Efficient Power and Timing Side Channels for
Physical Unclonable Functions

Ulrich Rithrmair > *, Xiaolin Xu T *, Jan S6lter 2, Ahmed Mahmoud ©, Mehrdad
Majzoobi 1, Farinaz Koushanfar ¥, and Wayne Burleson |

© Technische Universitit Miinchen, 80333 Miinchen, Germany
T University of Massachusetts Amherst, Amherst, MA 01003, USA
Y Freie Universitiit Berlin, 14195 Berlin, Germany
 Rice University, Houston, TX 77005, USA

ruehrmair@in.tum.de, xiaolinx@umass.edu, jan_soelter@yahoo.com
ahmed.mahmoud@tum.de, m.majzoobi@gmail.com
fkl@rice.edu, burleson@umass.edu

Abstract. One part of the original PUF promise was their improved resilience
against physical attack methods, such as cloning, invasive techniques, and ar-
guably also side channels. In recent years, however, a number of effective phys-
ical attacks on PUFs have been developed [17, 18,20, 8,2]. This paper contin-
ues this line of research, and introduces the first power and timing side channels
(SCs) on PUFs, more specifically on Arbiter PUF variants. Concretely, we attack
so-called XOR Arbiter PUFs and Lightweight PUFs, which prior to our work
were considered the most secure members of the Arbiter PUF family [28, 30].
We show that both architectures can be tackled with polynomial complexity by a
combined SC and machine learning approach.

Our strategy is demonstrated in silicon on FPGAs, where we attack the above two
architectures for up to 16 XORs and 512 bits. For comparison, in earlier works
XOR-based Arbiter PUF designs with only up to 5 or 6 XORs and 64 or 128
bits had been tackled successfully. Designs with 8 XORs and 512 bits had been
explicitly recommended as secure for practical use [28, 30].

Together with recent modeling attacks [28, 30], our work shows that unless suit-
able design countermeasures are put in place, no remaining member of the Ar-
biter PUF family resists all currently known attacks. Our work thus motivates
research on countermeasures in Arbiter PUFs, or on the development of entirely
new Strong PUF designs with improved resilience.

Key words: Physical unclonable functions (PUFs), side-channel attacks, power
side channel, timing side channel, modeling attacks, machine learning, hardware
security

1 Introduction

One part of the original PUF promise was their improved resilience against many clas-
sical attack forms, in particular physical attacks. This included cloning, invasive tech-
niques, and arguably also side channels (SC). Regarding the latter, recall that Strong

* These two authors contributed equally.

PUF based identification schemes [22] do not require a standard key that is processed
bit by bit, a fact that arguably led to hopes about improved SC resilience within the
community.

Recent years have put these assumptions to the test, but sometimes with a negative
outcome. Let us start with non-physical attacks: Firstly, machine learning (ML) based
modeling attacks have proven a more efficient threat than originally assumed. When
the first of these attacks were put forward in 2004 [9], it was supposed that they could
be thwarted by adding simple non-linear elements to Arbiter PUF designs, for example
XOR gates or feed-forward loops. However, by improved ML algorithms, Rithrmair et
al. in 2010 and 2013 [28, 30] also tackled XOR-based Arbiter PUFs up to 64 or 128
bits and 5 XORs, and Feed-Forward Arbiter PUFs up to essentially arbitrary sizes. As
a second, non-physical attack form, PUF protocol attacks have been devised in recent
years. Since they are not in the focus of this work, we refer interested readers to the
literature on this topic [26, 25].

Also dedicated physical attacks on PUFs have been devised lately. For example,
the physical unclonability of PUFs, one of their core properties, has been investigated
more closely. It is obvious that complex three-dimensional objects like PUFs cannot be
cloned atom by atom by current fabrication technology. Generating a perfect clone thus
to date is infeasible. However, functional clones are easier to construct, i.e., PUFs that
merely agree with the original in their challenge-response behavior. In a breakthrough
effort, Helfmeier et al. [8] in 2013 were indeed able to functionally clone SRAM PUFs
by tuning the power-up states of SRAM cells. Soon after, invasive attacks on SRAM
PUFs have been presented by Nedospasov et al. [20] in 2013. The authors apply semi-
invasive, single-trace, backside readout of logic states to to obtain the responses of
SRAM PUPFs. This compromises any secret keys that would be derived from these re-
sponses.

Around the same time, first side-channel attacks on PUFs have been investigated.
In 2011, Merli et al. [17] demonstrated SC attacks on the error correcting (EC) module
of PUFs. Their attack is indirect in the sense that it does not target the PUF itself, but a
specific EC module of the PUF, working only for certain modules. Furthermore, Merli et
al. reported electromagnetic analyses on ring oscillator PUFs in two consecutive works
in 2011 and 2013 [18, 19]. Also in 2013, Delvaux et al. [2] exploited the instabilities of
Arbiter PUF responses as side channel, implementing an idea originally suggested by
Riihrmair et al. in [28]. While the work of Delvaux et al. is quite fascinating due to the
fact that it does not use any machine learning algorithms, it must be said that it performs
slightly worse than pure machine-learning based modeling without side channels [28,
30, 2].

We continue this line of research, and introduce in this paper the first power and
timing side channel attacks on PUFs. Our approach constitutes one of the first phys-
ical attacks on Strong PUFs [24,27,29] that can notably increase attack performance
in comparison with existing, non-physical methods, specifically with pure modeling
attacks [28, 30].

In greater detail, we devise power and timing SCs for XOR Arbiter PUFs and
Lightweight PUFs that provide the adversary with information about the cumulative
number of zeros and ones in the outputs of the k parallel Arbiter PUFs before the XOR

gate. We then adapt existing machine learning (ML) techniques to efficiently exploit this
information. This “hybrid” attack form can tackle XOR Arbiter PUFs and Lightweight
PUFs with a polynomial complexity in their number of XORs, bitlengths, and number of
required CRPs, while pure modeling attacks on these two PUFs have exponential com-
plexity [28,30]. We provide a full proof of concept on FPGAs, attacking XOR Arbiter
PUFs and Lightweight PUFs for up to 16 XORs and 512 bits. Comparably large sizes
of these two PUFs had hence never been realized before in silicon; in earlier works,
already XOR Arbiter PUFs with 8 XORs and 512 bits had been explicitly suggested as
secure [28, 30].

Organization of this Paper Section 2 provides the necessary background and methodol-
ogy. Sections 3 and 4 describe the design and implementation of our power and timing
side channels, respectively. Section 5 details our adaptation of logistic regression to in-
corporate SC information. Section 6 lists silicon results on FPGA implementations and
provides an asymptotic peformance analysis. We conclude the paper in Section 7.

2 Background, Methodology, and Definitions

Background on XOR Arbiter PUFs and Lightweight PUFs. Together with SRAM
PUFs, the Arbiter PUF family [7, 31] is arguably the best studied PUF design, and also
the most popular implementation of so-called “Strong PUFs” [24, 27]. Nevertheless, a
large number of its members have been attacked successfully by so-called modeling
attacks in recent works [28,30]. The currently only remaining Arbiter PUF variants
which partly resist modeling, since they cause exponential modeling efforts (i.e., expo-
nential training times of the ML algorithm), were so-called XOR Arbiter PUFs [9, 31]
and Lightweight PUFs [11].

In an XOR Arbiter PUF, k£ Arbiter PUFs are used in parallel, and the same, multi-bit
challenge is applied to all of them. The final, one-bit response is defined as the XOR of
all the parallel % outputs [9, 31]. In a Lightweight PUF [11, 28], again k Arbiter PUFs
are used in parallel, but different challenges C*, ..., C* are applied to them, all of
which are generated by some “input mapping” from a single, global challenge C' (see
[11] for the details of the mapping). The k outputs of the single Arbiter PUFs are used
(without error correction) as input to a postprocessing function, which XORs subsets
of them together in order to produce an m-bit output string (see again [11] for details).
From a machine learning and modeling perspective, the optimal bit security is achieved
if all of the k outputs are XORed to produce a single bit output [28,30]. Therefore
earlier works [28, 30] focused exactly on this case and on this special architecture of
the Lightweight PUF, and so do we in this paper. If nothing else, this evaluates the
maximally achievable bit security in a Lightweight PUF architecture. Using the same
Lightweight PUF variant as [28, 30] also allows a fair comparison with our results.

FPGA Implementations. We implemented the above XOR Arbiter PUFs and Light-
weight PUFs on Xilinx Spartan-6 FPGAs. In order to balance FPGA routing asym-
metries, a lookup table (LUT) based programmable delay line (PDL) has been imple-
mented [13, 10, 15]. This is the standard approach for realizing Arbiter PUFs on FPGAs,

and ensures a balanced output between zeros and ones in each single Arbiter PUF. For
each CRP, majority voting over five repeated measurements of the response to the same
challenge was performed in order to determine the final response. The challenges were
generated by an n-bit maximal-length linear feedback shift register (LFSR) with poly-
nomial f = 1+ 2! + 23 + 2% + 254,

Machine Learning Definitions and Computational Resources. Following [28,30], we
use the following definitions throughout the paper: The prediction error € is the ratio
of incorrect responses of the trained ML algorithm when evaluated on the test set. The
prediction rate is 1 — e. For all ML experiments throughout this paper, each test set con-
sisted of 10,000 randomly chosen CRPs. The term Nogrp (or simply “CRPs”) denotes
the number of CRPs employed in an attack, i.e., the size of the training set. We used
an Intel Xeon X5650 processor at 2.67GHz with 48 GB of RAM in all of our ML ex-
periments, having a value of a few thousand Euros. All computation times (= “training
times”) are calculated for one core of one processor of this hardware.

3 Power Side Channels on XOR-based Arbiter PUFs

3.1 Basic Idea of the Power Side Channel

Currently known pure modeling attacks on XOR-based Arbiter PUFs require training
times of the ML algorithm that are exponential in the number of XORs [28, 30]. This
makes it difficult to tackle XOR-based Arbiter PUFs with more than five or six single
parallel Arbiter PUFs, and with bitlengths longer than 128, by pure modeling attacks
[28,30]. XOR-based Arbiter PUF architectures are therefore the currently most secure
designs from the Arbiter PUF family. Our side-channel attacks now take a novel route:
They gain additional information from the physical implementation of XOR-based Ar-
biter PUFs, and use this information to improve the ML computation times (i.e., training
times) from exponential to polynomial.

One straightforward power side channel is to apply power (i.e., current) tracing to
determine the transition from zero to one of the latches (i.e., the arbiter elements) in the
single Arbiter PUFs. The power tracing is based on measuring the amount of current
drawn from the supply voltage during any latch transition to one. We implemented a
first SPICE simulation to validate this approach, and to verify the power consumption
of an arbiter circuit with different loading outputs. Only one latch (i.e., arbiter circuit) is
used in the simulation, but with three different outputs loading scenarios (i.e., floating
output, output connected to one gate, and output connected to four gates). Figure 1 illus-
trates the results, and shows the different amount of current drawn for the three different
output loading scenarios. The reason for having different values for the different load-
ings is that an additional amount of charges is required to charge the capacitance of each
gate. Hence, the amount of drawn charges, which is the integration of the current curve,
is linearly proportional with the number of loading gates. Taking this phenomenon into
consideration, the amount of charges normally drawn in case of a floating load should
be subtracted.

In XOR-based architectures with k parallel single Arbiter PUFs, the current that
is drawn in sum and altogether in principle tells the (cumulative) number of latches

200 1

180

Floating output

Driving One Gate ||

160 29

Driving four Gates

x10716 Columb

140

50

120

100

Ipps (UA)

20 20.05 20.1 20.15 20.2 20.25 20.3 20.35
Time (ns)

Fig. 1. The power tracking side-channel analysis for a latch that had a transition to 1, with dif-
ferent driving loads, in SPICE simulation. The inset is the amount of drawn charges, which is
calculated from the area under each curve. The amount of charges is linearly proportional with
the number of gates. The amount of charges normally drawn for a floating load should be sub-
tracted.

that are zero, and the (cumulative) number that are equal to one. Please note, however,
that it does not tell us which of the k parallel Arbiter PUFs had which output. If it
did, CRPs from every single Arbiter PUF could be collected, and every single Arbiter
PUF could be machine learned separately. As this is not possible, a more complicated
strategy is required, in particular a way to exploit the cumulative number of zeros and
ones beneficially in the ML process, as detailed in Section 5. But before we move on to
the details of the ML process, we discuss the exact implementation of the side channels
in this and the next section.

3.2 Practical Implementation of the Power Side Channel

Measurement Noise To further validate the practicality of our power SC, we had to
move beyond the simplifications of SPICE simulations, most notably the absence of
supply and measurement noise and real process variations. We extracted the power
trace of 30 sub-response patterns from Lightweight PUFs on FPGA (see Figure 2).
However, we found that the 30 power traces are difficult to be differentiated from each
other (as are their power consumptions). In other words, in practical implementations,
a straightforward identification of the desired power side channel information from the
measured power (current) traces appears infeasible.
There are two reasons for this problem:

Power Trace of 30 Responses
T T T |

0 10 20 30 40 50
Sampled Points

Fig. 2. Power trace of 30 different sub-responses, collected from FPGA, illustrating the difficulty
of differentiating them from each other.

1. In real silicon Arbiter and Lightweight PUFs, the final XOR function usually con-
sumes no more than 5% silicon resource of the whole design. Thus, it is difficult to
extract the power consumption of XOR function, which consumes much less power
compared with the whole circuits;

2. Unlike a simulated PUF, measuring real silicon PUF circuit is always impacted by
the noise from supply voltage and measurement, which plays a negative role in
extracting the desired power information.

To overcome this problem and maintain the feasibility of our power side channel,
we developed a new, statistical signal processing strategy.

Our main objective is to extract the subtle power consumption of XOR gates and
transform it into a recognizable format, which is correlated with the cumulative number
of one or zero sub-responses. Even though the extra power consumed by active XOR
gates is not directly extractable, it does really affect the whole power consumption.
Thus, it should change the probability distribution functions (PDF) of the measured
power leakage, if it can extract the probability distribution of leaked power informa-
tion, the cumulative of one sub-responses can be inferred. For this purpose, we apply
a “challenge-dependent responses estimation” method to calculate the PDF of every
power trace collection.

The “challenge-dependent responses estimation” is implemented by comparing the
power trace just before and after the generation of response to distinguish subtle changes.
In the experiment, we measure the power trace of a single PUF response for totally m
times, and record all of them in parallel. If denoting the generation time of the ith PUF
response R; as ¢;, we can then filter out the two adjacent sections of power trace (length
of which is Tibef °"¢ and Tiaf t°" just before and after time ¢;. Assume that Tibef ore =
T/ then we divide each time slice into n parts with the collected power trace (cur-
rent trace) data. Based on the divided current trace data, we can calculate the power
consumption of each n part before and after the generation of response R;.

By denoting power consumption of all the 2 % n parts of the ith PUF response under
the [th measurement (totally m measurements are did as described above, thus, [€

(1...m)) as P;;;f °"¢ and Pl‘g " respectively (j € (1...n)), two matrices including the
power consumption information of the ¢;;, response are obtained as:
before pbefore pbefore before
Py Py P ... P,

in
before pbefore pbefore before
plefore phefore phefore p

]\LbeforE — 2n (D
pijoe plifors piefore . pigfor
Plal;‘zer P{IQ;TT P{l{ier Pl(zézer
after pafter pafter after
ppafter _ Pyi ™ Py Py Py,)
i

P;rzlflter P;y;ter Ps,léter Pﬁi);tET
Based on the power trace processing above, we now denote the power information
of a single PUF response with two matrix: M /" and M?/**". Assuming that we
totally collect K response bits, then the power consumption matrix for all responses
can be described as (for brevity, “b” means before and “a” means after):

b ter b/a b/a b/a b/a
Mbefore/afte :(Ml/ My My My) 3)

Due to the existence of environmental and measurement noise, the m parallel seg-
mentations of measured power trace (such as P'e/o"e, phefore - ptefore in Equation
1, and Py, pgfter ... PA™" in Equation 2) consumption would build 7 PDF re-
spectively. Since we divide power trace slice into 2 parts (before and after), thus totally
2 xn PDF are generated for each response. As we discussed, though there is no directly
leaked power information that we can extract for the XOR function, it impacts the prob-
ability distribution of the whole power trace. To convert the PDF information into the
cumulative number of one and zero responses, we applied histograms method to de-
scribe the PDF, and then implement basic calculus computation to get the cumulative

distribution function (CDF):
before/after
Gyl eIt (@) = 37 PDF(X = 2;) = 3 pla)
z; <z xz;<z)
je(l.n)
Based on Equation.4, the original leaked power information can be transformed
as CDF. To filter out the difference between two power trace segments: before and

after time ¢;, and erase the impact of environmental and measurement noise, we then
calculate the mean-squared-error (MSE) following Equation 5:

MSE; = E[(C}(z) — C37*"(2)?], j € (1.n) (5)

then, all of the n MSEs are summed up for a final sub-response estimation: E;, which
reflects and amplifies the impact of active XOR gates on leaked power:

E; =Y MSE;, j € (1.n) (6)
j=1

With the proposed “challenge-dependent responses estimation” method, the power trace
of different challenge-dependent responses patterns are transformed into an estimated
value: “FE;”. Thus, we can deduce the pattern of CRPs and integrate them within our
proposed ML attacks.

Determining the Generation time of PUF Response In the previous paragraph, we
applied the “challenge-dependent responses estimation” method to extract the power
side channel information of active XOR gates, assuming that we know the generation
time of the ith PUF response R; as t;. However, one additional problem is that in
practice, t; is not a direct known parameter. In this last paragraph, we will now detail
how we overcame this final problem.
If we randomly set a ¢;_.qndom as the generation time of response R;, the power
information of a certain PUF response R; can be described as:
P = Pl Pl P 4 PR 4 P P O

i-noise 3 i-noise %

where P"/®

i-noise

denotes the environmental and measurement noise (as before, “b”

abbreviates before and “a” after t; ,.ondom here), Pi{)z stands for the power consumption
of “other circuitry”, again before and after ¢;_,.qyndom, While %?O r, denotes the similar
power information of XOR functional circuitry. Since based on the measurement, we
can roughly tell the range of a PUF response generation time, we would have several
choices of t;_qndom- To determine the exact generation time of each PUF responses,
we move the ¢; -q.ndom 10 the approximate time range, then we will get different power
side channel informative patterns.

Since the PUF circuitry are measured for multiple times, and under the same envi-
ronment, we can assume that for each response, we will have:

Pbefore ~ quter and ‘Pibj)ﬁo’r‘e ~ Rg:gzer (8)

i-noise i-noise

thus, if we measure the power trace of a single PUF response for multiple times, we
get:

before after __ before after _
Z]Di,noise - Z PLnoise ~0 and Z Pz',oc - Z Pi,oc ~0 €))
Based on this algorithm, it is clear that only when ¢; is set as the correct generation
time, the E; in Equation 6 is maximized.

4 Timing Side Channels on XOR-based Arbiter PUFs

As with our power side channel, the objective of the timing side channel is providing
additional information about the individual response bits (i.e., PUF output bits) even
though the response bits are XOR’ed together for providing the output. Assume that
k response bits {r1,...,7;} are XOR’ed to form a single output bit b,,:. (Note that
a k-input XOR shall consist of several stages of smaller XOR gates. For the sake of
demonstration, assume that the delay of the response bit r;, denoted by ¢,., follows a
certain order, say t,, < tp, - < tp,_, < tr.). Our timing side-channel approach
is based on a delay measurement circuit, which can be used to characterize the delay
length of different patterns of k response bits {71, ..., 7%}

4.1 Timing Characterization Method

Every ASIC manufactured chip undergoes a set of structural and functional tests which
measure/ evaluate the IC’s physical and logical properties respectively. Measuring the
delay of certain combinational paths in the circuit is a part of standard structural test-
ing. Since the internal combinational paths are typically inaccessible, the timings are
indirectly inferred from the FF outputs using clock sweeping. The FF values can be set
using a testing scan-chain while all the FFs are connected to the global chip clock. The
pertinent chip is referred to as Circuit Under Test (CUT). The frequency of this clock is
swept in a continuous monotonic fashion from a high to low value while the path under
measurement is toggled using the logic at the input FE. When the frequency is higher
than the path delay, the output FF does not have enough time to settle which is called a
“fail”. Once the frequency approaches the path delay, the output FF sets to the correct
value (from the initial reset dictated by the scan chain) which is the “pass” state. The
frequency at which this transition occurs denotes the path delay and this overall testing
method is called pass/fail timing test.

On our FPGA testbed, the pass/fail timing tests have to be implemented by recon-
figuration. We adopt the measurement circuitry from [14, 15] that is demonstrated in
Figure 3. Note that because of the timing uncertainty around the FF metastability point,
the toggle between the pass/fail states appears with a certain property. Thus, error den-
sity estimation followed by smoothing methods are used for inferring the exact toggle
point from a set of stochastic measurements.

To estimate the probability of error at a certain clock frequency, an error histogram
accumulator is realized using two counters. The first one is an error counter whose value
increments by one each time an error occurs. The second one counts the clock cycles;
after 2V clock cycles, this counter clears (resets) the error counter and then restarts
again, where IV is the binary counters’ size. The error counter value is stored in the
memory one clock cycle before it is reset. Now, the stored number of fails normalized
to N would yield the error probability value for each target frequency.

Binary Challenge Vgo
Launch Sample Capture |
Flip Flop Flip Flops ~ Flip Flops

. Circuit- o1,
Timing D under- D E el ILi

Challenge FF|S test D |FF|Q

i ‘r |

<>

Fig. 3. The timing signature extraction circuit.

Next, we linearly and continually sweep the input clock frequency: in Tsyeep SeC-
onds from f; = % to f, = ﬁ, where Ty < t, < T;. For each frequency sweep, a
separate set of registers count the number of clock pulses. We use this counter as an

accurate timer which records the frequency of the timing errors. This counter value is

retrieved every time the content of the error counter is written into memory. The system
described above can be configured and utilized for extracting the delays of any CUT
implemented on FPGA. We use this adaptation of pass/fail timing test to measure the
delay between the FF storing the challenge input, to the output of the PUF which shall
be stored in an output register. To prevent attacks, this output is measured after XOR-
ing the arbiter values. Note that the scanning for extracting delay values could also be
performed in parallel to reduce the characterization time [14, 15].

4.2 Characterization Accuracy

The resolution of the delay measurement, i.e., the measured delay’s accuracy, is a func-
tion of a few factors: (i) the clock noise and skew, (ii) the sweeping frequency resolu-
tion, and (iii) the number of pulses at each frequency. The output of the characterization
circuit is a binary zero/one (pass/fail) value. A real-valued output can be measured by
repeating several (same width) clock pulses to the circuitry and accumulating the num-
ber of ones at the output. The resulting value, when normalized, shows the probability
at which the timing errors occur for each input clock’s pulse width. The more the input
clock pulse is repeated, a higher sampling resolution and accuracy can be achieved.

For now assume that the clock pulse (of width T') is sent to the CUT for M times.
Because of clock skew and phase noise, the characterization circuitry receives a clock
pulse with width T.y; = T' + T}, where T} is the additive jitter. Suppose that T is
a random variable with a zero mean and symmetric distribution around its mean. The
output probability is a continuous and smooth function of T¢;; thus, approximating
the probability by averaging shall be an asymptotically unbiased estimator as M — oo.
Lastly, the minimum measurable timing is a function of the maximum clock speed at
which the FFs can be run (maximum clock frequency). During a linear frequency sweep,
a longer sweep time increases both items (ii) and (iii) and thus the characterization
accuracy.

4.3 Parameter Extraction

Thus far, we have described a system that measures the probability of timing errors
for various clock pulse widths. The error probability can be fully represented by a set
of few parameters; the parameters are directly related to the CUT delay and FF setup
and hold times. It can be shown that the probability of timing errors shall be written
as the sum of shifted Gaussian CDFs [14, 15]. The central limit theorem can determine
the Gaussian nature of the error probabilities which can be explained by Equation 10
showing the parameterized error probability function.

[¥]-1

fos(t)=1405 Y 11/ {Q(w)} (10)
1=1

(ex3
where Q(x):\/% j;o exp (7”72> and d; 1 > d;. To estimate the timing parameters, f

is fit to the set of measured data points (¢;,¢;), where e; is the error value recorded when
the pulse width is ¢;.

4.4 Side Channel Timing Analysis of XOR’ed Outputs

The pass/fail timing measurement above is able to estimate the delay of the overall PUF
path (after XOR’ing). As we sweep the clock, we eventually get to a stable regime, i.e.,
the regime where the overall output does not change any more. However, before getting
to this stable regime, there are clock periods for which only a few XOR inputs (i.e.,
response bits) change. Sweeping the clock frequency could yield the information about
the approximate timing of the XOR inputs: every time one of the inputs to the XOR
network, i.e., an arbiter output, changes, there will be a toggle. Even though it is not
possible to distinguish the response bit that has changed, it is possible to estimate the
number of flipping XOR inputs with a good probability. This number shall be vague if
the timings of two or more response bits coincide. Since the probability of such a co-
incidence is rather low, in most instances clock sweeping shall yield an approximation
of the number of flipped XOR inputs, i.e., the cumulative number of zeros and ones
among the single Arbiter PUF responses 71, . . ., 7.

5 Adapting Machine Learning Algorithms to Side Channel
Information

The question how (and if at all) SC information on the cumulative number of zeros and
ones can be efficiently exploited in PUF modeling turned out to be highly non-trivial.
Eventually, we found a gradient based optimization similar to the logistic regression
(LR) algorithm of [28, 30]. The following treatment assumes some familiarity with this
algorithm and with the work in [28, 30].

Let 7;(C) € {0,1} be the output of the i*" Arbiter PUF within a k-XOR Arbiter
PUF (or within a Lightweight PUF with k parallel Arbiter PUFs) to a challenge C'. The
side-channel information then yields the number n of individual Arbiter PUFs with out-
putone: n =), ;(C). It lies in contrast to the general setting of binary outputs in LR
on an interval scale. Therefore, instead of optimizing the binary class probabilities [28,
30], we rely on minimizing the squared error between a side-channel model f(w, C)
and the actual outputs n:

IMw)= > (f(w,C)—n)

(C,t)yem
The corresponding gradient
VIM,w) = > 2(f (w) —n) Vf(w) (11)
(C,ryem

is highly similar to the gradient in LR. We again applied the RProp update scheme (as
in [28, 30]) to find a solution @ with minimal error /.

Assuming the standard linear additive delay model [9, 6,28, 30], one obtains the
following model of the side-channel information:

fw,C) =3 O(w]®)).

Note that the model only depends on the direction, but not on the length ||w;|| of the
weight vectors. That is, any two solutions w; and cw;, « € R are equivalent. There-
fore we might substitute the Heaviside function by the differentiable logistic sigmoid
o(x) = (1 + e~®)~! to enable gradient based optimization. This is a reasonable sub-
stitution as lim |y |00 o(w? @) = O(w’ P) and, as noted above, a valid solution is
unaffected by scaling of w.

As this substitution makes the model differentiable, we obtain the following gradi-
ent to insert in Equation 11:

Vi(w;) = o(w] ®;)(1 - o(w] 8;))P;. 12)

This gradient of an individual Arbiter PUF’s weight vector w; depends only on the
value of the weight vector itself, being in strong contrast to the case without side-
channel information [28, 30]. The decoupling of individual Arbiter PUF updates thus
drastically simplifies the ML problem, provided that side-channel information is avail-
able.

In addition to the above new regression, we applied a two step optimization method-
ology: First we optimized the PUF model based on the above process and gradient, us-
ing the side-channel information, until a fraction of f = 0.95 percent of the final XOR
Arbiter output was correctly reproduced. Secondly, we further refined and optimized the
model with the “standard” LR algorithm applied in [28, 30] for 1000 iterations. This led
to very low error rates around 2% or below. For all experiments, we used hundred times
more CRPs than free parameters in the model, i.e.,

Neorp =~ 100 x bitlength x no. of XORs.

Note that the above equation merely describes a linear CRP consumption in the problem
parameters. This is in stark contrast to the exponentially growing complexities of pure
ML attacks on XOR Arbiter and Lightweight PUFs [28, 30].

While our approach in the first step of the above methodology mostly converged
to the global minimum, in a few cases it got stuck (i.e., the performance after 5000
iterations was worse than 5% remaining missclassifications). In this case, we restarted
the algorithm with a different random initialization of w.

6 Results and Asymptotic Performance Analysis

We applied our adapted ML methods (see Section 5) to CRP data and SC information
gathered from FPGAs (see Sections 2, 3, and 4), both for power and timing SCs. The
results are presented in Tables 1 and 2. The attacks perform extremely efficiently, as we
were able to successfully attack XOR Arbiter PUFs and Lightweight PUFs for up to 16
XORs and for bitlengths of up to 512 (timing SCs) and 128 (power SCs). No imple-
mentations of comparable sizes of these two PUFs in silicon had ever been considered
or reported before. Furthermore, pure modeling attacks thus far had only been able to
tackle the two PUFs for up 5 or 6 XORs and bitlength 64 [28, 30]. Both facts illustrate
the impact and reach of our new method.

Tables 1 and 2 already indicate that the CRP requirments and computation times
grow very mildly, with the same holding for the prediction errors. In order to quantify

No. of | Bit CRPs | Prediction Rate | Training Time | Predict. Rate | Training Time
XORs | Length | (x10%) | XOR Arb. PUF |XOR Arb.PUF| LW PUF LW PUF
64 26 98.5% 2 min 98.5% 1 min
3 128 51.6 97.5% 12 min 98.2% 9 min
256 103 97.7% 1:35 hrs 97.8% 1:00 hrs
512 205 97.4% 16:50 hrs 97.5% 3:30 hrs
64 39 98.1% 16.5 min 98.5% 2 min
12 128 774 97.4% 38.5 min 97.9% 24.1 min
256 154.5 97.1% 3.8 hrs 97.3% 1.75 hrs
512 308 96.92% 56.25 hrs 97.11% 9.55 hrs
64 52 98% 37 min 98% 7 min
16 128 103.2 97.5% 2 hrs 97.5% 51.7 min
256 206 97.3% 15.1 hrs 96.9% 4.8 hrs
512 410 96.5% 102 hrs 96.7% 20.2 hrs

Table 1. Effectiveness of #iming side-channel attacks on the XOR Arbiter PUF and Lightweight
PUF (LW PUF), all carried out on FPGA implementations.

No. of | Bit CRPs | Prediction Rate | Training Time | Predict. Rate | Training Time
XORs | Length | (x10%) | XOR Arb. PUF |XOR Arb.PUF| LW PUF LW PUF
3 64 26 98.1% 3 min 98.4% 1.25 min
128 51.6 98% 13 min 98.1% 9.25 min
12 64 39 98.3% 11 min 98.2% 3.5 min
128 77.4 97.3% 47 min 97.8% 25 min
16 64 52 98% 38 min 98% 6.5 min
128 103.2 97.5% 2:28 hrs 97.5% 46.5 min

Table 2. Effectiveness of power side-channel attacks on the XOR Arbiter PUF and Lightweight
PUF (LW PUF), all carried out on FPGA implementations.

this with yet more data points, we conducted comprehensive ML experiments on sim-
ulated CRPs and simulated SC data. The CRPs were generated by the linear additive
delay model (LADM), similarly as in earlier ML experiments [28, 30]. We executed
these simulated attacks on XOR Arbiter PUFs and Lightweight PUFs for 2, 3, ..., 16
XORs, and with 64, 128, 256 and 512 bits. This means that we treated 2 - 15 -4 = 120
different architectures in sum, investing hundreds of hours of computation time. The
generated data points are shown in Figure 4, and fully confirm the suspected mild, ac-
tually cubic growth. For those cases where we also had silicon data for comparison (see
Tables 1 and 2), the silicon and the simulated attacks performed very similarly, confirm-
ing both earlier conjectures [6, 28, 30] on the validity of the additive linear delay model,
as well as the accuracy of our side-channel measurements. The empirically estimated
computational complexity of our attacks is hence O(n?), or, in other words, low-degree
polynomial, in the problem size. Furthermore, as indicated already in Section 5, the
number of used/required CRPs is merely linear in the same parameter.

Two important aspect should not go unnoticed. Firstly, our power side channel is

10’

® 64 bit LW PUF
B 128 bit LW PUF
105 || A 256 bit LW PUF |
¥V 512 bit LW PUF
O 64 bit XOR Arb. PUF
o [| OO 128 bit XOR Arb. PUF
10" F A 256 bit XOR Arb. PUF S v 7/ E
V 512 bit XOR Arb. PUF VY
— , o .- ML
v e y=a
v 10° | |
£ A
=
10° b ,
10 b ; i
e
10! L@ .
102 103 10*

free parameters = bitlength x no. XORs

Fig. 4. The training times for our ML-algorithm on Lightweight PUFs (LW PUFs) and XOR
Arbiter PUFs on a logarithmic scale. They show that the computational complexity regarding
training times is cubic, i.e., O(z*).

more noisy than the timing side channel. This had the effect that we could only handle
bit lengths of up to 128 by use of the power SC. Improved, less noisy versions seem
possible, but also non-trivial, and are left to future work.

Secondly, in the presence of side-channel information, our ML algorithms perform
slightly faster on Lightweight PUFs than on XOR Arbiter PUF. Without side channels,
the converse effect has been observed [28, 30]. Intuitively, the challenge input mapping
of the Lightweight PUF creates a more diverse and stable information basis for the ML
algorithm, which leads to faster convergence. A full, rigorous mathematical analysis of
this effect will be conducted in future work.

7 Summary and Conclusions

In this paper, we introduced and implemented the first power and timing side channels
(SCs) on PUFs, more precisely on XOR Arbiter PUFs and Lightweight PUFs. These
two PUF designs were chosen by us due to their particular relevance: The Arbiter PUF
family is arguably the most studied electrical Strong PUF design, and said two PUFs are
the most secure representatives of this family according to recent work [28, 30]. Our two
SCs consisted of (i) power tracing of the arbiter element (i.e., the latch) in Arbiter PUFs,
and (ii) marking different response patterns with corresponding timing signatures. Both
SCs tell us the cumulative number of zeros and ones in the outputs of the k parallel

Arbiter PUFs within XOR-based Arbiter PUF variants, such as the XOR Arbiter PUF
or the Lightweight PUF. One main obstacle in exploiting the above SCs efficiently was
that the attacker does not learn which of the single Arbiter PUF outputs is zero or one.
This makes the cumulative information worthless at first sight. However, we were able
to devise adapted, tailor-made ML algorithms, which can exploit the information very
efficiently.

We carried out a full silicon proof of concept on FPGAs, attacking the two above
PUFs for up to 16 XORs and bitlengths of 512 bits (by timing SCs) and 128 bits (by
power SCs). Their smaller noise levels made timing SCs the yet more efficient tool,
even though improved future versions of the power side channels seem possible. Inter-
estingly, XOR-based Arbiter PUF variants had never even been implemented (left alone
attacked) for comparable sizes in the literature, since already versions with 8 XORs and
512 bits had been recommended as practically secure against known attacks in earlier
works [28,30]. This may illustrate the relevance and strength of our results. A close
asymptotic analysis on simulated CRP data furthemore showed that our attacks have
only cubic complexity. This is a drastic improvement over the exponential complexity
of state-of-the-art, pure modeling attacks [28, 30].

Our methods are the first physical attacks on Strong PUFs, i.e., on PUFs with many
CRPs, that can notably increase attack performance. Overall, they imply that as long as
no suitable design countermeasures are put in place, no currently existing architecture
from the Arbiter PUF family can withstand all known attacks: “Standard” Arbiter PUFs
as well as Feed-Forward Arbiter PUFs have been attacked by pure modeling attacks
with polynomial complexity [28, 30]; and XOR-based variants such as the XOR Arbiter
PUF and the Lightweight PUF are susceptible to the methods presented in this paper,
which have polynomial complexity, too.

We did not explicitly deal with design countermeasures in this paper for space rea-
sons. However, one conceivable strategy against power SCs could consist of using two
symmetric, inverted output signals with two latches. This construction could neutral-
ize and balance power consumption, regardless of the PUF’s output. Interestingly, this
could even be used to detect and stabilize output errors in Arbiter PUF variants, even
though we did not follow this route in in this paper. Countermeasure against our tim-
ing SCs would probably have to focus on the construction of an isochronous hardware.
Implementing such strategies is left to future, follow-up works.

We believe that the PUF attacks presented in this and other papers should be in-
terpreted in a balanced fashion. None of them “kills” the field in its entirety. In our
opinion, they are part of a natural consolidation process in the PUF area, similar to
the consolidation that classical security primitives have undergone already some time
ago. The occurence of this process could be seen as indication that the field is becom-
ing increasingly mature. One typical byproduct is the insight that certain aspects are
not as simple as originally believed, which may be disappointing at first sight. Overall,
however, a sound consolidation will be beneficial to the field, eventually creating more
research opportunities than it destroys. This paper could be seen as one (of many) steps
within this process.

Acknowledgements

The work at the University of Massachusetts Amherst was supported in part by SRC
task 1836.074, US NSF grants 0923313 and 0964641, and US DHHS grant 90TR0003/01.
The work at Rice University was supported in part by NSF CCF-1116858:SHR:Small,
NSF CNS-1059416:CI-ADDO-NEW: Trust-Hub, and ONR ONR N00014-11-1-0885
grants.

References

1. Christopher M. Bishop, Nasser M. Nasrabadi: Pattern recognition and machine learning.
Springer, New York, 2006.

2. Jeroen Delvaux, Ingrid Verbauwhede: Side channel modeling attacks on 65nm arbiter PUF's
exploiting CMOS device noise. HOST 2013.

3. Jeroen Delvaux, Ingrid Verbauwhede: Attacking PUF-Based Pattern Matching Key Genera-
tors via Helper Data Manipulation. IACR Cryptology ePrint Archive, Report 2013/566.

4. Jeroen Delvaux, Ingrid Verbauwhede: Key-recovery Attacks on Various RO PUF Construc-
tions via Helper Data Manipulation. IACR Cryptology ePrint Archive, Report 2013/610.

5. Jeroen Delvaux, Ingrid Verbauwhede: Fault Injection Modeling Attacks on 65nm Arbiter
and RO Sum PUFs via Environmental Changes. IACR Cryptology ePrint Archive, Report
2013/619.

6. Srinivas Devadas: Physical unclonable functions and secure processors. Invited talk, Work-
shop on Cryptographic Hardware and Embedded Systems (CHES 2009), September 2009.

7. Blaise Gassend, Dwaine Clarke, Marten van Dijk, Srinivas Devadas: Silicon physical random
functions. ACM Conference on Computer and Communications Security 2002: 148-160

8. Clemens Helfmeier, Dmitry Nedospasov, Christian Boit, Jean-Pierre Seifert: Cloning Physi-
cally Unclonable Functions. HOST 2013.

9. Daihyun Lim: Extracting Secret Keys from Integrated Circuits. MSc Thesis, MIT, 2004.

10. M. Majzoobi, F. Koushanfar and S. Devadas: FPGA PUF using programmable delay lines.
IEEE Workshop Information Forensics and Security (WIFS), 2010.

11. Mehrdad Majzoobi, Farinaz Koushanfar, Miodrag Potkonjak: Lightweight Secure PUFs. I1C-
CAD 2008: 607-673.

12. Mehrdad Majzoobi, Farinaz Koushanfar, Miodrag Potkonjak: Testing techniques for hard-
ware security. In Proceedings of the International Test Conference (ITC), pages 1-10, 2008.

13. M. Majzoobi, F. Koushanfar and M. Potkonjak: Techniques for Design and Implementation
of Secure Reconfigurable PUFs. ACM Trans. Reconfigurable Technology and Systems, vol.
2, no.1, 2009.

14. M. Majzoobi, E. Dyer, A. Elnably, F. Koushanfar: Rapid FPGA Characterization using Clock
Synthesis and Signal Sparsity”, International Test Conference (ITC). pp. 1-10, 2010.

15. M. Majzoobi, F. Koushanfar: Time-Bounded Authentication of FPGAs. IEEE Transactions
on Information Forensics and Security (TIFS), vol. 6, issue 3, pp. 1123-1135, 2011.

16. M. Rostami, M. Majzoobi, F. Koushanfar, D. Wallach, S. Devadas: Robust and Reverse-
Engineering Resilient PUF Authentication and Key-Exchange by Substring Matching. IEEE
Transactions on Emerging Topics in Computing, 2014.

17. Dominik Merli, Dieter Schuster, Frederic Stumpf und Georg Sigl: Side-Channel Analysis of
PUFs and Fuzzy Extractors. TRUST 2011.

18. Dominik Merli, Dieter Schuster, Frederic Stumpf, Georg Sigl: Semi-invasive EM attack on
FPGA RO PUFs and countermeasures. ACM Workshop on Embedded Systems Security
(WESS’11), 2011.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Dominik Merli, Johann Heyszl, B. Heinz, Dieter Schuster, Frederic Stumpf, Georg Sigl:
Localized electromagnetic analysis of RO PUFs. HOST 2013.

Dmitry Nedospasov, Clemens Helfmeier, Jean-Pierre Seifert, Christian Boit: Invasive PUF
Analysis. Fault Diagnonsis and Tolerance in Cryptography (FDTC’13), 2013.

Ravikanth Pappu: Physical One-Way Functions. PhD Thesis, Massachusetts Institute of
Technology, 2001.

Ravikanth Pappu, Ben Recht, Jason Taylor, Neil Gershenfeld: Physical One-Way Functions,
Science, vol. 297, pp. 2026-2030, 20 September 2002.

M. Riedmiller, H. Braun: A direct adaptive method for faster backpropagation learning: The
RPROP algorithm. IEEE international conference on neural networks, pp. 586-591, 1993.
Ulrich Riithrmair, Srinivas Devadas, Farinaz Koushanfar: Security based on Physical Unclon-
ability and Disorder. In M. Tehranipoor and C. Wang (Editors): “Introduction to Hardware
Security and Trust”. Springer, 2011.

Ulrich Rithrmair, Marten van Dijk: Practical Security Analysis of PUF-based Two-Player
Protocols. CHES 2012.

Ulrich Rithrmair, Marten van Dijk: PUFs in Security Protocols: Attack Models and Security
Evaluations. IEEE Symposium on Security and Privacy (Oakland’13), 2013.

U. Riihrmair, D.E. Holcomb: PUFs at a glance. DATE 2014, pp. 1-6, 2014.

Ulrich Riithrmair, Frank Sehnke, Jan Solter, Gideon Dror, Srinivas Devadas, Jiirgen Schmid-
huber: Modeling Attacks on Physical Unclonable Functions. ACM Conference on Computer
and Communications Security, 2010.

Ulrich Riihrmair, Jan Solter, Frank Sehnke: On the Foundations of Physical Unclonable
Functions. Cryptology e-Print Archive, June 2009.

Ulrich Rithrmair, Jan Solter, Frank Sehnke, Xiaolin Xu, Ahmed Mahmoud, Vera Stoyanova,
Gideon Dror, Jiirgen Schmidhuber, Wayne Burleson, Srinivas Devadas: PUF Modeling At-
tacks on Simulated and Silicon Data. IEEE Transactions on Information Forensics and Se-
curity (IEEE T-IFS), 2013.

G. Edward Suh, Srinivas Devadas: Physical Unclonable Functions for Device Authentication
and Secret Key Generation. DAC 2007: 9-14

