placement but does not appear to be a realistic assumption. In our work a
considerable amount of time was spent to implement efficient memory transfers
and to optimize the algorithms in this regard. However, we see our work and the
work of Roy et al. as a first step towards an efficient accelerator.

7 Future Work

While implementing the scheme we encountered several challenges that might
also be a good start for future work. A big issue was verification and simulation
time due to the large problem sizes. Different design or simulation approaches
are probably needed for larger parameter sets. Another area of future work is the
design of a more efficient and easier to synthesize large-integer modular multiplier
and further design space exploration and implementation of larger parameter
sets. Additionally, it might also make sense to investigate the applicability of
the Chinese remainder theorem (CRT) in combination with the cached-NTT.

References

1. Aydin Aysu, Cameron Patterson, and Patrick Schaumont. Low-cost and area-
efficient FPGA implementations of lattice-based cryptography. In 2013 IEEE In-
ternational Symposium on Hardware-Oriented Security and Trust, HOST 2013,
Austin, TX, USA, June 2-3, 2013, pages 81–86. IEEE Computer Society, 2013. 5,
12

2. Bevan M. Baas. An Approach to Low-Power, High Performance, Fast Fourier
Transform Processor Design. PhD thesis, Stanford University, Stanford, CA, USA,
1999. 2, 5, 7

3. Bevan M. Baas. A generalized cached-FFT algorithm. In 2005 IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP ’05, Philadelphia,
Pennsylvania, USA, March 18-23, 2005, pages 89–92. IEEE, 2005. 2, 5, 6, 7

4. Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and Michael Naehrig. Improved
security for a ring-based fully homomorphic encryption scheme. In Martijn Stam,
editor, Cryptography and Coding - 14th IMA International Conference, IMACC
2013, Oxford, UK, December 17-19, 2013. Proceedings, volume 8308 of Lecture
Notes in Computer Science, pages 45–64. Springer, 2013. 2, 3, 4

5. Joppe W. Bos, Kristin E. Lauter, and Michael Naehrig. Private predictive analysis
on encrypted medical data. Journal of Biomedical Informatics, 50:234–243, 2014.
1

6. Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in
Computer Science, pages 868–886. Springer, 2012. 2

7. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic
encryption without bootstrapping. IACR Cryptology ePrint Archive, 2011:277,
2011. 18

8. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, Innova-
tions in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10,
2012, pages 309–325. ACM, 2012. 2, 18

9. Xiaolin Cao, Ciara Moore, Máire O’Neill, Neil Hanley, and Elizabeth O’Sullivan.
High-speed fully homomorphic encryption over the integers. In Rainer Böhme,
Michael Brenner, Tyler Moore, and Matthew Smith, editors, Financial Cryptogra-
phy and Data Security - FC 2014 Workshops, BITCOIN and WAHC 2014, Christ
Church, Barbados, March 7, 2014, Revised Selected Papers, volume 8438 of Lecture
Notes in Computer Science, pages 169–180. Springer, 2014. extended version: [10].
2, 17, 19

10. Xiaolin Cao, Ciara Moore, Máire O’Neill, Elizabeth O’Sullivan, and Neil Hanley.
Accelerating fully homomorphic encryption over the integers with super-size hard-
ware multiplier and modular reduction. IACR Cryptology ePrint Archive, 2013:616,
2013. conference version of [9]. 19

11. Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy, Ray
C. C. Cheung, Derek Pao, and Ingrid Verbauwhede. High-speed polynomial mul-
tiplication architecture for Ring-LWE and SHE cryptosystems. IACR Cryptology
ePrint Archive, 2014:646, 2014. 2

12. Jung Hee Cheon, Miran Kim, and Myungsun Kim. Search-and-compute on
encrypted data. Cryptology ePrint Archive, Report 2014/812, 2014. http:
//eprint.iacr.org/2014/812. 1

http://eprint.iacr.org/2014/812
http://eprint.iacr.org/2014/812

13. Jung Hee Cheon, Miran Kim, and Kristin Lauter. Homomorphic computation of
edit distance. Cryptology ePrint Archive, Report 2015/132, 2015. http://eprint.
iacr.org/2015/132. 1

14. Eleanor Chu and Alan George. Inside the FFT Black Box Serial and Parallel Fast
Fourier Transform Algorithms. CRC Press, Boca Raton, FL, USA, 2000. 4, 5

15. James W. Cooley and John W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of Computation, 19:297–301, 1965. 5

16. Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi.
Fully homomorphic encryption over the integers with shorter public keys. In Phillip
Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, vol-
ume 6841 of Lecture Notes in Computer Science, pages 487–504. Springer, 2011.
2, 17

17. David Cousins, Kurt Rohloff, Chris Peikert, and Richard E. Schantz. An update
on SIPHER (scalable implementation of primitives for homomorphic encryption) -
FPGA implementation using simulink. In IEEE Conference on High Performance
Extreme Computing, HPEC 2012, Waltham, MA, USA, September 10-12, 2012,
pages 1–5. IEEE, 2012. 17

18. Richard Crandall and Carl Pomerance. Prime Numbers: A Computational Perspec-
tive. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK /
etc., 2001. 4

19. Wei Dai, Yarkin Doröz, and Berk Sunar. Accelerating NTRU based homomorphic
encryption using GPUs. IACR Cryptology ePrint Archive, 2014:389, 2014. to
appear in IEEE Transaction on Computers. 2, 7, 18

20. Yarkin Doröz, Yin Hu, and Berk Sunar. Homomorphic AES evaluation using
NTRU. IACR Cryptology ePrint Archive, 2014:39, 2014. 18

21. Yarkin Doröz, Erdinç Öztürk, and Berk Sunar. Evaluating the hardware perfor-
mance of a million-bit multiplier. In 2013 Euromicro Conference on Digital System
Design, DSD 2013, Los Alamitos, CA, USA, September 4-6, 2013, pages 955–962.
IEEE Computer Society, 2013. 2, 17

22. W. Morven Gentleman and G. Sande. Fast fourier transforms: for fun and profit.
In American Federation of Information Processing Societies: Proceedings of the
AFIPS ’66 Fall Joint Computer Conference, November 7-10, 1966, San Francisco,
California, USA, volume 29 of AFIPS Conference Proceedings, pages 563–578.
AFIPS / ACM / Spartan Books, Washington D.C., 1966. 5

23. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
169–178. ACM, 2009. 2

24. Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic encryp-
tion scheme. In Kenneth G. Paterson, editor, Advances in Cryptology - EURO-
CRYPT 2011 - 30th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.
2, 17, 18

25. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the
AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryp-
tology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science, pages 850–867. Springer, 2012. 2

http://eprint.iacr.org/2015/132
http://eprint.iacr.org/2015/132

26. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-
22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 75–92. Springer, 2013. 2

27. Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part
I, volume 8616 of Lecture Notes in Computer Science, pages 554–571. Springer,
2014. source code and documentation: https://shaih.github.io/HElib/. 18

28. Kristin E. Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Christian Cachin and Thomas Ristenpart, editors,
Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011,
Chicago, IL, USA, October 21, 2011, pages 113–124. ACM, 2011. 1

29. Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic en-
cryption schemes FV and YASHE. In David Pointcheval and Damien Vergnaud,
editors, Progress in Cryptology - AFRICACRYPT 2014 - 7th International Confer-
ence on Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings,
volume 8469 of Lecture Notes in Computer Science, pages 318–335. Springer, 2014.
2, 3, 4, 18

30. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium
on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19
- 22, 2012, pages 1219–1234. ACM, 2012. 2, 3, 18

31. Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms, vol-
ume 2 of Springer Series in Information Sciences. Springer, Berlin, DE, 1982.
4

32. Marshall C. Pease. An adaptation of the fast Fourier transform for parallel pro-
cessing. J. ACM, 15(2):252–264, 1968. 12

33. Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware. In Alejandro Hevia and Gregory
Neven, editors, Progress in Cryptology - LATINCRYPT 2012 - 2nd International
Conference on Cryptology and Information Security in Latin America, Santiago,
Chile, October 7-10, 2012. Proceedings, volume 7533 of Lecture Notes in Computer
Science, pages 139–158. Springer, 2012. 5, 12

34. Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James R. Larus, Eric Peterson, Simon Pope,
Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. A reconfigurable
fabric for accelerating large-scale datacenter services. In ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA,
June 14-18, 2014, pages 13–24. IEEE Computer Society, 2014. 2, 5, 16

35. Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil S. Dimitrov, and
Ingrid Verbauwhede. Modular hardware architecture for somewhat homomorphic
function evaluation. IACR Cryptology ePrint Archive, 2015:337, 2015. to appear
in CHES’15. 2, 18

https://shaih.github.io/HElib/

36. Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede. Compact ring-LWE cryptoprocessor. In Lejla Batina
and Matthew Robshaw, editors, Cryptographic Hardware and Embedded Systems
- CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-
26, 2014. Proceedings, volume 8731 of Lecture Notes in Computer Science, pages
371–391. Springer, 2014. 5, 7, 12, 14

37. Jerome A. Solinas. Generalized Mersenne numbers. Technical Report MCORR
99-39, Faculty of Mathematics, University of Waterloo, 1999. 13

38. Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case prob-
lems over ideal lattices. In Kenneth G. Paterson, editor, Advances in Cryptology
- EUROCRYPT 2011 - 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Pro-
ceedings, volume 6632 of Lecture Notes in Computer Science, pages 27–47. Springer,
2011. 3

39. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Henri Gilbert, editor, Advances in
Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, French Riviera, May 30 -
June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science,
pages 24–43. Springer, 2010. 2

40. W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar. Exploring the feasibility of
fully homomorphic encryption. Computers, IEEE Transactions on, 64(3):698–706,
March 2015. 2, 18

41. Wei Wang, Zhilu Chen, and Xinming Huang. Accelerating leveled fully homo-
morphic encryption using GPU. In IEEE International Symposium on Circuits
and Systemss, ISCAS 2014, Melbourne, Victoria, Australia, June 1-5, 2014, pages
2800–2803. IEEE, 2014. 2, 18

42. Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar. Accelerating
fully homomorphic encryption using GPU. In IEEE Conference on High Perfor-
mance Extreme Computing, HPEC 2012, Waltham, MA, USA, September 10-12,
2012, pages 1–5. IEEE, 2012. 18

43. Wei Wang and Xinming Huang. FPGA implementation of a large-number multi-
plier for fully homomorphic encryption. In 2013 IEEE International Symposium
on Circuits and Systems (ISCAS2013), Beijing, China, May 19-23, 2013, pages
2589–2592. IEEE, 2013. 17

44. Wei Wang, Xinming Huang, Niall Emmart, and Charles C. Weems. VLSI design
of a large-number multiplier for fully homomorphic encryption. IEEE Trans. VLSI
Syst., 22(9):1879–1887, 2014. 2, 17

45. Franz Winkler. Polynomial Algorithms in Computer Algebra (Texts and Mono-
graphs in Symbolic Computation). Springer, 1 edition, 8 1996. 4

	Accelerating Homomorphic Evaluation on Reconfigurable Hardware

