
On the Simplicity of Converting Leakages from
Multivariate to Univariate

– Case Study of a Glitch-Resistant Masking Scheme –

Amir Moradi and Oliver Mischke

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{moradi,mischke}@crypto.rub.de

Abstract. Several masking schemes to protect cryptographic implemen-
tations against side-channel attacks have been proposed. A few consid-
ered the glitches, and provided security proofs in presence of such in-
herent phenomena happening in logic circuits. One which is based on
multi-party computation protocols and utilizes Shamir’s secret sharing
scheme was presented at CHES 2011. It aims at providing security for
hardware implementations – mainly of AES – against those sophisti-
cated side-channel attacks that also take glitches into account. One part
of this article deals with the practical issues and relevance of the afore-
mentioned masking scheme. Following the recommendations given in the
extended version of the mentioned article, we first provide a guideline on
how to implement the scheme for the simplest settings. Constructing an
exemplary design of the scheme, we provide practical side-channel eval-
uations based on a Virtex-5 FPGA. Our results demonstrate that the
implemented scheme is indeed secure against univariate power analysis
attacks given a basic measurement setup. In the second part of this paper
we show how using very simple changes in the measurement setup opens
the possibility to exploit multivariate leakages while still performing a
univariate attack. Using these techniques the scheme under evaluation
can be defeated using only a moderate number of measurements. This
is applicable not only to the scheme showcased here, but also to most
other known masking schemes where the shares of sensitive values are
processed in adjacent clock cycles.

1 Introduction

With the increasing widespread of security-enabled embedded devices their pro-
tection against malicious users became of a greater concern. Even if these devices
are protected by cryptographic algorithms which are very secure considering a
black box scenario, with the discovery of side-channel attacks and especially
power analysis in the late 90s [9], algorithms which are implemented without
countermeasures can nowadays easily be broken. One of the reasons for this is
that power analysis equipment is relatively cheap and already published attacks
can be utilized by a moderately skilled attacker. This is especially bothersome

since most of these devices must be considered as working in a hostile envi-
ronment with easy access of an attacker, lowering the inhibition threshold to
perform such an attack.

Different masking schemes, like boolean and multiplicative have been pro-
posed in order to randomize the intermediate computations and hence provide
security against power analysis attacks. They indeed have been presented to the
community in an arms race to counteract the also evolving new side-channel
attacks. Implementations of most of these earlier masking schemes while consid-
ered secure under the used security model at that time, still exhibit a detectable
univariate first-order leakage which is caused by glitches in the combinational
circuits of hardware. For instance, we can mention the schemes presented in [19]
and [6] which have later been shown to be vulnerable in [11] and [14] respectively.
Taking these occurring glitches into account new masking schemes have been de-
veloped claiming glitch resistance. Threshold Implementation (TI) [16–18] is one
of the more studied ones. It is based on a specific type of multi-party compu-
tation and applies boolean masking. However, making a correct implementation
which fulfills all the requirements of TI is very challenging, and so far only up
to 4× 4 S-boxes could be successfully realized under its definitions [4, 18, 20]. TI
is supposed to be secure only against 1st-order attacks, and accordingly it has
been shown that it can be broken by a univariate mutual information analysis
(MIA) [3, 18] or a 2nd-order univariate collision attack [12].

Another scheme [21], also based on multi-party computation protocols, uti-
lizes the Shamir’s secret sharing scheme [24] and claims security not only against
1st-order attacks but also depending on the number of shares against higher-order
multivariate ones.1 One of our contributions in this paper is to give guidelines
on how to implement the scheme, thereby allowing its practical realization on
a hardware platform although more details on its practicability as well as its
ambiguous points is given by the original authors in [23]. In order to make an
exemplary architecture of this scheme we have chosen a parameter set based on
the minimum number of shares to supposedly provide protection against any
univariate attack.

We address a couple of challenges on the way of its practical realization be-
cause of the very high time and area overheads. More importantly we conduct
practical side-channel experiments which support the security claims given a
basic measurement setup. With basic measurement setup we mean that, as rec-
ommended in [10], the target core is clocked at a low operating frequency so that
the dynamic power consumptions of different clock cycles do not overlap. This
way we make sure that the computations on different shares which are performed
in adjacent clock cycles do not create a joint leakage. One can therefore better
analyze univariate leakages.

We implemented the scheme under evaluation on a SASEBO G-II containing
a Xilinx Virtex-5 FPGA. Using the aforementioned basic measurement setup we
demonstrate information theoretic based evaluations as well as the resistance

1 A similar masking scheme using Shamir’s secret sharing with a software platform as
target has also been presented at CHES 2011 [8].

of the scheme against univariate first- and second-order attacks. In addition, we
show two options on how to convert the existing multivariate leakages to univari-
ate ones which are exploitable by the same simple univariate attack flow used in
the initial evaluation. The reason behind this is that the computations of differ-
ent shares of sensitive values are usually performed in subsequent clock cycles.
This makes the scheme vulnerable using certain measurement setups where the
leakage of an individual clock cycle is smeared over time. It is worth to mention
that available-in-the-market DPA workstations equipped with SASEBO-GII are
shipped with such a non-basic setup. It means that the security engineers who
are not aware of such an effect do actually analyze multivariate leakages which
are combined to univariate.

The application of this effect is not limited to the scheme at hand. The
sequential order of operations in most cryptographic schemes cannot be broken
up without high performance penalty. Therefore, it gives attackers a basically
free way to perform multivariate attacks on every masking scheme where the
shares of a secret are processed in closeby clock cycles.

2 Preliminaries

Before focusing on our target masking scheme, we specify the definition of differ-
ent side-channel attacks w.r.t. their variate and the statistical moment applied.
In the literature there exist two distinct definitions for what is the order of an
attack. Some previous work define the order via the number of different leakage
points considered simultaneously mainly because of the sequential processing in
software. Others define the order via the statistical moment applied. Here we
stay with the definition given in [13]. An attack which combines v different time
instances – usually in v different clock cycles – of each power trace is called
v-variate attack. Regardless of v the order of an attack is defined by the order of
statistical moments which are considered in the attack. For instance, a CPA [5]
which combines two points of each power trace by summing them up is a bi-
variate 1st-order attack, and a CPA which applies the squared values of each
trace is a univariate 2nd-order attack. Those attacks where no specific statistical
moment is applied, e.g., MIA [3], are distinguished only by v like univariate or
bivariate MIA.

2.1 Target Scheme

Although the scheme presented in [21] is general, we rewrite its basics for mini-
mum settings and by considering the AES Rijndael as the target algorithm. By
⊗ we denote the multiplication in GF(28) using the Rijndael irreducible polyno-
mial and by ⊕ the finite-field addition. The number of shares (and accordingly
the number of Players) is fixed to 3 (i.e., degree of the underlying polynomial is
1, the most simplified setting in [21]). Regardless of the settings the scheme is
expected to provide security against any univariate attacks.

Before starting the shared operations, one needs to select 3 distinct non-zero
elements, so-called public points, α1, α2, α3 in GF(28). Moreover, it is required to
precompute the first row (λ1, λ2, λ3) of the inverse of the Vandermonde (3× 3)-
matrix (αj

i)1≤i,j≤3 as

λ1 = α2 ⊗ α3 ⊗ (α1 ⊕ α2)−1 ⊗ (α1 ⊕ α3)−1

λ2 = α1 ⊗ α3 ⊗ (α1 ⊕ α2)−1 ⊗ (α2 ⊕ α3)−1

λ3 = α1 ⊗ α2 ⊗ (α1 ⊕ α3)−1 ⊗ (α2 ⊕ α3)−1,

where x−1 denotes the multiplicative inverse of x in GF(28) using again the
Rijndael irreducible polynomial. These elements, α1, α2, α3 and λ1, λ2, λ3, are
publicly available to all 3 Players.

Sharing a secret x is done by randomly selecting a secret coefficient a and
computing 3 shares x1, x2, x3 as

x1 = x⊕ (a⊗ α1), x2 = x⊕ (a⊗ α2), x3 = x⊕ (a⊗ α3).

Each Player i gets only one share xi without having any information about the
other shares.

Reconstructing the secret x from the 3 shares x1, x2, x3 can be done as

x = (x1 ⊗ λ1)⊕ (x2 ⊗ λ2)⊕ (x3 ⊗ λ3).

Let us suppose a constant c and two secrets x and y which are represented
each by 3 shares x1, x2, x3 and y1, y2, y3 constructed using the same public points
α1, α2, α3 and by secret coefficients a and b respectively. In the following we
consider the essential operations required for an AES S-box computation, and
discuss about the role of each Player.

Addition with a constant, i.e., z = c ⊕ x, in the shared mode can be done
by each Player performing the addition as

Player 1 : z1 = x1 ⊕ c = x⊕ (a⊗ α1)⊕ c = (x⊕ c)⊕ (a⊗ α1)

Player 2 : z2 = x2 ⊕ c = x⊕ (a⊗ α2)⊕ c = (x⊕ c)⊕ (a⊗ α2)

Player 3 : z3 = x3 ⊕ c = x⊕ (a⊗ α3)⊕ c = (x⊕ c)⊕ (a⊗ α3).

Therefore, z1, z2, z3 correctly provide the shared representation of z.

Multiplication with a constant, i.e., z = c⊗x, c 6= 0, also can be performed
in a similar way as

Player 1 : z1 = x1 ⊗ c = (x⊕ (a⊗ α1))⊗ c = (x⊗ c)⊕ (a⊗ c⊗ α1)

Player 2 : z2 = x2 ⊗ c = (x⊕ (a⊗ α2))⊗ c = (x⊗ c)⊕ (a⊗ c⊗ α2)

Player 3 : z3 = x3 ⊗ c = (x⊕ (a⊗ α3))⊗ c = (x⊗ c)⊕ (a⊗ c⊗ α3),

and z1, z2, z3 also provide the shared representation of z considering a⊗ c as the
secret coefficient.

Addition of two shared secrets, i.e., z = x⊕ y, is easily performed by

Player 1 : z1 = x1 ⊕ y1 = x⊕ (a⊗ α1)⊕ y ⊕ (b⊗ α1) = (x⊕ y)⊕ ((a⊕ b)⊗ α1)

Player 2 : z2 = x2 ⊕ y2 = x⊕ (a⊗ α2)⊕ y ⊕ (b⊗ α2) = (x⊕ y)⊕ ((a⊕ b)⊗ α2)

Player 3 : z3 = x3 ⊕ y3 = x⊕ (a⊗ α3)⊕ y ⊕ (b⊗ α3) = (x⊕ y)⊕ ((a⊕ b)⊗ α3).

z1, z2, z3 provide the shared representation of z as well considering a⊕ b as the
secret coefficient.

Multiplication of two shared secrets, i.e., z = x⊗y, is the challenging part.
If each Player computes the multiplication of two shares as

Player 1 : t1 = x1 ⊗ y1 = (x⊗ y)⊕ (((a⊗ y)⊕ (b⊗ x))⊗ α1)⊕ (a⊗ b⊗ α2
1)

Player 2 : t2 = x2 ⊗ y2 = (x⊗ y)⊕ (((a⊗ y)⊕ (b⊗ x))⊗ α2)⊕ (a⊗ b⊗ α2
2)

Player 3 : t3 = x3 ⊗ y3 = (x⊗ y)⊕ (((a⊗ y)⊕ (b⊗ x))⊗ α3)⊕ (a⊗ b⊗ α2
3),

t1, t2, t3 are not a correct shared representation of z because according to [21]
the underlying polynomial is of a higher degree and does not have a uniform
distribution. The solution given in [21] is as follows:

1. Each Player i after computing ti, randomly selects a coefficient ai, remasks
ti as

qi,1 = ti ⊕ (ai ⊗ α1), qi,2 = ti ⊕ (ai ⊗ α2), qi,3 = ti ⊕ (ai ⊗ α3),

and sends each qi,∀j 6=i to the corresponding Player j.
2. Now each Player i has three elements q1,i, q2,i, q3,i, and reconstructs zi as

zi = (q1,i ⊗ λ1)⊕ (q2,i ⊗ λ2)⊕ (q3,i ⊗ λ3).

Indeed, z1, z2, z3 provide a correct shared representation of z considering (a1 ⊗
λ1)⊕ (a2 ⊗ λ2)⊕ (a3 ⊗ λ3) as the secret coefficient.

Square of a shared secret, i.e., z = x2, cannot be computed in a straightfor-
ward way in contrast to what is stated in [21]. If each Player i squares its share
xi as

Player 1 : z1 = x1
2 = x2 ⊕ (a2 ⊗ α1

2)

Player 2 : z2 = x2
2 = x2 ⊕ (a2 ⊗ α2

2)

Player 3 : z3 = x3
2 = x2 ⊕ (a2 ⊗ α3

2),

z1, z2, z3 do not provide a correct shared representation of z unless – as also
stated in [8] – the public points α1, α2, α3 as well as λ1, λ2, λ3 are squared. If
the result of squaring z1, z2, z3 need to contribute in later computations where
other secrets shared by original public points α1, α2, α3 are involved, z1, z2, z3

x2 x3 x6 x12 x15 x30 x60 x120 x240 x252

(a) S-box

c1 c2 c3 c4

(b) MixColumns

Fig. 1. Block diagram of sequential operations necessary for an AES S-box and a forth
of MixColumns

must be remasked to provide a correct shared representation of z using the
original public points. To do so a FreshMasks scheme is proposed in [8]. Moreover,
in [23], the extended version of the original scheme, a specific condition is defined
for the public points to simplify the square operation. In the simplest settings
α1 = 1 and the other public points are selected w.r.t. satisfying the conditions:
(α2)2 = α3, (α3)2 = α2. Therefore, after each Player squared its share, two
Players must exchange their secrets that is called reordering in [23].

However, we consider the realization of squaring by giving the above men-
tioned shared multiplication algorithm the same shared secrets, i.e., z = x⊗ x.
This, in fact, makes a correct representation of z using the desired unchanged
public points and no reordering is required. Indeed, following the conditions
for the public points given in [23] leads to less computation overhead and higher
performance compared to our considered solution. But since our target is a hard-
ware platform, their solution increases the area requirement while in our case
the same multiplication module can be reused for squaring.

In order to compute the inversion part of the AES S-box one can use the
scheme presented in [22] as

x−1 = x254 =
((
x2 ⊗ x

)4⊗(x2 ⊗ x))16⊗(x2 ⊗ x)4⊗x2.
Since this scheme contains only a couple of square and multiply operations, using
only the aforementioned shared multiplication algorithm the inversion part can
be realized under our defined sharing settings. In contrast to what is stated in
both [21] and [8], the remaining part, i.e., the affine transformation, cannot be
performed in a straightforward way. That is because – as also addressed in [2] –
the linear part of the affine transformation of the AES is a linear function over
GF(2), not over GF(28). The solution for this problem, as also stated in [23],
is to represent the affine transformation over GF(28) and using the Rijndael
irreducible polynomial. This actually has been presented before in [15] and [7]
as

Affine (x) = 63 ⊕ (05⊗ x) ⊕ (09⊗ x2) ⊕ (f9⊗ x4) ⊕ (25⊗ x8) ⊕
(f4⊗ x16)⊕ (01⊗ x32)⊕ (b5⊗ x64)⊕ (8f ⊗ x128) .

Therefore, by the diagram given in Fig. 1(a) we define the sequence of oper-
ations of a complete S-box computation considering the secret sharing restated
above. Note that the modules denoted by black

⊗
indicate the shared multipli-

cation, and those by gray
⊗

the multiplication with a constant.

3 Our Design

In order to implement the aforementioned scheme one needs to follow the require-
ments addressed in [21]. The goal of the scheme is to separate the side-channel
leakage of the computations done by each Player in order to prevent any uni-
variate leakage. As stated in [21] there are two possible ways to separate the
leakage. Either the circuit of each Player is realized by dedicated hardware, e.g.,
one FPGA per Player, which does not seem to be practical, or the operations of
each Player are separated in time. We follow the second option and have tried
to mount the whole of the scheme in one FPGA – with the goal of a global
minimum area-overhead – by the design shown in Fig. 2.

By means of a dedicated and carefully designed control unit we made sure
that the Players sequentially get active. In other words, no computation or ac-
tivity is done by the other Players when one Player is active. The design of the
shared multiplication module is slightly different to the other modules. In con-
trast to the others, where the computation on each share by the corresponding
Player is independent of that of the other shares, the Players in the shared mul-
tiplication module need to communicate with each other. Therefore, we had to
divide the computations of each share in this module into two parts by inserting
a register between the two steps as explained in Section 2.1 (see registers marked
by qi,j in Fig. 2).

Another important issue regarding our design is the way that the multiplex-
ers are controlled. Since the shared multiplication module needs to get different
inputs in order to realize a multiplication or a square, there should be a multi-
plexer to switch between different inputs. That is because – considering Fig. 1(a)
– the shared multiplication module performs always squaring except in steps 2, 5,
10, and 11. Control signals which select the appropriate multiplexer input must
be hazardless2. Otherwise, as an example, glitches on select signals of Player 1
while Player 2 is active will lead to concurrent side-channel leakage of two shares.
Therefore, as a solution we provided some registers to control which input to be
given to the target module.

For simplicity, we first explain how the shared multiplication module works:

– In the first clock cycle by activating enable signal em1 the first share of both
appropriate inputs are saved into their corresponding registers, get selected
by select signal selm1, and therefore are multiplied. At the same time the
remasking process using a new random a1 and public points α1, α2, α3 is
performed. Note that the result of these computations are not saved in this
clock cycle.

2 In the areas of digital logic a dynamic hazard means undesirable transient changes
in the output as a result of a single input change.

�3

�2

�1

�3

�2

�1

�3

�2

�1

q1,1 q2,1 q3,1 q1,2 q2,2 q3,2 q1,3 q2,3 q3,3

a1 a2 a3

t1 t2 t3

PR
N
G

PR
N
G

PR
N
G

em1 em2 em3

em4 em4 em4 em5 em5 em5 em6 em6 em6

�1 �2 �3

z1

ea1 em1 es21 es31 es121

�1 �2 �3�1 �2 �3

z3z2

ea3 em3 es23 es33 es123ea2 em2 es22 es32 es122

selm1
em3selm3

in3in2in1

em2selm2

ea1

63

ea1

sela1

05
09
f9
25
f4
01
b5
8f

ea2

63

ea2

sela2

ea3

63

ea3

sela3

selcoef

ea3

ea2

out2

out3

ea1

out1

em1

M&MSK1

AFF1

AFF2

AFF3

NMSK1

M&MSK2 M&MSK3

NMSK2 NMSK3

eo2

eo3

eo1

Fig. 2. Our design of the shared multiplication and addition to realize the AES S-box

– The same procedure as in the first clock cycles is done on the second and
the third shares one after each other in the second and the third clock cycles
by activating enable signals em2 and em3 respectively.

– The results of the remasking for Player 1 (indeed provided by all 3 Players)
which are available at the input of registers q1,1, q2,1, q3,1 are stored at the
forth clock cycle by enabling signal em4. Therefore, the second step of the
module gets active and performs the unmasking using λ1, λ2, λ3 to provide
the first share of the multiplication output. Note that again the result is not
saved in this clock cycle.

– In the next two clock cycles (fifth and sixth) the same operation as the
previous clock cycle is performed for Player 2 and Player 3 consecutively by
enable signals em5 and em6.

Note that to save x2, x3, and x12 (see Fig. 1(a)) in the appropriate step, one
of the signals es2i∈{1,2,3}, es

3
i , and es12i gets enabled at the same time with the

corresponding emi signal. In fact, we need six clock cycles to completely perform
a shared multiplication or a square. It means that since we use only one shared
multiplication module in our design, in 6 × 11 = 66 clock cycles the inverse of
the given shared input is computed.

Afterwards, in order to realize the affine transformation the multiplication-
addition module (modules AFF1, AFF2, and AFF3 in Fig. 2) must also con-

tribute into the computations. The Players in this module do not need to estab-
lish any communication and their computation is restricted to their own shares.
Therefore, by appropriately selecting selai∈{1,2,3} and enabling the eai signal
the multiplication with constant and the shared addition both can be done in
one clock cycle per share, i.e., three clock cycles in sum. Note that the same
techniques as before to make hazardless control signals are used in the design of
the multiplication-addition module. Also, the sequence of operations is similar
to what is expressed for the first three clock cycles of the shared multiplication
module. According to Fig. 1(a), during the affine transformation a multiplication-
addition operation must be performed prior to each and after the last square.
Therefore, after 3× 8 + 6× 7 = 66 clock cycles the operations of an affine trans-
formation is completed resulting in 132 clock cycles in sum to compute an S-box
shared output.

One optimization option is to perform the multiplication-addition and the
first three clock cycles of the squaring at the same time to save 24 clock cycles
per S-box computation. According to the definition and the requirements of the
scheme, it should not provide any security loss. However, since our main goal is
to practically examine the side-channel leakage of this scheme, we ignored this
optimization to be able to separately localize the side-channel leakage of each
operation.

Though an optimized scenario to perform MixColumns is proposed in [21],
by adding more multiplexer (and select register) to the multiplication-addition
module our presented design can also realize MixColumns and AddRoundKey.
This can be done according to the diagram given by Fig. 1(b) and selecting
the appropriate coefficients c1, c2, c3, c4 corresponding to the rows of the matrix
representation of MixColumns. After finishing all SubBytes transformations of
one encryption round, i.e., 132 × 16 = 2112 clock cycles, every output byte of
the MixColumns transformation in addition to the corresponding AddRoundKey
can be computed in 3 × 4 = 12 clock cycles. That is, 12 × 16 = 192 clock
cycles for whole of the MixColumns and AddRoundKey transformations. In sum,
ignoring the required time for initial masking of the input and the key and for
(pre)computing the round keys a whole encryption process takes 2112 × 10 +
192× 9 + 3× 16 = 22 896 clock cycles.3

We should stress that – except the mentioned one – no time-optimization
option exists for our single-S-box design since no more than one share is allowed
to be processed at the same time. It is possible to reach a higher throughput
by making multiple, e.g., 16, instances of our design inside the target FPGA
and process all SubBytes and later all MixColumns in parallel. This, in fact,
leads to a very high area-overhead (addressed by Table 1) that even cannot fit
into the slices available in our target FPGA which is of the medium-size modern
series. We should emphasize that the GF(28) multiplier we employed here is a
highly optimized and pure combinational circuit, and the design is made for any
arbitrary public values αi∈{1,2,3} and λi.

3 In the last round MixColumns is ignored and each separate AddRoundKey on one
shared state value takes 3 clock cycles.

Table 1. Area and Time overhead of our design based on XC5VLX50 Virtex-5 FPGA
(excluding state register, KeySchedule, PRNGs, initial masking, and final unmasking)

Design FF LUT Slice SB MC+ARK Encryption
% # % # % CLK CLK CLK

1 SB MC 315 1% 1387 5% 859 12% 2112 192 22 896
16 SB MC 4275 15% 21 328 74% no fit 132 12 1431

4 Practical Evaluations

We used a SASEBO-GII [1] board as the evaluation platform. In order to real-
ize the scheme we implemented our design on the Virtex-5 (XC5VLX50) FPGA
embedded on the target board, and measured power consumption traces using a
LeCroy HRO66Zi 600MHz digital oscilloscope at the sampling rate of 1GS/s. A
1Ω resistor in the VDD path and restricting the bandwidth of the oscilloscope
to 20MHz helped to obtain clear and low-noise measurements. Unless otherwise
stated, our target designs run by a stable 3MHz oscillator during the measure-
ments. We refer to this setting as standard setup. In Section 5 we give detailed
information about our different measurement setups.

We made an exemplary design which performs only the initial AddRound-
Key and SubBytes transformations on two given input bytes subsequently. We
omitted the rest of the circuit in this design to focus only on the side-channel
leakage caused during the S-box computation. The design gets two plaintext
bytes p(1) and p(2), and makes three shares of each by means of the public points
α1, α2, α3 and two separate random bytes. Two secret key bytes k(1) and k(2),
which are fix inside the design, are similarly shared using two other separate ran-
dom bytes. After XORing the corresponding shares of the plaintext and key bytes
(AddRoundKey transformation) as pk(j)i = p

(j)
i ⊕ k

(j)
i , j ∈ {1, 2}, i ∈ {1, 2, 3},

the first three shares pk(1)1 , pk
(1)
2 , pk

(1)
3 are given to the S-box module. After 132

clock cycles – when the S-box shared output is ready – the second three shares
pk

(2)
1 , pk

(2)
2 , pk

(2)
3 are provided as input of the same module. Finishing the second

S-box computation, by means of λ1, λ2, λ3 the results are unmasked for result
validation.

We provided a clear trigger signal for the oscilloscope which indicates the
start of the first and the end of the second S-box computation, thereby perfectly
aligning the measured power traces. We also restricted the measurements to cover
only the two S-box computations. In order to have the side-channel leakage of
a similar but non-resistant design as a reference, we made another variant of
our design. It is made by removing the intermediate qi,j registers of the shared
multiplication module (see Fig. 2) and modifying the control unit; therefore,
all three Players are active and perform the computation at the same time.
Comparing the side-channel leakage of this variant to that of our original design
can show the effectiveness of separating the computation of the Players.

In the experiments shown below we selected the public points as (α1, α2, α3) =
(02, 03, 04) and accordingly (λ1, λ2, λ3) = (02,d2,d1). We also kept the two se-

(a)

(b)

(c) (d)

Fig. 3. Variant design, 3MHz, standard setup: (a) a sample power trace, (b) mutual in-
formation, (c) first-order, and (d) second-order univariate attack result using 1 000 000
traces

cret key bytes fix, and randomly selected the two input plaintext bytes. We start
our evaluation by examining the variant design. Note that we modified the con-
trol unit in this version while still keeping it synchronized with the one of the
original design. In other words, each shared multiplication is done in a single
clock cycle and afterwards the circuit is idle for the next five clock cycles. The
same holds for the multiplication-addition operation, i.e., all Players are active
in one clock cycle and all off in the next two. In sum, it finishes one S-box
computation in still 132 clock cycles. This is the reason for having low power
consumption in a couple of adjacent clock cycles in an exemplary power trace of
this variant shown by Fig. 3(a) where the sequence of operations are marked.

We used the Information Theoretic Metric of [25] to examine and compare
the side-channel leakage of our designs. This part of our evaluations considers
only the leakage caused by the first S-box computation, and considers the S-box
input as the base to which the dependency of the leakages are examined. This
evaluation helps comparing the leakage of the variant design with that of the
original one allowing us to investigate the efficiency of the scheme to prevent
any univariate leakage, i.e., the goal of the scheme with minimum settings.

Moreover, we applied a correlation-collision attack [14] to check the possibil-
ity of running an attack successfully. Since it examines the leakage of one circuit
instance that is used in different time instances, it perfectly fits to our targeted
designs where a single module is shared for both two S-box computations. This
attack originally examines only the first-order leakage, but according to [12] it

(a)

(b)

(c) (d)

Fig. 4. Original design, 3MHz, standard setup: (a) a sample power trace, (b) mutual in-
formation, (c) first-order, and (d) second-order univariate attack result using 10 000 000
traces

can be adopted to use higher-order moments and examine higher-order leakage.
Unless otherwise stated, we concentrate on first- and second-order univariate
leakages of our targets.

We collected 1 000 000 traces of the variant design and according to [25]
computed the Mutual Information based on the first S-box input. The result
which is shown in Fig. 3(b) clearly indicates existence of a univariate leakage as
expected. Performing the aforementioned attack using the first- and second-order
moments (averages and variances) targeting the linear difference between two
used key bytes, i.e., k(1)⊕k(2), confirms the information theoretic evaluation. The
results shown in Fig. 3(c) and Fig. 3(d) denote no first-order but obvious second-
order univariate leakage. Also, Figure 9(j) (in Appendix) shows the simplicity of
recovering the second-order leakage requiring approximately 10 000 traces.

Coming back to our original design, it has lower power consumption com-
pared to the variant design since the activity of each Player is restricted to
one clock cycle and the glitches are controlled between the two steps of the
shared multiplication module. A sample power trace of this variant is shown in
Fig. 4(a). Having 10 000 000 measurements of the design we performed the same
evaluations as before whose results are shown in Fig. 4. The mutual information
significantly decreased compared to that of the variant design, and the attacks
(using the first- and second- order moments) led to unsuccessful results. Indeed
we practically confirm the efficiency of the scheme to counteract univariate at-
tacks using a standard measurement setup.

5 Discussions

We should stress that hardware platforms are mainly used because of perfor-
mance reasons. In other words, high throughput of hardware architectures is
amongst the motivations to make use of such platforms in high-performance ap-
plications. This high throughput is obtained by low latency of the design which
allows high clock frequencies. However, as mentioned before, we run our designs
with a very low frequency of 3MHz in order to clearly separate the power con-
sumption peak of different clock cycles. Reducing the clock frequency of the
device under attack is one of those techniques suggested (see [10], chapter 3.5.1,
page 58) to reduce the switching noise especially for evaluation purposes. Of
course, this is only possible if the device allows such a low clock frequency.

If the device under attack runs with a higher frequency, it can happen that the
power consumption peaks of consecutive clock cycles interfere with each other.
If so, in the case of our design the power consumption peaks corresponding to
different shares of e.g., a shared multiplication overlap. It means that during
short time periods between two adjacent clock cycles the power consumption
of two shares are inherently summed up (probably by different weights). This,
in fact, is comparable to when one attempts to mount a bivariate attack and
combine the leakage of two shares by e.g., summation [12, 26].

We repeated our experiments when the design runs with a frequency of
24MHz. That is the nominal frequency of our evaluation platform SASEBO-GII
and is still much lower than the frequency with which the design in a real-world
scenario, e.g., a crypto co-processor, may operate. A sample power trace of such
situation is shown by Fig. 5(a). Collecting the same number of traces as the
variant design, i.e., 1 000 000, and performing the same evaluations led to the
results presented in Fig. 5. Mutual information result points out the existence
of a univariate leakage, which is confirmed by the result of the attack using the
second-order moments (see Fig. 5(d)).

Our practical experiments indeed verify the statement that by using a slightly
higher clock frequency the leakage of different shares processed in adjacent clock
cycles interfere with each other enabling a successful univariate attack. Please
note that the method we considered in our evaluations is not the sole successful
attack; a univariate MIA [3] with a suitable model can also be successful. It is
worth to mention that we examined the design and observed the same recoverable
univariate leakage for higher clock frequencies (up to 96MHz).

In order to overcome this issue and prevent such destructive overlaps the
designer needs to restrict the clock source to low frequencies. However, its per-
formance (throughput) is bounded which contradicts with the main purpose of
hardware designs. Even if we suppose that the design does not operate with high
clock frequencies, e.g., higher than 3MHz, we have still another option to sum
the multivariate leakages and make a univariate attack possible. This option is
enabled by the measurement setup. In addition to the standard setup, explained
in Section 4, we used an amplifier and a DC blocker to diminish the electrical
noise as well as the quantization noise due to the very small peak-to-peak power

(a)

(b)

(c) (d)

Fig. 5. Original design, 24MHz, standard setup: (a) a sample power trace, (b) mu-
tual information, (c) first-order, and (d) second-order univariate attack result using
1 000 000 traces

consumption of 2mV (see Fig. 4(a)). Figure 7 (in Appendix) shows details of the
standard setup as well as the enhanced one which we call amplified setup.

By our amplified setup we observed an interesting influence which is called
memory effect. It means that the power consumption peak (leakage) due to
an operation at a specific clock cycle is still observable at the next few clock
cycles. The duration of the memory effect is not depending on the used operation
frequency but mostly influenced by the measurement setup and the amplitude
of the leakage. In our case the effect vanishes after around 4µs. That is even
if the crypto device operates at a low clock frequency, e.g., 3MHz, the leakage
observed at a power consumption peak is a sum of leakages (each lowered) of a
couple of previous clock cycles. In order to clearly show this effect we made an
exemplary design and provided the results in the Appendix. It should be noted
that the amplified setup is a usual and common configuration with which the
DPA workstations are equipped. Initially we have not used it in our setup to
gain the memory effect, and later realized its side effect which was unknown to
the community.

Therefore, similar to the case where the target device operates at a high
frequency, the leakage of adjacent clock cycles interfere with each other. This
means that in our target design, where the shares are processed consecutively,
the leakage appearing at a power consumption peak depends on a few shares.
This issue also causes a univariate attack, which considers the leakages at only
one time instance, to be successful. In order to verify our claim we measured the

(a)

(b)

(c) (d)

Fig. 6. Original design, 3MHz, amplified setup: (a) a sample power trace, (b) mu-
tual information, (c) first-order, and (d) second-order univariate attack result using
1 000 000 traces

power consumption of our design using the amplified setup when it operates at
the frequency of 3MHz. The evaluation results showing its vulnerability through
second-order moments is presented by Fig. 6. Moreover, Fig. 9 (in Appendix)
shows that in both scenarios around 400 000 traces are required to reveal the
secret.

In fact, we show that by simply adding a DC blocker and/or an amplifier
to the measurement setup one can overcome the provided protection by making
use of univariate leakages which are indeed a mixture of multivariate leakages
combined by the measurement setup. Of course, the adversary has an option to
combine the multivariate leakages (when measured using the standard setup)
and perform a multivariate attack. Here there is an interesting question: which
of these methods, i.e., combining the leakages of different points, the amplified
setup, or a high clock frequency, is more efficient? We deal with this issue in
Appendix. In short, our experimental results show that the use of amplified
setup significantly improves the attack efficiency. It can halve the number of
required traces compared to the best combining method we could apply.

We showed that temporal separation of computations of e.g., a shared mul-
tiplication is not a suitable decision to counteract univariate attacks. A solution
which we suggest is to make sure that there is a considerable timing gap between
the processes of different shares of a secret. In order to realize such a scenario
one needs to use more instances of e.g., the S-box module and interleave their
process in time domain. This indeed does not increase the throughput while us-

ing more area, but it can provide more robustness against our considered attacks
and scenarios.

6 Conclusions

In this work we have demonstrated how to correctly implement a provably-secure
glitch-resistant masking scheme of [21]. By making certain that in each point in
time only operations on a single share are performed, there should in theory exist
no exploitable univariate leakage. It is also confirmed by our practical evaluations
when using a low operation frequency and a basic measurement setup.

However, we provided practical evidences that a simple separation of the
operations in the time domain in itself is not sufficient if different shares of a
sensitive value are processed in consecutive clock cycles. Because of the high fre-
quencies usually used in hardware designs, the dynamic power consumption of
different clock cycles overlap and are inherently summed up by the device itself.
Even if a low clock frequency is forced by the design, we demonstrated how a
measurement setup configuration, which is common for low-power platforms like
SASEBO-GII, enables successful exploitation of multivariate leakages using a
simple univariate attack flow. This is especially bothersome since commercially
available DPA-workstations are also equipped with the discussed enhanced mea-
surement setup. Its memory effect can cause a univariate-resistant design to fail
the evaluation procedure. On the other hand, the enhanced measurement setup
may have adverse effects when evaluating a univariate-vulnerable target. Be-
cause of the overlap of adjacent power peaks, in this case it mainly increases the
noise and thereby lowers the detection probability of the leakages.

Acknowledgment The authors would like to thank Emmanuel Prouff and
Thomas Roche for their helpful discussions and comments. In this project Oliver
Mischke has been partially funded by the European Union, Investing in your
future, European Regional Development Fund.

References

1. Side-channel Attack Standard Evaluation Board (SASEBO). Further information
are available via http://www.risec.aist.go.jp/project/sasebo/.

2. Error in Report 2011/516: Protecting AES with Shamir’s Secret Sharing Scheme
by Louis Goubin and Ange Martinelli. Discussion forum of ePrint Archive: Re-
port 2011/516 http://eprint.iacr.org/forum/read.php?11,549,549#msg-549,
Sep 2011.

3. L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and N. Veyrat-
Charvillon. Mutual Information Analysis: a Comprehensive Study. J. Cryptology,
24(2):269–291, 2011.

4. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz. Threshold Implementa-
tions of All 3× 3 and 4× 4 S-Boxes. In CHES 2012, volume 7428 of LNCS, pages
76–91. Springer, 2012.

5. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, 2004.

6. D. Canright and L. Batina. A Very Compact "Perfectly Masked" S-Box for AES.
In ACNS 2008, volume 5037 of LNCS, pages 446–459. Springer, 2008. the corrected
version at Cryptology ePrint Archive, Report 2009/011.

7. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, 2002.

8. L. Goubin and A. Martinelli. Protecting AES with Shamir’s Secret Sharing Scheme.
In CHES 2011, volume 6917 of LNCS, pages 79–94. Springer, 2011.

9. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO 1999,
volume 1666 of LNCS, pages 388–397. Springer, 1999.

10. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, 2007.

11. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In CHES 2005, volume 3659 of LNCS, pages 157–171.
Springer, 2005.

12. A. Moradi. Statistical Tools Flavor Side-Channel Collision Attacks. In EURO-
CRYPT 2012, volume 7237 of LNCS, pages 428–445. Springer, 2012.

13. A. Moradi and O. Mischke. How Far Should Theory Be from Practice? - Evalu-
ation of a Countermeasure. In CHES 2012, volume 7428 of LNCS, pages 92–106.
Springer, 2012.

14. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power Analysis
Collision Attack. In CHES 2010, volume 6225 of LNCS, pages 125–139. Springer,
2010.

15. S. Murphy and M. J. B. Robshaw. Essential Algebraic Structure within the AES.
In CRYPTO 2002, volume 2442 of LNCS, pages 1–16. Springer, 2002.

16. S. Nikova, C. Rechberger, and V. Rijmen. Threshold Implementations Against
Side-Channel Attacks and Glitches. In ICICS 2006, volume 4307 of LNCS, pages
529–545. Springer, 2006.

17. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementations of
Non-Linear Functions in the Presence of Glitches. In ICISC 2008, volume 5461 of
LNCS, pages 218–234. Springer, 2008.

18. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. J. Cryptology, 24(2):292–321, 2011.

19. E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A Side-Channel Analysis
Resistant Description of the AES S-Box. In FSE 2005, volume 3557 of LNCS,
pages 413–423. Springer, 2005.

20. A. Poschmann, A. Moradi, K. Khoo, C.-W. Lim, H. Wang, and S. Ling. Side-
Channel Resistant Crypto for Less than 2,300 GE. J. Cryptology, 24(2):322–345,
2011.

21. E. Prouff and T. Roche. Higher-Order Glitches Free Implementation of the AES
Using Secure Multi-party Computation Protocols. In CHES 2011, volume 6917 of
LNCS, pages 63–78. Springer, 2011.

22. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In CHES
2010, volume 6225 of LNCS, pages 413–427. Springer, 2010.

23. T. Roche and E. Prouff. Higher-order glitch free implementation of the AES using
Secure Multi-Party Computation protocols - Extended version. J. Cryptographic
Engineering, 2(2):111–127, 2012.

24. A. Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613,
1979.

25. F.-X. Standaert, T. Malkin, and M. Yung. A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In EUROCRYPT 2009, volume 5479 of
LNCS, pages 443–461. Springer, 2009.

26. F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard. The World Is Not Enough: Another Look on Second-
Order DPA. In ASIACRYPT 2010, volume 6477 of LNCS, pages 112–129. Springer,
2010.

Appendix A - Measurement Setups

The details of our two different measurement setups are depicted by Fig. 7. We
should emphasize that one can use a differential probe to measure the voltage
drop of the 1Ω resistor. However, it usually leads to higher electrical noise be-
cause the probe contains several active components that can add noise to power
traces. We have indeed examined such a setup using a LeCroy AP 033 differ-
ential probe in our platform, and it led to much higher noise compared to the
standard setup. The DC blocker we used is a BLK-89-S+ from Mini-Circuits
and indeed is a high-pass filter which stops frequencies below 100kHz. We also
used two different amplifiers, ZFL-1000LN+ from Mini-Circuits and PA303 from
Langer EMV-Technik.

We made an exemplary design containing only an 8-bit key XOR followed
by an unprotected AES S-box. Sequentially we gave two plaintext bytes to this
module while after the computation of the XOR and the S-box (in one clock cy-
cle) the circuit is kept idle for 16 clock cycles. This scenario can be clearly seen
in the sample power trace shown by Fig. 8(a). While giving random plaintext
bytes to the design running at 3MHz we collected 100 000 traces in both set-
tings, i.e., standard and amplified setups. Performing the same attack as before,
i.e., correlation collision attack using the first-order moments, led to the results
shown by Fig. 8(b) and Fig. 8(c). The memory effect as discussed in Section 5
is clearly visible when the amplified setup is used. The leakage due to the S-box
computation is visible during the next 10 clock cycles.

We should stress that this effect is visible when each of the aforementioned
amplifiers is used. Existence of each of the DC blocker and the amplifier in the
measurement setup leads to the same effect. However, having only the DC blocker
without the amplifier the effect is less visible and requires slightly more traces. In
fact, it is related to the high-pass filter available at the input of the DC blocker

DC 50 Ω
Mode

AC 1 MΩ
Mode

CRYPTO
CORE

Amp

DC blocker

Vcc

Vdd

R

Fig. 7. Measurement setups: (left) standard and (right) amplified

(a) standard setup

(b) standard setup (c) amplified setup

Fig. 8. Exemplary design, 3MHz: (a) a sample power trace, (b) and (c) first-order
univariate attack result using 100 000 traces

and the amplifier. The successful attack on our original target design (shown in
Fig. 6) can be repeated using either the DC blocker or solely the amplifier.

Appendix B - Comparison with Leakage Combining

In order to answer whether our solutions to convert multivariate leakages to uni-
variate are more efficient than combining the leakage points of traces manually,
i.e., a classical scenario, we considered the following cases:

– [SUM2] combining two power consumption points of each trace with a dis-
tance of one clock cycle by means of addition.

– [MUL2] combining two power consumption points of each trace with a dis-
tance of one clock cycle by means of multiplication.

– [SUM3] combining three power consumption points of each trace with a dis-
tance of one clock cycle per each two consecutive ones by means of addition.

The mutual information curves as well as the attack results when each of
these preprocessing scenarios is taken are shown in Fig. 9. We have used those
10 000 000 traces measured using the standard setup from the original design
when it operated at the frequency of 3MHz. Note that we omitted to show the
unsuccessful attack results, e.g., those which are based on the first-order mo-
ments in the case of SUM2 and SUM3. The results shown in Fig. 9 indicate
that all these three combining scenarios – as expected – are effective, and one
can perform a successful attack. The results also show that with none of these
preprocessing methods one can run a successful attack using less than 1 000 000
traces. However, both an amplified setup or a higher frequency can cause this
number to decrease to less than 400 000. We have also compared all the combin-
ing methods as well as the measurement setups by means of their corresponding
mutual information in presence of virtually added Gaussian noise. The result is
shown by Fig. 10.

(a) MI-SUM2, original, 3MHz, standard (b) MI-MUL2, original, 3MHz, standard

(c) Var-SUM2, original, 3MHz, standard (d) Mean-MUL2, original, 3MHz, standard

(e) Var-SUM2, original, 3MHz, standard (f) Mean-MUL2, original, 3MHz, standard

(g) MI-SUM3, original, 3MHz, standard (h) Var-SUM3, original, 3MHz, standard

(i) Var-SUM3, original, 3MHz, standard (j) Mean, variant, 3MHz, standard

(k) Var, original, 24MHz, standard (l) Var, original, 3MHz, amplified

Fig. 9. Evaluation results, combining methods vs. measurement setups

−2 −1 0 1 2 3
−6.7

−6.6

−6.5

−6.4

log(added noise standard deviation)

ln
(M

I)

3MHz Amplified
24MHz Standard

−2 −1 0 1 2 3

−9

−8.6

−8.2

−7.8

log(added noise standard deviation)

ln
(M

I)

SUM2
MUL2
SUM3
no preprocess

Fig. 10. Mutual information over noise standard deviation

