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Abstract. We consider a simple power analysis on an 8-bit software implementation of the AES
key expansion. Assuming that an attacker is able to observe the Hamming weights of the key bytes
generated by the key expansion, previous works from Mangard and from VanLaven et al. showed
how to exploit this information to recover the key from unprotected implementations.
Our contribution considers several possible countermeasures that are commonly used to protect the
encryption process and may well be adopted to protect the computation and/or the manipulation of
round keys from this attack. We study two different Boolean masking countermeasures and present
efficient attacks against both of them. We also study a third countermeasure based on the computation
of the key expansion in a shuffled order. We show that it is also possible to attack this countermeasure
by exploiting the side-channel leakage only. As this last attack requires a not negligible computation
effort, we also propose a passive and active combined attack (PACA) where faults injected during
the key expansion are analyzed to derive information that render the side-channel analysis more
efficient. These results put a new light on the (in-)security of implementations of the key expansion
with respect to SPA.
As a side contribution of this paper, we also investigate the open question whether two different
ciphering keys may be undistinguishable in the sense that they have exactly the same set of expanded
key bytes Hamming weights. We think that this problem is of theoretical interest as being related
to the quality of the diffusion process in the AES key expansion. We answer positively to this
open question by devising a constructive method that exhibits many examples of such ambiguous
observations.

Keywords: side-channel analysis, simple power analysis, passive and active combined attacks, AES
key expansion.

1 Introduction

Side channel analysis is an effective means to derive secrets stored in a security device like a smart
card from measurements of a leaking physical signal such as the execution duration, the power
consumption or the electromagnetic emanation. Since the first publication of a timing attack
by Kocher [6] many side-channel analysis methods have been presented that exploit a large
number of leakage traces by a statistical method: Differential Power Analysis [7], Correlation
Power Analysis [2], Mutual Information Analysis [4] and Template Analysis [3] are few such well
known methods.

Simple Power Analysis (SPA) also permits to infer information in a more direct manner
by ”visually” inspecting a single (in the most favorable cases) trace. Two kinds of information
can be retrieved by SPA. At a high level it allows to recognize different instructions or blocks of
instructions that are executed on the device. This capability is typically exploited either to recover
a sequence of arithmetic operations of a modular exponentiation used in public key cryptography,
or for a rough reverse engineering and/or a first characterization phase of an implementation or of
the leakage behavior of the device. At a lower level SPA informs about the values of the operands
involved in each elementary instruction particularly for load and store operations when this data



is read from or written to the bus. The dependency between the value of a data and that of the
power consumption that leaks when it is manipulated has early been studied [11, 9, 10] and in the
classical models the power consumption is tightly linked either with the Hamming weight of the
data or with the Hamming distance between this data and the value it replaces on the bus.

In this paper we consider an attacker that is able to infer the Hamming weights of the data ma-
nipulated by targeted instructions of a software AES implementation on an 8-bit microprocessor.
Specifically the targeted data are the different bytes of the different round keys, while the targeted
instructions may be located either in the AES key expansion process which computes these round
keys, or in the AddRoundKey function which XOR the round keys with the current state of the
encryption process. While the problem of inferring an AES key from the Hamming weights and
the expanded key bytes has first been mentioned in [1], Mangard [8] was the first to describe such
an attack which has later been improved by VanLaven et al. [13]. While the SPA on the AES key
expansion described in these works only apply on naive unprotected implementations, we study in
this paper to which extent this attack may be adapted to implementations featuring side-channel
countermeasures. We consider three different scenarios where either a Boolean masking is applied
to the round keys or the order of computation of the expanded key bytes is randomly shuffled.
The masking countermeasure prevents the attacker from obtaining the Hamming weight of actual
key bytes, while the shuffling countermeasure prevents him to precisely know to which key byte
an observation is related.

The paper is organized as follows: The problem statement and a background on the related
previous works are presented in Sect. 2. This section also considers the open problem whether
two expanded keys may have the same of Hamming weights. Section 3 presents our main contri-
bution where we describe attacks on three countermeasures. In the light of these results we give
implementation recommendations in Sect. 4 while Sect. 5 concludes this work.

2 Problem Statement And Previous Work

Given a 16-byte ciphering key K, the AES key expansion derives eleven 16-byte round keys
Kr (r = 0, . . . , 10) with K0 = K and where individual bytes of Kr are denoted kr,i (i = 0, . . . , 15).

The expanded key K = {K0, . . . ,K10} is computed column by column by means of two types
– a linear and a non-linear – of relations:

kr,i = kr−1,i ⊕ kr,i−4 (for i = 4, . . . , 15) (1)

kr,i = kr−1,i ⊕ S(kr−1,12+((i+1) mod 4))⊕ c′r (for i = 0, . . . , 3) (2)

where S is the S-Box substitution and c′r is a round specific constant equal to {02}r−1 if i = 0
and equal to 0 if i ∈ {1, 2, 3}. We refer the interesting reader to the AES specifications [12] for
further details on the AES ciphering process.

The problem considered in this paper is how to identify the ciphering key K based on a set
{HW(kr,i)}r,i of part or all Hamming weights of the expanded key bytes.

Mangard [8] was the first to give a solution to this problem. He proposed to build lists of
values of 5-byte key parts which are both compatible with the observed Hamming weights of
these bytes, and also compatible with the Hamming weights of 9 other key bytes (and several
other intermediate bytes) that can be computed from the 5-tuple.

In [13] VanLaven et al. also consider the same problem and give an elegant analysis of the key
byte links which allows them to derive an efficient guess-compute-and-backtrack algorithm where
a sequence of key bytes are successively guessed in an optimal order that maximizes the number
of other bytes that can be computed and checked with respect to their Hamming weight. Once an



inconsistency with respect to the observations is found the algorithm considers the next possible
value for the current guessed byte and eventually backtracks one level back in the sequence of key
bytes when all values for the current guessed byte have been considered. Interestingly the last
contribution of this work shows that their algorithm can cope with (slightly) erroneous observation
at the price of a more demanding computational work in the key space exploration process.

Undistinguishable keys We study the open question whether there exist key pairs – or more
generally key sets – which are undistinguishable for having the same Hamming weights signa-
tures1. We are thus concerned by the existence or non-existence of two different keys K and K ′

such that K and K ′ have exactly the same 176 Hamming weights.
If the AES key expansion was deriving round keys K1 to K10 with an ideal random behavior,

the probability that there exist two keys having the same signature would be overwhelming low.
Indeed the probability that two random bytes have same Hamming weight is p = 2−2.348 so that
the probability that the signatures of two random keys are the same is q = p176 ' 2−413.3. It
follows that the probability that at least one collision of signatures occurs among the whole key
space is about 1− e−

q
2
·22∗128 ' 2−158.3.

While the AES key expansion is far from having a random behavior, it was considered in [8]
that so-called twin keys probably do not exist or should be very rare2. We show in this paper
that this belief is wrong by proposing a constructive method that can easily generate millions
of them. We refer the reader to Appendix A for the description of this method and just provide
here an example of such key pair:{

K = B3 65 58 9D B4 EB 57 72 1F 51 F7 58 02 0C 00 17

K ′ = F2 65 19 DC B4 EB 57 33 5E 51 F7 19 02 0C 00 56

Note that the existence of twin keys is of theoretical interest as it gives a new demonstration
of the quite non-ideal behavior of the diffusion process of the AES key expansion. Nevertheless, it
has no practical impact on the attacks considered in this paper since the only consequence is that
when attacking a key belonging to such pair, the attack process ends with two possible keys instead
of a unique one. The correct key can then be identified thanks to a known plaintext/ciphertext
pair.

3 Key Recovery on Protected Implementations

In this section we study three different countermeasures that may be implemented to protect the
key expansion function against simple power analysis.

The first two countermeasures are natural ways to apply a Boolean masking on the expanded
key. They make use of 11-byte and 16-byte masks respectively in order to cope with limited RAM
resources and/or small random entropy generation capacity that usually prevail on embedded
devices. The third countermeasure is a columnwise shuffling of the expanded key computation.

3.1 11-byte Entropy Boolean Masking

We consider here that at each execution all round keys are masked by 11 specific random bytes
mr so that the attacker has no longer access to the leakages of individual bytes kr,i of each Kr

but rather to those of masked versions K ′r = (k′r,i)i with k′r,i = kr,i ⊕mr. Figure 1 depicts the
mask pattern that applies on the expanded key bytes.

1 By Hamming weights signature of a key K we mean the set of all the Hamming weights of its expanded key K.
2 The exact sentence of the author was: The high diffusion of the AES key expansion suggests that there are only

very few keys of this kind, if there are such keys at all.
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Fig. 1. Part of the 8-byte masking scheme

The basic attack does not apply directly since the measured Hamming weights are related to
masked bytes that do not verify neither linear nor non-linear links of the key expansion process.

In order to apply the guess-compute-and-backtrack strategy of the basic attack we now have
to make also guesses about the values of the masks of all key bytes involved in the key search.
As each extra mask that must be guessed induces a multiplication by 28 of the searched space,
we use two tricks to contain the necessary computing work factor.

The first idea is to exploit some extra information that can be inferred about the key bytes
kr,i by considering measured Hamming weights from multiple traces. More precisely, consider two
bytes x and y masked by the same random value m. The respective Hamming weights of the
masked bytes x′ = x⊕m and y′ = y ⊕m verify the two following properties:

|HW(x′)−HW(y′)| 6 HD(x, y) 6 min(8,HW(x′) + HW(y′)) (3)

HD(x, y) ≡ HW(x′) + HW(y′) (mod 2) (4)

Both equations give information about the Hamming distance between unmasked values x
and y. For example, suppose that x = 30 and y = 121 (i.e. HD(x, y) = 5). With a first trace for
which m = 70, we measure HW(x′) = HW(30⊕ 70) = 3 and HW(y′) = HW(121⊕ 70) = 6. From
Eq. (3) we infer that 3 6 HD(x, y) 6 8, and due to the odd parity given by Eq. (4) we learn that
HD(x, y) ∈ {3, 5, 7}. With a second trace for which m = 24, we measure HW(x′) = HW(30 ⊕
24) = 2 and HW(y′) = HW(121 ⊕ 24) = 3. This second measure allows to further constrain
HD(x, y) which now belongs to {3, 5}. By exploiting more and more traces we can decrease the
number of possible candidates and ultimately expect to identify the Hamming distance between
the unmasked bytes. Interestingly we notice that the parity equation may be used to detect
erroneous measurements. For example, if the measurements from ten traces give an odd parity
for HW(x′) + HW(y′) eight times and an even parity only twice, then one may conclude that
either HW(x′) or HW(y′) has not been correctly measured on these two last traces.

In a first phase of the attack, multiple traces are analysed in order to get as much possible
information about the Hamming distance HD(kr,i, kr,i′) of each couple of bytes belonging to the
same round key. Then in a second phase a smart exploration of the key space is performed
based on the Hamming weights measured from a unique trace, and on the Hamming distances
constraints obtained in the first phase.

The second idea to reduce to computational effort is to limit the process of guessing and
computing key bytes to only two adjacent round keys Kr and Kr+1. That way we have to guess
only two mask bytes. For each (mr,mr+1) candidate we perform a key search where we guess
successive bytes of Kr and derive the values of successive bytes of Kr+1. For example, consider
that we start the search by guessing kr,12 (equivalently we could start at positions 13, 14 or 15). In
a first step we guess kr,3 and compute kr+1,3. In a second step we guess kr,7 and compute kr+1,7.
Then we guess kr,11 and compute kr+1,11, and so on. Figure 2 shows the order in which successive
bytes of Kr and Kr+1 are respectively guessed and computed. As in the basic attack, each time a
key byte is guessed or computed we check the consistency with the measured Hamming weights of



its masked values. A more efficient consistency check consists in verifying that each newly guessed
or computed byte has compatible Hamming distances with all already known key bytes belonging
to the same round key. For example, when kr,11 is guessed in the third step four constraints on
HW(kr,11⊕mr), HD(kr,11, kr,7), HD(kr,11, kr,3) and HD(kr,11, kr,12) are verified, and when kr+1,11

is computed three checks imply HW(kr+1,11⊕mr+1), HD(kr+1,11, kr+1,7) and HD(kr+1,11, kr+1,3).
As we can see, the more deeper we are in the exploration process, the more opportunities we have
to invalidate wrong guess sequences and backtrack.

Kr Kr+1

0

1 12 23 3

⇒

Kr Kr+1

0

1 12 23 34 4

5 56 67 78 8

9 910 1011 1112 12

13 1314 1415 15 15

Fig. 2. Guess order of the 11-byte masking scheme

We have extensively simulated our attack by generating perfect measurement sets of Ham-
ming weights. For different numbers T of exploited traces (T ∈ {5, 10, 15, 20, 30}) – this number
influences the tightness of the bounds derived for the Hamming distances – we ran N simulations
(N = 1000 in most cases) of the attack. For each run we picked a key at random, and for each
T executions we computed a masked expanded key based on an execution specific set of masks
(m0, . . . ,m10), from which we derived the set of Hamming weights assumed to be available to
the attacker. Given a round r we computed the sets of possible Hamming distances between
each couple (kr,i, kr,i′) and (kr+1,i, kr+1,i′). Then we choose one particular trace (actually a set of
Hamming weights) among the T available ones and a starting position of the guess sequence3,
and executed the second phase of the attack (exploration process).

Table 1 shows the simulation results obtained on a classical PC equipped with an 2.4 MHz
I5 core processor and 4 GB of RAM. For each number of exploited traces we give the average
computation time as well as the average residual entropy of the key (the log2 of the number of
compatible keys returned by the attack). Because of a large variance in the attack computation
time, we choose to limit the exploration with a given timeout. The value of this timeout as well
as the percentage of simulations that terminated within this limit are also presented. Note that
the average figures in the second and third columns are computed over the set of terminating
simulations.

The proposed attack is quite efficient, even for a number of exploited traces reduced to five.
In this case about 45% of runs terminate in less than 30 minutes and the average entropy of the
key set that remains to exhaust is only about five bits.

Remark 1. From a practical point of view related to the ability for the attacker to infer Hamming
weight from the leakage traces, we notice that in this attack not all 176 Hamming weights are
needed per trace but only 32 ones. Also, the opportunity that the attacker has to choose which

3 Note that an attacker can freely choose both the trace which is exploited for the key search, the round r from 0
to 9 and the starting position from 12 to 15. We took this opportunity to select those parameters that minimize
the number of possible values of the starting triplet – i.e. (kr,12, kr,3, kr+1,3) in the example above – that are
compatible with the measured Hamming weights.



Table 1. Simulation results of the attack on the 11-byte masking countermeasure

Number of Average Average residual Simulation Percentage of Number of
traces (T ) time (s) entropy (bits) timeout (s) terminating runs runs (N)

5 398 5.9 1800 47.0 83
10 40.6 0.66 300 93.4 500
15 10.0 0.29 60 94.7 1000
20 5.9 0.24 60 98.2 1000
30 3.0 0.24 60 100.0 1000

round key he wants to attack may be exploited to select the portion of the traces where he is the
more confident about the measured Hamming weights.

3.2 16-byte Entropy Boolean Masking

The second countermeasure that we consider consists in masking all bytes of a round key with a
different random byte, while repeating these 16 masks for all round keys. Precisely, each masked
round key is defined as K ′r = (k′r,i)i with k′r,i = kr,i ⊕ mi (i = 0, . . . , 15). Figure 3 depicts the
mask pattern that applies on the expanded key bytes.
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Fig. 3. Part of the 16-byte masking scheme

As in the attack on the 11-byte masking scheme, we will first exploit several traces in order
to obtain information on Hamming distances between key bytes sharing a same mask. We also
want to limit to two the number of mask values that must be simultaneously guessed in the
most explosive (less constrained) part of the key space exploration. It follows from this that the
sequence of guesses should extend horizontally on a same byte position i rather than on a same
round key r.

Given a starting position a ∈ {0, 1, 2, 3}, we define the related position b = 12+((a+1) mod 4).
For each guess on the couple of masks (ma,mb), we perform an exploration of the key space as
follows. First we guess k0,a. Then repeatedly for r = 0, . . . , 9 we guess kr,b and derive kr+1,a.
As in the attack described in Sect. 3.1, each newly guessed or computed key byte is checked
against available information about the Hamming weight of its masked value and the Hamming
distances with other already known bytes at the same position. We have now performed the most
demanding part of the exploration since we had to make a new guess for each byte kr,b. At this
point we have a reasonably small number of compatible key candidates for which we know all
key bytes at positions a and b except k10,b. We now guess k10,b which is quite constrained by the
Hamming distances at position b and so does not increase much the exploration size. Knowing
k10,b, we can now successively compute key bytes at position c = b−4 backward from k10,c to k1,c.
Note that mc is the only value that we must guess to compute this line up to k1,c. We terminate



the line c by guessing the quite constrained last byte k0,c. Now, guessing the mask md at position
d = c − 4 we can compute in the same way all the line d from k10,d to k1,d, and terminate the
line by guessing k0,d. We can pursue the same process with one more line at position e = d − 4
and then the next line is located at position f = 12 + ((b + 1) mod 4) and is computed forward
from k0,f to k9,f terminating with a guess on k10,f . Successively we determine all the expanded
key, line after line, at positions whose sequence a, b, c, . . . is presented on Fig. 4.
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Fig. 4. Guess order of the 16-byte masking scheme

Interestingly, we can notice a property that stands for the first line a and which allows to
dramatically speed up the attack. For each solution found on lines a and b by assuming the couple
of masks (ma,mb) we would have found a companion solution with any other value m′a where all
kr,b are the same and where each kr,a is replaced by kr,a ⊕ (ma ⊕m′a). As key bytes at position
a do not influence those recovered on the successive lines b, c, d,. . . we do not have to know the
exact value of ma and can fix it arbitrary. At the end of the attack we are able to compute the
correct value of the line a by inferring the error made on ma based for example on the difference
between the assumed value of k10,a and its exact value which can be computed as k9,p ⊕ k10,p
where p = a + 4. Doing so, the first part of the exploration, which results in knowing values at
positions a and b, can be done by guessing virtually only one mask byte (mb). A speed-up factor
of 28 is achieved which results in a particularly efficient attack.

Table 2 presents simulation results for this attack in a similar manner than in Sect. 3.1.
Surprisingly, the key recovery in the presence of a 16-byte masking is much more efficient than
with the 11-byte masking despite the higher mask entropy. For example the key is recovered within
1 second on average when 10 traces are exploited against 40 seconds for the 11-byte masking.
Also, it is possible to use only 3 traces with still small computation time and residual key entropy
in a significant proportion of cases.

Table 2. Simulation results of the attack on the 16-byte masking countermeasure

Number of Average Average residual Simulation Percentage of Number of
traces (T ) time (s) entropy (bits) timeout (s) terminating runs runs (N)

3 77.3 7.3 600 60.7 28
5 25.3 4.2 300 88.5 1000
10 1.09 1.7 60 100.0 1000
15 0.24 0.93 60 100.0 1000
20 0.12 0.55 60 100.0 1000
30 0.07 0.24 60 100.0 1000



3.3 Column-Wise Random Order Countermeasure

The third countermeasure consists in calculating independent bytes in a random order. Due to
the column based structure of the key schedule the four bytes of each column can be calculated
independently. Figure 5 gives an example of a possible sequence of permutation.
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Fig. 5. Part of an example of effect of random order countermeasure

This countermeasure is hiding a part of information. We still assume that the attacker is
able to correctly identify all 176 Hamming weights but for every column he only obtains a non-
ordered set of 4 values. For example, given the example key represented in Figure 6 where key
bytes Hamming weights are indicated in the corner, the information that an attacker has access
to is shown on Figure 7. The key bytes of each column have been involved in a random order so
that the attacker can only infer non-ordered quadruplets of Hamming weights.
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Fig. 6. Three first round keys derived from an example key with their corresponding Hamming weights
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Fig. 7. Information gained by the attacker reduces to quadruplets of Hamming weights of each column



Since all 24 permutations on the quadruplet can be considered as valid a priori4, the compu-
tational effort for considering every permutation on each column makes the key search computa-
tionally unfeasible. In order to reduce the exploration cost we use what we call a booking system.
During our attack we will book Hamming weights at fixed positions, either by choice when the
byte value is guessed, or by constraint when it is computed from a key byte relation. Once it is
booked a Hamming weight is no more available in its column until a backtrack releases it due to
a modification of the last guessed byte.

For instance, when we have to guess a value for k1,15 we first guess its Hamming weight
among the list {2,3,4,5} of available Hamming weights. If we guess that HW(k1,15) = 4, then the
guess on k1,15 itself ranges over all values having an Hamming weight equal to 4, and the list of
available Hamming weights for that column is now reduced to {2,3,5}. When another byte of the
same column will be also guessed (or computed) at a deeper step of the exploration process its
Hamming weight will necessarily have to belong to this reduced set. If at some point a backtrack
occurs on k1,15 then the Hamming weight value 4 is released and will be possibly available for
other bytes of this column.

We describe here two versions of this attack, one using information given by one acquisition,
which can take non-negligible time, and faster version which exploits faulty executions in order
to gather more information.

Basic Attack In a basic version of our attack we follow an equivalent exploration pattern than
the one used in [13] for a non-protected implementation. The only difference is that the guess
may have different possible Hamming weights. As explained above, before guessing a byte value
at a current position we have to guess which un-booked Hamming weight value will be used at
this position and book it while it’s corresponding values are exhausted. When we have guessed
bytes at enough positions to compute key bytes from others we check that the Hamming weight
of the computed values are available for their columns and we book these Hamming weights also.
If the Hamming weight of a computed byte is not available then this solution is not valid and we
backtrack from the previous guessed byte. Note that if a same Hamming weight value is available
n times in a column it can be booked n times too.

We simulated this attack by considering random keys and corresponding non-ordered quadru-
plets for each column. Table 3 presents the number of executions over 100 runs that ended before
a time limit which ranges from 30 minutes to 6 hours. As it can take undefined long time we
choose to interrupt a run if it takes more than 6 hours (27 % of cases). Note that the average
time for the non-interrupted executions is about 2 hours, so that average time over all executions
could possibly be quite larger.

Table 3. Results of non-faulted attack against random order counter-measure

Time Elapsed 6 30 min 6 1h 6 2h 6 3h 6 4h 6 5h 6 6h + 6h

# over 100 runs 6 25 41 55 66 71 73 27

Faulting Attack We describe here a more efficient version of the attack which uses fault injec-
tions in order to significantly reduce the execution time of the key search.

4 Due to possible Hamming weight duplicates, some columns may have a reduced number of possible permutations.



We assume that the attacker can induce a fault in a random byte of a chosen column, and
we take the example of the first column in the following explanations. The fault model assumes
a random modification of the faulted byte value.

The key observation used in this attack is that a differential induced at some key byte of
the first column propagates following a fixed pattern of active bytes. For example, if the fault
modifies the value of k0,0 then Figure 8 shows the positions of all active bytes in the first three
round keys5. Due to the shuffling counter-measure, the attacker does not know which of k0,0, k0,1,
k0,2 or k0,3 has been modified by the fault, but what is important is that the vertical relative
positions of the active bytes are fixed (given by the pattern of Figure 8) and known from the
attacker.
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. . .

Fig. 8. Part of the pattern induced by a fault on first byte of first column of K0

As in the basic attack described above, the attacker can exploit a non-faulted execution to
infer the reference quadruplets of Hamming weights for each column.

When exploiting a faulted execution, the attacker can compare, for each column, the possibly
modified quadruplet of Hamming weights with the original one. He is thus able to identify which
Hamming weights have been modified and thus concern active bytes. Let’s consider an example
where the faulted byte is k0,2 which value has been modified from Ox15 to OxB1. This example
case is depicted on Figure 9 where one can see all subsequent active bytes. Note that in this
example, some active bytes (k2,5, k2,9 and k2,13) have been modified while their Hamming weights
remained unchanged.

Due to the shuffling counter-measure, the attacker faces round keys where each column has
been shuffled as shown on Figure 10. Remind that the attacker does not know neither the byte
values nor the active bytes positions (colored in red on the figure), but only the quadruplets
of Hamming weights. Comparing for example the original ({2,4,6,7} on Figure 7) and faulted
({2,4,4,6} on Figure 10) quadruplets of column 4, he can infer that 7 is the Hamming weight
of the only active cell in this column. Similarly, he can also infer that the Hamming weight of
the only active cell in the column 7 is 5. Considering column 10, the attacker infers the partial
information that one of the two active bytes Hamming weights is equal to 1.

Even if the information retrieved about the Hamming weights of the active bytes of each
column is only partial, we can nevertheless exploit them in the key search algorithm. For example,
in the guess-compute-and-backtrack process, when one guesses that the value of e.g. k1,3 has an
Hamming weight of 7 (so that k1,3 would be an active byte), then in column 7 the active byte is
necessarily located in the bottom cell also (cf. the active bytes pattern of Figure 8), so that we
know that HW(k1,15) = 5.

As one can see, the principle of the faulting attack is to exploit in the key search phase
information about Hamming weights of active bytes (whose relative vertical positions is fixed)
which have been acquired by comparing Hamming weight quadruplets of faulted executions from

5 Obviously, the pattern is not limited to the three round keys, it extends on all 11 round keys.
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Fig. 9. details of fault effect without considering countermeasure ( Red/darkgrey Active, green/lightgrey Active
but remains unchanged)
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{3, 4, 4, 6} {2, 3, 5, 7} {2, 4, 4, 6} {3, 4, 4, 5} {3, 5, 5, 5} {2, 4, 4, 5}

{2, 4, 4, 5} {2, 4, 5, 6} {2, 2, 3, 4} {2, 3, 4, 4} {3, 4, 5, 5} {4, 5, 6, 7}

Fig. 10. attacker point of view of faulted execution, underlined values in sets are thoses detected by the attacker
as modified by the fault

original ones. While the detailed explanations are quite intricate, it is though possible to infer
more information from successive faulty executions to further reduce the execution time of the
key search.

We have simulated the faulting attack by exploiting as much information given by faults as
possible. We give in Table 4 average execution times of the key search phase as a function of the
number of exploited faulty executions. Note that even with only one faulty execution the average
attack time is dramatically reduced from several hours to only 20 minutes.

Table 4. Results of faulted attack against random order counter-measure

fault number time (min)

1 20
5 5
10 3
20 2
30 2

Remark 2. It is interesting to notice that if the fault did not occur in the first column then the
attack is still possible while possibly less efficient. Indeed the pattern of active bytes induced by
a fault in any column is always a subset of the pattern induced by a fault in the first column.
Consequently this shorter pattern has the same shape as the pattern starting from the first
column and can then be exploited in the same way but will provide information only for rightmost
columns. This allows to perform this attack even when the attacker do not have a precise control
on the timing of the fault.



4 Recommendations for Secure Implementations

Considering the problem of recovering a key by analysing the Hamming weights of the key bytes
computed during the key expansion process, several counter-measures are proposed in the seminal
contribution [8] among which the Boolean masking of the key expansion. We showed that two
versions of this countermeasure with 11 and 16 bytes of mask entropy are not sufficient to prevent
the key recovery when the attacker can precisely infer the Hamming weights. Our attacks on
the Boolean masking also apply if the expanded key is computed once for all and there is no
key expansion process computed by the device. In that case the Hamming weights can still be
measured, not while the key bytes are computed but rather when they are transferred into RAM
and/or used in the AddRoundKey function.

Using an hardware or an 16- or 32-bit AES implementation prevents our attacks which only
apply on 8-bit software implementations. On these later devices we recommend either to imple-
ment (if ever possible) a full 176-byte key masking where all key bytes are masked by independent
random values, or to combine a weaker masking with other countermeasures that reinforce its se-
curity. For example, combining one of the two masking methods considered in this paper together
with the column-wise shuffling should be sufficient to prevent the attacker from obtaining enough
exploitable information from the computation of the round keys itself. As for the manipulation
of the key bytes in the encryption process, the combination of masking and shuffling should also
be sufficient with the advantage here that the entropy of the shuffling is higher in this later case
since all 16 bytes may be shuffled together instead of per chunks of four bytes. Obviously, on top
of these fundamental countermeasures, any means to make it difficult to find the relevant points
of interest on the side-channel trace – e.g. random delays – or to interpret the leakage in terms
of Hamming weight – added signal noise – would add extra security to the AES implementation.

5 Conclusion

In this paper we have revisited a simple power analysis on the AES key expansion. While previous
works only apply on unprotected implementations, we have considered three different counter-
measures and presented efficient attacks in each scenario. In two Boolean masking cases (11-byte
and 16-byte mask entropy) our attacks recover the key in a matter of seconds when a few power
traces are exploited. In the case of a column-wise shuffling of the key expansion process, we have
devised an attack which takes several hours on average and proposed an improved version that
takes advantage of extra information provided by fault analysis so that the computation time is
reduced to a few minutes.

Our attacks assume that the attacker is able to obtain correct values of the Hamming weights
of the key bytes. As a future work it may be interesting to study how more difficult it would be
to cope with erroneous observations.
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A Generating Undistinguishable Keys Pairs

The core idea of our method comes from the observation that given a permutation τ of {0, . . . , 7}
and the byte transformation π : b = (b7 . . . b0) 7→ π(b) = (bτ(7) . . . bτ(0)) we have HW(π(b)) =
HW(b). Thus, a sufficient condition for K and K ′ to form a twin pair is that k′j = π(kj) for
all j = 0, . . . , 175. Our goal is to find K such that defining K ′ by k′0,i = π(k0,i), i = 0, . . . , 15
the sufficient condition propagates up to (near) the end of the expansion. As π is linear the
sufficient condition propagates well on all linear relations. The only difficult task is to ensure the
propagation of the condition also for non-linear relations. Denoting cr = {02}r−1 the constant
involved in the first non-linear relation at round r = 1, . . . , 10, and assuming that the sufficient
conditions hold up to round key Kr−1, they propagate to Kr provided that:

k′r,0 = π(kr,0)⇔ S(π(kr−1,13))⊕ cr = π(S(kr−1,13))⊕ π(cr) (5)

k′r,1 = π(kr,1)⇔ S(π(kr−1,14)) = π(S(kr−1,14)) (6)

k′r,2 = π(kr,2)⇔ S(π(kr−1,15)) = π(S(kr−1,15)) (7)

k′r,3 = π(kr,3)⇔ S(π(kr−1,12)) = π(S(kr−1,12)) (8)

The first task is to find a suitable bit permutation which maximizes the probability that these
conditions hold by chance. Interestingly the probability that any condition (6) to (8) holds is as
large as about 1

4 when τ permutes only 2 bits6. This is due to the fact that S(π(x)) = π(S(x))
as soon as π(x) = x and π(y) = y for y = S(x) where both fixed-point conditions hold with
probability 1

2 . Finding a twin pair only necessitates that all kr−1,i (r = 1, . . . 10 and i = 12, . . . , 15)
belong the following sets:

Ωr = {x : S(π(x))⊕ cr = π(S(x))⊕ π(cr)} (for i = 13)

Ω = {x : S(π(x)) = π(S(x))} (for i ∈ {12, 14, 15})

It is important that either Ω or Ω1 contains some value x which satisfies the condition without
being a fixed point for π otherwise K ′ would be equal to K. We have chosen τ which permutes
bits 0 and 6. Note that it is the only bit transposition having a non fixed point for Ω.

The second task is to generate many key candidates which verify by construction as many
sufficient conditions as possible. We devised a method that efficiently generates a large number
of candidates that systematically fulfill sufficient conditions for all r 6 5. First we make vary
the twelve key bytes k1,12+n, k2,12+n and k3,12+n (n = 0, . . . , 3) which are free except that they
must all belong to their respective relevant Ω, Ω2, Ω3 or Ω4 set. Due to the previous remark the
number of possible choices for these bytes is lower bounded by (256/4)12 = 272. We also make
use of the following relations among the key bytes

k4,12+n = k0,12+n ⊕ S(k3,12+(n+1) mod 4)⊕ c′4 (9)

k0,8+n = k0,12+n ⊕ S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k3,12+n (10)

k0,4+n = k0,8+n ⊕ S(k1,12+(n+1) mod 4)⊕ c′2 ⊕ k2,12+n ⊕ S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k3,12+n(11)

k0,0+n = k0,8+n ⊕ S(k0,12+(n+1) mod 4)⊕ c′1 ⊕ k1,12+n ⊕ S(k1,12+(n+1) mod 4)⊕ c′2 ⊕ k2,12+n(12)

where c′r is defined to be cr if n = 0 and 0 otherwise. The proofs of these relations are provided
in Appendix B. Considering equation (9), and knowing that k3,12...15 have been chosen in their
respective Ω set, one can choose values for k0,12+n that belong to its Ω set such that k4,12+n also
belongs to its own Ω set. For example, given k3,14 ∈ Ω one can find two values k0,13 and k4,13

6 This is also true for condition (5) for a similar reason.



which respectively belong to Ω1 and Ω5. There always exists several such choices that we have
tabulated though only one choice was sufficient in our implementation. Choosing k0,12+n this way
ensures that the sufficient conditions will be verified even for the non-linear relations involved in
the computation of K5.

The process to generate the key candidates resumes as follow: choose arbitrary value for
k1,12+n, k2,12+n and k3,12+n (n = 0, . . . , 3) that belong to their respective relevant Ω set, then
choose values for k0,12+n as explain above, and terminate the valuation of K = K0 by using
equations (10) to (12) successively. For each such key K we compute K ′ by applying the bit
transposition π to all its bytes. Our construction method ensures that k′r,i = π(kr,i) – and so
HW(k′r,i) = HW(kr,i) – for all r = 0, . . . , 5.

Generating sufficiently many key candidates, one can expect to find one for which the sufficient
conditions propagate by chance over the non-linear relations up to the end of the expansion.

After having found a first winning key pair – the one given in Sect. 2 – we explored in
its neighborhood and we surprisingly generated many other undistinguishable pairs much more
easily that it was to find the first one. For example, keeping the values of k1,13, k1,14, k2,12 and
k2,13 involved in the first key pair, we have been able to generate more than 23 millions of other
undistinguishable key pairs in a few days of computation. This tend to demonstrate that pairs of
keys having same Hamming weight signatures are far from being uniformly distributed, but we
have not studied this behavior in more detail.

B Proofs of Equations (9) to (12)

B.1 Equation (9)

Proof.

k4,12+n = k4,8+n ⊕ k3,12+n
= k4,4+n ⊕ k3,12+n ⊕ k3,8+n
= k4,0+n ⊕ k3,12+n ⊕ k3,8+n ⊕ k3,4+n
= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k3,12+n ⊕ k3,8+n ⊕ k3,4+n ⊕ k3,0+n
= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k3,4+n ⊕ k3,0+n ⊕ k2,12+n
= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k2,12+n ⊕ k2,4+n
= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k2,8+n ⊕ k2,4+n ⊕ k1,12+n
= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k1,12+n ⊕ k1,8+n
= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k0,12+n

ut



B.2 Equation (10)

Proof.

k3,12+n = k3,8+n ⊕ k2,12+n
= k3,4+n ⊕ k2,12+n ⊕ k2,8+n
= k3,0+n ⊕ k2,12+n ⊕ k2,8+n ⊕ k2,4+n
= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k2,12+n ⊕ k2,8+n ⊕ k2,4+n ⊕ k2,0+n
= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k2,4+n ⊕ k2,0+n ⊕ k1,12+n
= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k1,12+n ⊕ k1,4+n
= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k1,8+n ⊕ k1,4+n ⊕ k0,12+n
= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k0,12+n ⊕ k0,8+n

ut

B.3 Equation (11)

Proof.

k3,12+n = k3,8+n ⊕ k2,12+n
= k3,4+n ⊕ k2,12+n ⊕ k2,8+n
= k3,0+n ⊕ k2,12+n ⊕ k2,8+n ⊕ k2,4+n
= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k2,12+n ⊕ k2,8+n ⊕ k2,4+n ⊕ k2,0+n
= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k2,12+n ⊕ k2,0+n ⊕ k1,8+n
= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k2,12+n ⊕ S(k1,12+(n+1) mod 4)⊕ c′2 ⊕ k1,8+n ⊕ k1,0+n
= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k2,12+n ⊕ S(k1,12+(n+1) mod 4)⊕ c′2 ⊕ k1,4+n ⊕ k1,0+n ⊕ k0,8+n
= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k2,12+n ⊕ S(k1,12+(n+1) mod 4)⊕ c′2 ⊕ k0,8+n ⊕ k0,4+n

ut

B.4 Equation (12)

Proof.

k2,12+n = k2,8+n ⊕ k1,12+n
= k2,4+n ⊕ k1,12+n ⊕ k1,8+n
= k2,0+n ⊕ k1,12+n ⊕ k1,8+n ⊕ k1,4+n
= S(k1,12+(n+1) mod 4)⊕ c′2 ⊕ k1,12+n ⊕ k1,8+n ⊕ k1,4+n ⊕ k1,0+n
= S(k1,12+(n+1) mod 4)⊕ c′2 ⊕ k1,12+n ⊕ k1,0+n ⊕ k0,8+n
= S(k1,12+(n+1) mod 4)⊕ c′2 ⊕ k1,12+n ⊕ S(k0,12+(n+1) mod 4)⊕ c′1 ⊕ k0,8+n ⊕ k0,0+n

ut


