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Abstract. The use of constraint solvers, such as SAT- or Pseudo-Boolean-
solvers, allows the extraction of the secret key from one or two side-
channel traces. However, to use such a solver the cipher must be repre-
sented at bit-level. For byte-oriented ciphers this produces very large and
unwieldy instances, leading to unpredictable, and often very long, run
times. In this paper we describe a specialized byte-oriented constraint
solver for side channel cryptanalysis. The user only needs to supply code
snippets for the native operations of the cipher, arranged in a flow graph
that models the dependence between the side channel leaks. Our frame-
work uses a soft decision mechanism which overcomes realistic measure-
ment noise and decoder classification errors, through a novel method for
reconciling multiple probability distributions. On the DPA v4 contest
dataset our framework is able to extract the correct key from one or two
power traces in under 9 seconds with a success rate of over 79%.
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1 Introduction

In a constraint-based side-channel attack, the attacker is provided with a device
under test (DUT) which performs a cryptographic operation (e.g., encryption).
While performing this operation the device emits a data dependent side-channel
leakage such as power consumption trace. As a result of the data dependence, a
certain number of leaks are modulated into the trace together with some noise.
In order to recover the secret key from a power trace the attacker performs the
following steps:

Profiling: The DUT is analyzed in order to identify the position of the leaking
operations in the traces, for instance by using classical side-channel attacks like
CPA [4]. Then a decoding process is devised, that maps between a single power
trace and a vector of leaks. A common output of the decoder is the Hamming
weight of the processed data as in [22], but many other decoders are possible.
An effective profiling method is a template attack, which was introduced in [5].
Profiling is an offline activity.



Decoding: After the profiling phase, the attacker is provided with a small
number of power traces (typically, a single trace). The decoding process is applied
to the power trace, and a vector of leaks is recovered. This vector of leaks may
contain some errors, e.g., due to the effect of noise.

Solving: The leak vector, together with a description of the algorithm im-
plemented in the DUT, and additional auxiliary information, is converted to a
representation that is suitable to a constraint solver: e.g., a SAT-solver [21,22,28]
or a Pseudo-Boolean solver [17,18]. The solver solves the problem instance, out-
putting the best candidates satisfying the constraints. However, previously used
solvers require a bit-level representation which creates several challenges. In this
paper we suggest a new solver which uses a byte-level representation.

Related work: Side channel cryptanalysis was first suggested in [12] (cf. [13]).
Template attacks were introduced in [5] and further explored in papers such
as [24,20,7]. Algebraic side-channel attacks were introduced by Renauld et al.
in [21,22], and first applied to the block ciphers PRESENT [3] and AES [15].
These works showed how keys can be recovered from a single measurement trace
of these algorithms implemented in an 8-bit microcontroller, provided that the
attacker can identify the Hamming weights of several intermediate computations
during the encryption process. Already in these papers, it was observed that
noise was the main limiting factor for algebraic attacks. To mitigate this issue,
a heuristic solution was introduced in [22], and further elaborated in [28,14].
The main idea was to adapt the leakage model in order to trade some loss
of information for more robustness, for example by grouping hard-to-distinguish
Hamming weight values together into sets. An alternative proposal [17] suggested
to include the imprecise Hamming weights in the equation set, and to deal with
these imprecisions via the solver.

Despite their success, using generic SAT solvers or Pseudo-Boolean solvers
still leaves room for improvement. The difficulties stem from the fact that in order
to use them, the cipher representation has to be reduced to the bit-level. For
byte-oriented ciphers this produces very large and complex instances, that are
challenging to construct and debug. [16] notes that an AES equations instance
may reach a size of 2.3 MB, depending on the methodology used to construct
the equations. However, the most problematic aspect of bit-level solvers is their
unpredictable, and often very long, run times. In [18] the authors report that run
times vary over an order of magnitude between 8.2 hours to more than 143 hours
on instances belonging to the same data set. The solver behavior is very sensitive
to technical representation issues, and is controlled by a myriad of configuration
parameters that are unrelated to the cryptographic task. Algebraic side-channel
attacks which use local calculations were also considered in [26] and in [8].

Contribution: The focus of this work is a new constraint solver. Our solver
embeds a model of the encryption process, accepts the known plain-text, and
the output of the decoder, and outputs the highest probability keys with an



estimation of their likelihood. However, unlike the algebraic attacks of [22] and
[18], our constraint solver is not a general purpose Pseudo-Boolean or SAT-solver.

We wrote a special solver that is targeted at the unique types of constraints
that occur in a side channel cryptanalysis of byte-oriented ciphers. Our solver is
fundamentally probabilistic. It tracks the likelihoods of values in the secret key
bytes, and updates them step by step through the encryption process, utilizing
the probability distributions output by the decoder. A key ingredient in our
framework is a novel method for reconciling multiple probability distributions
for the same variable.

Applying our framework to a byte-oriented cipher with available side-channel
information is quite natural and does not involve complex representation con-
versions into bit-level equations: the user needs to supply code snippets for the
native byte-level operations of the cipher, arranged in a flow graph that em-
beds the functional dependence between the side channel leaks. Our framework
uses a soft decision mechanism which overcomes realistic measurement noise and
decoder classification errors.

As in previous solver-based attacks, our framework requires a decoder. The
decoder accepts a single power trace, and outputs estimates of multiple inter-
mediate values that are computed during the encryption and leaked by the side-
channel. An estimate of a leaked value X in our framework is not a single “hard
decision” value. Rather, as in [18], it is a probability distribution over the pos-
sible values of X. The decoder is usually constructed as a template decoder [5].
As in [18] we do not assume a Hamming-weight model for the leaked values -
the decoder may output any probability distribution over the leak values. Note
further that we do not impose a particular noise model on the decoder - e.g., it
is not required to output only a single Hamming-weight value (or set of k values,
as done by [28] and [18]).

We tested our framework on the DPA v4 contest dataset [2]. On this dataset,
our framework is able to extract the correct key from one or two power traces
with predictable and very short run times. Our results show a success rate of over
79% using just two measurements and typical run times are under 9 seconds.
The source code can be downloaded from [27].

Organization: In the next section we introduce the probabilistic tools used in
our solver. In Section 3 we describe the construction of the solver’s flow graph.
In Section 4 we show how we applied our method to AES. Section 5 includes the
performance evaluation we conducted using the DPAv4 traces, and we conclude
with Section 6.

2 Probabilistic Methodology

2.1 The Conflation Operator

A central part of our framework is a novel method of reconciling probability
distributions. The basic scenario is as follows. Suppose we are trying to measure



an unknown quantity X via two experiments. The outcome of the first experi-
ment E1 is a probability distribution PE1 such that PE1(X = i) is the likelihood
that X has value i. The second experiment E2 measures the value of X using a
different method, providing a second distribution PE2 . We now wish to reconcile
the results of these two experiments into a combined distribution P̂ . Intuitively,
we want P̂ to “strengthen” values on which E1 and E2 agree, and “weaken”
values on which E1 and E2 differ. Thus, we want a probabilistic analogue to
the logical “AND” operator. At one extreme, if PE1(X = i) = 0 (the value i is
impossible according to E1) then we want P̂ (X = i) = 0. At another extreme,
if PE2(X = i) = 1

N for all N possible values of X (E2 provides no information
about X) then we want P̂ = PE1 .

This general question was tackled by [9,10,11,6]. In particular, Hill [9] sug-
gests a method called conflation, which is essentially the point-product of the
distributions. In the case of two experiments E1,E2 the conflated probability
P̂ = &(PE1 , PE2) = (p̂1, .., p̂N ) is defined as

p̂i = P̂ (X = i) = 1
γ · PE1(X = i) · PE2(X = i)

where γ is a normalization factor to ensure
∑N
i=1 p̂n = 1. And in general, if

multiple distributions P 1, .., PT are given then the conflated distribution is the
normalized point product of all T distributions: P̂ = &(P 1, .., PT ) = (p̂1, .., p̂N )
such that p̂i = 1

γ

∏T
t=1 p

t
i

Hill [9] thoroughly analyzes the properties of the conflation operator. The
paper shows that conflation is the unique probability distribution that minimizes
the loss of Shannon Information. Further, conflation automatically gives more
weight to more accurate experiments with smaller standard deviation. Finally,
as desired, conflation with the uniform distribution is an identity transformation
(i.e., it is indifferent to experiments with no information), and if P t(X = i) = 0
for some i then P̂ (X = i) = 0 regardless of all other experiments. As we shall
see, using conflation as the main probabilistic reconciliation method is extremely
effective in our solver.

2.2 Conflating Probabilities of Single-Input Computation

In a byte-oriented cipher, many steps are transformations operating on a single
byte. E.g., an XOR of a key byte X and a (known) plaintext byte is such a
transformation. Similarly an SBox operation takes a single input X and pro-
duces f(X). Suppose a template-based side channel oracle E1 exists, that re-
turns a probability distribution PE1 of the values of X, and a second oracle
E2 returns a probability distribution PE2 of the values of f(X). Assuming the
transformation f(X) is deterministic and 1-1, then PE1(X = a) should agree
with PE2(f(X) = f(a)). Thus, we have two experiments measuring the value of
f(X): one is E2, and the other is a permutation of the distribution E1. Combin-
ing the experiment results via conflation gives us a more accurate distribution
of f(X) - and, equivalently, of values of X. Therefore, the reconciled probability



for a single-input computation is defined to be:

P̂ (X = a) = 1
γPE1(X = a) · PE2(f(X) = f(a)) (1)

2.3 Conflating Probabilities of Dual-Input Computations

Suppose we have a function f of two independent byte values that outputs
a byte: f(X,Y ) = Z. We have oracles providing the probability distributions
PX , PY and PZ for X,Y, Z respectively, and we wish to reconcile them. We first
calculate the distribution Pf of f(X,Y ) based on PX , PY : assuming X and Y
are independent we get Pf (c) = P (f(X,Y ) = c) =

∑
k,l:f(k,l)=c PX(k) · PY (l).

Now Pf and PZ are distributions from two experiments estimating the same
value Z, which we can conflate as before: P̂ = &(Pf , PZ) so P̂ (c) = Pf (c) ·
PZ(c) · 1

γ (for some normalization constant γ). However, we want to assign the
reconciled probabilities P̂ () to the inputs X and Y . Specifically, we want to split
the probability P̂ (c) among the pairs (X = a, Y = b) for which f(a, b) = c
such that each pair will get its weighted share of P̂ (c). Assume as before that
c = f(a, b), then the weighted split is:

P̂ (X = a, Y = b) = P̂ (c) · PX (a)·PY (b)∑
k,l:f(k,l)=c

PX (k)·PY (l)
= P̂ (c) · PX (a)·PY (b)

Pf (c) =
1
γPf (c)PZ(c) · PX (a)·PY (b)

Pf (c) = 1
γPX(a)PY (b)PZ(c)

(2)

Thus we arrive at the following reconciled probability for the pair X = a, Y = b:

P̂ (X = a, Y = b) = 1
γPX(a)PY (b)PZ(f(a, b)) (3)

3 Building Blocks

Our constraint model is a directed graph which describes the flow of information
in the encryption process, as it affects the side channel leaks. The direction of
the graph is from the unknown input bytes (the key in our case) to the output
bytes (the ciphertext or intermediate values). Each part of the graph represents
one of the following three constraint types: single-input constraint, dual-input
constraint or data-redundancy constraint. There are two types of nodes in the
graph:

1. Registry nodes - used to store possible values of intermediate values and
their corresponding probabilities.

2. Compute nodes - used to connect registry nodes containing possible input
values to registry nodes which should contain possible output values. Each
compute node contains a code snippet implementing some step of the cipher.



Fig. 1: Illustration of three types of constraints: a) single-input constraint, b)
dual-input constraint, c) data-redundancy constraint

3.1 Single-Input Computation Constraint

Suppose one of the steps of the cipher is a single-input byte function f(X). Sup-
pose we have two oracles, Ein, Eout providing the probability distributions of X
and f(X), respectively. Let αinbn

= PEin(X = bn), and let αoutf(bn) = PEout(f(X) =
f(bn)). These are the estimated probabilities of the input and output values given
by the side channel information.

For a single input computation we define two registries: the Input-Registry
contains the values {(bn, αinbn

)}, and theOutput-Registry contains the post-computation
probabilities {(vn, αvn

)} s.t P (f(X) = vn) = αoutvn
.

We connect the input registry to the output registry via the Compute-f node
(see Figure 1a), which contains a code snippet. The Compute-f node receives
the tuples {(bn, αinbn

)} from the Input-Registry, computes the function f for each
tuple, and for every value bn outputs the tuple (bn, αinbn

, f(bn)) to the Output
Registry. Upon receiving the results from the compute function, the Output-
Registry conflates αin, αout as in Section 2.2: α̂n = 1

γP (X = bn) · P (f(X) =
f(bn)) = αinbn

·αoutf(bn). After the computation is done the Output-Registry contains
tuples of the form (bn, f(bn), α̂n).

3.2 Dual-Input Computation Constraint

Suppose a step in the cipher is a dual input byte-function f(X,Y ) such as an
XOR of two intermediate values, and that side-channel information is available
for f(X,Y ). In our constraint model we represent such a computation by two
input registries entering a single compute node which includes the relevant code
snippet (see Figure 1b). The compute node has to take into account all possible
input combinations {bXn } × {bYn }. For every possible combination (bXn′ , bYn′′) the
compute node outputs the tuple (bXn′ , bYn′′ , α

in,X
n′ , αin,Yn′′ , f(bXn′ , bYn′′)). The output

registry now needs to compute the conflated probability for the combination
(bXn′ , bYn′′ , f(bXn′ , bYn′′)). As described in Section 2.3, the conflated probability in
the output registry is computed by



α̂n′,n′′ = 1
γ · α

in,X
n · αin,Yn · P (f = f(bXn′ , bYn′′))

for a normalization factor γ.

3.3 Pruning Records From a Registry

The output size of a dual-input compute node is the product of sizes of the
input registries. In some cases storing this much information is not feasible. For
example, when both input registries contain 2562 records the output registry will
have to hold 2564 records, which is prohibitive. To avoid such a combinatorial
explosion we can prune some of the records in the input registries by discarding
all records with probabilities below a certain threshold t. Tuning the threshold is
a trade off: selecting a tight threshold keeps combinatorial complexity low, but
might cause pruning of records derived from the correct key bytes.

3.4 Data-Redundancy Constraint

We now deal with the case where some intermediate value X is used as input
to more than one function. In our graph notation it means that some registry
R0 was used as input to two or more compute nodes, C1, C2. Denote the output
registries of these compute nodes R1,out, R2,out. Each record in these registries
contains the relevant value of X for that record. Enforcing a data-redundancy
constraint over the value of X means that the records from R1,out, R2,out should
agree with each other probabilistically. For this purpose we introduce a special
compute node which we call an intersection node (see Figure 1c). The records
in R1,out, R2,out are observations on the same value of X thus we can conflate
their probabilities as before. Note that unlike the single-input or dual-input
constraints, for an intersection node we do not require a side channel oracle.
Note also that if the input-probability of some value is 0 then the conflated
probability for that value remains 0. This means that if the registries entering
an intersection node were pruned, the intersection node’s output-registry only
includes combinations of the un-pruned values.

3.5 Constructing a Solver for a Cipher

The structure of the solver’s flow graph follows the information flow in the cipher,
as reflected by the side channel leaks. At the beginning of the flow are the first
unknown values - the key bytes. We now follow the cipher’s first computation
which is done on those key bytes, and construct the compute nodes which perform
that computation with their code snippet. The compute node is connected to its
input and output registries as in Section 3.1. We continue to chain single-input
constraints until we reach a dual-input computation. We then use the dual-input
constraint (Section 3.2) to describe this flow of information in the algorithm. In
the registries used as inputs for a dual-input constraint we may wish to impose
pruning to prevent a combinatorial explosion in the output registry. Note that
each record in a registry contains all intermediate values used in the computation



for the specific value in the record. Thus, different registries in the same layer
may share some intermediate values. In that case, it is useful to combine these
registries via a data-redundancy constraint. At the end of the flow we have
registries containing values of intermediate computations. Each record has its
assigned conflated probability and contains the key bytes values which led to
this intermediate value, and the framework automatically does everything else.

Thus we see that in order to instantiate the framework for a specific cipher,
we need to construct a flow graph that mimics the flow of data through the
cipher operations, with registries per side-channel leak. We need to supply code
fragments for the compute nodes, select appropriate registries to prune and the
pruning thresholds, and insert intersection nodes when possible.

4 Designing a Constraint Solver for AES

To evaluate our framework we built a constraint solver based on the side channel
information from the first round of AES encryption, in a software implementation
of the cipher. Our decoder extracted side channel information on:

1. 16 bytes of the output of AddRoundKey computation
2. 16 bytes of the output of SubBytes
3. 52 bytes from MixColumns computation:

– 16 bytes of an XOR of 2 bytes, 4 in each column
– 16 bytes of output of xtime computations , 4 in each column
– 4 bytes of XOR of 4 bytes, 1 in each column
– 16 bytes of output of the MixColumns computations

In total we have 84 intermediate byte values. For each leaked byte our decoder
(see Section 5.2) produces a probability distribution over the 256 possible values.

Note that in the first round of AES the main diffusion operation is done by
the MixColumns computation. MixColumns operates on groups of four bytes,
thus a change of a single bit in the secret key can not affect more than four
bytes of output (in the first round). This leads our constraint model to be a
graph that can be divided into four connected components. Each connected
component describes a constraint model for a single column. Each of the four
components reflects the byte reordering done by the ShiftRows sub-rounds. This
observation means that our solver actually works independently on each set of
4 key bytes.

4.1 Initialization and Single Input Computations

At the beginning of the computation for every key byte we consider all 256 values
as possible. Since initially we do not have side channel information on the key
bytes the probability for every value is 1/256. The AddRoundKey and SubBytes
sub-rounds are single input computation. Note that no computation is done in



Fig. 2: Visual representation of the constraint solver tracking four key bytes up
to the X4 computation in AES. Registry nodes are drawn as rectangles and
compute nodes as ellipses. Abbreviations: AK-AddKey, SB-SubBytes

the ShiftRows sub-round, thus it does not leak additional information and is not
used in our constraint model. The left side of Figure 2 illustrates the single-input
constraints for four key bytes.

4.2 Basic Computation of MixColumns

A common implementation of the MixColumns computation in software on an
8-bit microcontroller (cf. [23]) is to compute the following intermediate values:

1. The XOR value of four column bytes:

x4← b0 ⊕ b1 ⊕ b2 ⊕ b3

2. The XOR values of adjacent bytes:

x20 ← b0 ⊕ b1
x21 ← b1 ⊕ b2
x22 ← b2 ⊕ b3
x23 ← b3 ⊕ b0

3. The multiplication by 2 in Galois field F28 (“xtime”) of the four values above:

xti ← 2 · x2i |F28 for 0 ≤ i ≤ 3

Constructing the x2i constraints is done by using 4 dual-input compute nodes
followed by a single-input constraint, for xtime (see Figure 2).

4.3 Pruning

Until the x2i registry, the AddKey and SubBytes registries contain 256 records
for each of the 256 possible key bytes. Thus, the x2i registries and hence xti
registries contain 2562 records each. If we naively use the xti registries as input
for a dual-input constraint X4 to compute the XOR of four values - it means
that x4 registry will contain 2564 records, which is prohibitive. We note that
by the time we reach the xti registry the probability assigned to each record is
conflated over 6 side channel leaks: 2 AddRoundKey bytes, 2 SubBytes bytes,



a single x2 byte and a single xtime byte. Therefore, the conflated probabilities
of incorrect key bytes have dropped significantly. Hence, this is a good spot in
our constraint model to perform pruning. We chose to prune all records with
probability of less than t = 10−25. This specific value keeps the correct records
for 92% of the 600 traces we experimented with. On the other hand, this t value
leaves no more that 500 records (out of 65536) in each xti registry, leading to
low memory consumption and fast running times

4.4 Computing the Output of MixColumns

Each record in the xti registry contains all the values involved in the computation
path. That is: 2 plaintext bytes, 2 key bytes, 2 AddRoundKey bytes, 2 SubBytes
output values, 1 value of XOR of 2 bytes and 1 value of the xtime operation on
that XOR output. Here we can make a useful observation: We have leaks for x4
and also for x20, x21, x22, x23. But these leaked values need to be self-consistent
regardless of how the implementation actually computes x4:

x4I = x20 ⊕ x22
x4II = x21 ⊕ x23

Thus we can compute (and conflate) the values of x4 in two ways. Since the xti
registries contain the corresponding values of x2i we can use these registries as
inputs for two parallel dual-input Compute-x4 nodes. Figure 2 illustrates the
constraint solver up to the x4I , x4II registries.

Assuming we did not prune the records of the correct combination of key
bytes, the quartet of the correct key bytes should appear in records of both
x4I and x4II registries. Thus we now use a data-redundancy constraint (recall
Section 3.4) to intersect records according to the 4 key bytes. The output of
the data-redundancy node is inserted into a registry called x4. Each record of
that registry contains all the byte values used for that specific record, that is:
4 plaintext bytes, 4 key bytes, 4 SubBytes outputs, 4 outputs of XOR of 2, 4
outputs of xtime computations, and 1 value of XOR of 4.

Each record in the x4 registry contains all the information required to com-
pute the 4 output bytes of MixColumns. Since we use a single record to compute
a tuple of 4 output bytes - we consider this computation as a single-input com-
putation. As before let {αin} denote the conflated probabilities of records in
x4 registry. Since MixColumns has 4 output bytes - we have four leaks to con-
flate with, representing the separate side channel information on the four output
bytes: {αout,0}, {αout,1}, {αout,2}, {αout,3}. The conflated probability is given
by: α̂ = αin ·αout,0 ·αout,1 ·αout,2 ·αout,3. α̂ is then normalized so that all prob-
abilities sum to 1. The final result is the MC registry. Figure 3 illustrates the
constraint solver from x4I , x4II registries to the MC registry.

4.5 Finding the Keys

We now have in each MC registry, for each “column”, a set of records representing
the possible computation paths and their corresponding probabilities. Recall that



Fig. 3: Visual representation of the constraint solver tracking four key bytes, of
column 0, from x4 to MixColumns computation. MC stands for MixColumns

a “column” is defined at the entrance to MixColumns, so the key byte indices
are reordered by the ShiftRows operation. Each registry record represents a
candidate combination of 4 key bytes. Together all the MC registries contain
possible combinations of 16 key bytes.

A naive way to iterate over the key candidates would be to sort the registries
in decreasing probability order, to set some upper bound R, and to try all can-
didates from ranks r1, r2, r3, r4 s.t. ri ≤ R (one per MC registry). This approach
is bounded by R4 key tries. However, using the method of [25], it is possible to
iterate over these R4 keys according to their probabilities, thus speeding up the
key search. An alternative method for reducing the candidate keys is to run the
constraint solver twice using different power traces and then intersect the groups
of key candidates.

5 Performance Evaluation

5.1 Experimental Setup

We instantiated our framework for AES, and executed it on power traces ex-
tracted from a real implementation of an AES-256 variant. The implementation
is the one presented in the DPA contest v4 [2]. This implementation contains
a power-analysis counter measure called RSM described in [1]. The deviations
from the classic AES are:

1. RSM-AES utilizes an arbitrary fixed 16-byte Mask. At the beginning of the
encryption process a random offset between 0 to 15 is drawn. Let o denote
the offset, and let mo denote the cyclic rotation of Mask by offset o.

2. The 16 bytes of plaintext are XOR-ed with mo. Let pm be the result, i.e.,
pmi = pi ⊕mo

i , 0 ≤ i ≤ 15.
3. In the AddRoundKey sub-round the round key is XOR-ed with pm instead

of the plaintext.
4. RSM-AES uses different S-BOXs for every byte, which are derived from the

value of the mo.
5. The ShiftRows and MixColumns sub-rounds are unchanged.
6. An additional sub-round is added to extract the unmasked cipher text, but

it is not relevant in our attack since the power traces only cover the first
round.



5.2 Decoding

To profile the power consumption behavior of the RSM-AES implementation we
used techniques similar to those of [19]. Our leak model is the Hamming-weight
model. This model was chosen since our experiments showed high correlation
with the Hamming weights of the intermediate values. Using the raw values, on
the other hand, showed very low correlation. 100 classifiers were trained to clas-
sify the Hamming weights of 100 intermediate values. Of these, 84 intermediate
values are those described in Section 4, and 16 values are the masked plaintext
bytes of the RSM counter-measure (see pmi description in Section 5.1). We used
200 traces to train the classifiers and an additional 200 traces to evaluate the
classifiers’ performance, in order to select the best trace-samples to be used as
inputs for each classifier. As described in [19] the classifiers were trained to iden-
tify Hamming weights 2-6 and were then extrapolated to classify all 9 possible
Hamming weight values 0-8.

Let Cl be the classifier for leak l, and let Cl(hw) be the probability that clas-
sifier Cl assigns to the event that the correct value has a Hamming-weight of hw
for hw ∈ 0..8. To evaluate the classifiers performance, we define a classification
error to be when the Hamming-weight with the highest probability, as predicted
by the classifier, is not the correct Hamming-weight. Our decoder is far from
perfect: most classifiers have an average error rate of 10-20% and some have an
error rate as poor as 55%. Some intermediate values are decoded with low error
rates (e.g., SubBytes) while others are harder to decode (e.g., MixColumns).
Specific classifiers’ error rates are shown in Figure 4.

Note that in our framework a classifier failing to predict the exact Hamming-
weight as the most likely value still conveys significant information: as long as the
correct Hamming-weight has higher probability than other incorrect Hamming-
weight classes, it helps the solver distinguish the correct values from the incorrect
ones. As we will see, even with these far-from-perfect classifiers, our framework
is able to find the correct keys.

5.2.1 Overcoming the RSM Counter Measure: As described above, we
have 16 classifiers Ci, 0 ≤ i ≤ 15, trained to estimate the probabilities of the
Hamming-weight values of pmi = pi⊕mo

i , where mo
i is the ith byte of the Mask

rotated by offset o. For every possible value of o ∈ 0..15 we derive 16 mask bytes
mo
i and compute pmo

i = pi ⊕ mo
i . Let HW (x) denote the Hamming weight of

x. Recall that for a given value hw, Ci(hw) is the probability estimation of the
decoder Ci of HW (pmi), i.e Ci(hw) = P (HW (pmi) = hw). For every value of
o, we compute the offset score: S(o) =

∏15
i=0 Ci(HW (pmo

i )). The offset o which
gave the highest score S(o) is declared the correct one. We experimented with
this method on 600 traces (distinct from the 400 training traces) and measured
an offset prediction success rate of 100%. Thus we see that the 4-bit side-channel
counter-measure used in RSM-AES offers no protection against template based
attacks, even without a constraint solver.



Fig. 4: Percent of classification errors per classifier, evaluated over 600 traces.
Classifiers 0-15 are for Hamming-weights of pmi, 16-31 are for AddKey outputs,
32-47 are for SubBytes, 48-63 are for x2, 64-79 are for xt, 80-83 are for x4 and
84-99 are for MixColumns outputs.

5.2.2 Probability Estimation for 256 Values: Our constraint solver uses
a soft-decision decoder: it requires as input a probability estimation for 256
possible values of every intermediate computation. We do not filter out the less
likely Hamming weights: instead we split the 9-value distribution given by Cl
among the byte values X, according to their Hamming-weights. Let

Shw = ‖{x ∈ {0..255}|HW (x) = hw}‖ for 0 ≤ hw ≤ 8

be the number of values between 0-255 with Hamming weight hw. For every
intermediate byte value bl among the 84 leaks l ∈ 0..83 and classier Cl - we
assign the probability for value x ∈ 0..255 to be P (bl = x) = Cl(HW (x))

SHW (x)
. Note

that
∑255
x=0 P (bl = x) = 1.

5.3 Implementation of the Constraint Solver

The custom solver designed for AES as described in Sections 3 and 4 was imple-
mented in Matlab R2013a. Our code consists of 6200 lines of code over 25 files.
The implementation consists of general registry and compute blocks, and special-
ized compute classes to be used by the general compute blocks. Other than the 4
registries used for the intersection constraints, each registry is associated with a
specific leak l among the 84 leaks. They therefore receive an a-priori probability
estimation for every value X as explained in Section 5.2.2. These are the αout
values described in Section 3.1. The graph representing the full constraint solver
is depicted in Figure 7.



Fig. 5: Evolution of entropy of 16 key bytes at different solver phases, for 10 runs
on randomly selected traces. Abbreviations: ak - AddKey, sb - SubBytes, x2 -
XOR of 2 bytes, xt - xtime, x4 - XOR of 4 bytes, mc - MixColumns.

5.4 Results and Discussion

We ran our solver on an Intel core i7 2.0 GHz PC running Ubuntu 13.04 64 bit,
with 8 GB of RAM and a SSD hard drive. Over 600 traces the median running
time of decoding + running the solver was 9 seconds. Solving of 98% of the
experiments completed in under 30 seconds. The maximum running time was 85
seconds.

At the end of a run, each of the four MixColumns output registries contains
records with 4-key-byte candidates. A full 16 byte key is constructed by taking
a record from each of the four MixColumns registries. The median number of
4-key-byte candidates (for a single column) was 43930, and the median number
of full key candidates was 261.2. To measure the solver’s success, for each registry
we look at the rank of the record containing the correct 4-key-byte combination.
If the maximum rank of the correct key quartets in all four registries is lower
than R, then exhaustive search for the correct key would require no more that
R4 tries. We found that in 38% out of 600 power traces, at least 3 key quartets
were among the top 5 records. The correct key in over 50% of the traces can
be found in less then R4 = 230 attempts. We believe that using the optimized
algorithm of [25] to iterate over key candidates according to probability would
significantly decrease the number of tries before finding the correct key. We did
not test the approach of [25] on our results. Instead, we opted to use a second
power trace and intersect the candidate key-quartets (see below).

Figure 5 shows how the Shanon entropy of 16 key-bytes drops as the solver
uses the side channel leaks. At the beginning of the flow each key byte has
probability of 1

256 , giving Entropy = 128, as expected for 128 unknown bits of
key. Figure 5 shows that the entropy dropped from 128 down to 0.2-6.6 bits.



Fig. 6: Number of power traces needed to find the correct key.

This means that although the solver outputs a median of 261.2 key candidates,
the probability mass is concentrated over very few candidates.

When more than one power trace is available for the attack, we can run the
decoding + solver on each trace and intersect the candidate keys. The inter-
section is done separately on the 4-key-byte candidates for every column, and
the probability distributions are conflated. To measure the performance of this
approach we ran 250 experiments, each with independent traces. When the in-
tersection was not empty, the median number of candidates per column was 4
and the median number of full key candidates was 315. Figure 6 shows how
many power traces were required to yield the correct key as the first ranked
candidate. It shows that with only 2 traces we can identify the correct key as
the top candidate with success rate of 79.6%.

We submitted our solver to the DPA v4 contest. The formal evaluation pro-
cess of the DPA contest is equivalent to a single experiment (in contrast to the
250 we performed). According to the above statistics, a single experiment has
20.4% chance of needing more than 2 traces - as actually happened. When more
than 2 traces are used, our solver requires more time to perform the intersection
between the possible key candidates. The DPA v4 hall of fame lists our contri-
bution as requiring 5 traces and 55 seconds per trace to complete. As of the date
of writing, our solver is one of the leading entries in the contest.

6 Conclusions and Future Work

In this paper we described a specialized byte-oriented constraint solver for side
channel cryptanalysis. Instead of representing the cipher as a complex and un-
wieldy set of bit-level equations, the user only needs to supply code snippets for
the native operations of the cipher, arranged in a flow graph that models the de-
pendence between the side channel leaks. Through extensive use of the conflation



technique our solver is able to reconcile low-accuracy and noisy measurements
into an accurate low-entropy probability distribution, with extremely low and
very predictable run times. On the DPA v4 contest dataset our framework is
able to extract the correct key from one or two power traces in under 9 seconds
with a success rate of over 79%.

The technique is not dependent on the decoding method, does not assume a
Hamming-weight model for the side channel, and does not impose any particular
noise model. It can be applied as long as it is possible to decode the side-channel
trace into a collection of probability distributions for the intermediate values.
We believe it would be quite interesting to test our framework against other
implementations of AES, against other types of side-channel information, and
against other byte-oriented ciphers.
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Fig. 7: Flow Graph of the Full AES Constraint Solver
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