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Abstract. We (re-) introduce the Reduce-By-Feedback scheme given
by Vielhaber (1987), Benaloh and Dai (1995), and Jeong and Burleson
(1997).
We show, how to break RSA, when implemented with the standard ver-
sion of Reduce-by-Feedback or Montgomery multiplication, by Differen-
tial Power Analysis. We then modify Reduce-by-Feedback to avoid this
attack. The modification is not possible for Montgomery multiplication.
We show that both the original and the modified Reduce-by-Feedback
algorithm resist timing attacks.
Furthermore, some VLSI-specific implementation details (delayed carry
adder, re-use of MUX tree and logic) are provided.
Keywords: Reduce-by-Feedback, modular multiplication, Montgomery
multiplication, timing analysis, differential power analysis.

1 Introduction

RSA, Diffie-Hellman (over Fp), and elliptic curve schemes (over Fp) use modular
multiplication as their computational kernel. This is usually implemented as
Montgomery multiplication [12] (1985), which is fast and has timing independent
of the values. Montgomery treats the bits of the first factor to be multiplied from
the LSB towards the left, and works with the residue classes [x ·(2L)−1] mod N ,
where [x] are the standard residue classes, and L is the length (in bits) of the
operands, e.g. L = ⌈log2(N)⌉.

There exists, however, an algorithm that avoids the mapping from [x] to
[x ·(2L)−1] mod N , by working the bits of the first factor from MSB downwards
to the right: Reduce-by-Feedback [15, 16, 20] (1987) (Sections 3 and 4).

The Reduce-by-Feedback algorithm preserves the immunity against timing
attacks (Section 5), the constant shift amount of 1,2,3, or 4 bits per clock cycle,
depending on the implementation effort, and all other advantages of Montgomery
multiplication.

Additionally, a DPA attack against RSA implemented by Montgomery mul-
tiplication or Reduce-by-Feedback (Section 6), can be avoided by a modification



of Reduce-by-Feedback (Section 7). This modification can not be applied to
Montgomery multiplication, as far as we can see.

An overview about implementations of modular multiplication is given in [6].

2 Multiplication by Shift-and-Add

It is worthwhile to recall the Shift-and-Add algorithm, since Reduce-by-Feedback
is constructed completely analogously, retaining its properties:

Algorithm 1 Shift-and-Add

Parameters:

operand length l [e.g . = 1024]
shift length per clock cycle z [e.g . = 3], with Z := 2z [e.g . = 8]

IN A,B < 2l // factors, where A =
∑l−1

k=0
ak2k =

∑⌈l/z⌉−1

k=0
αkZ⌈l/z⌉−1−k

OUT M // product M = A · B

Algorithm:

M := 0
FOR k := 0 TO ⌈l/z⌉ − 1

M := (M << z) + αk · B
ENDFOR

Some trivial, but remarkable properties of Shift-and-Add are:

(i) The coefficient αk lies in the range {0, 1, . . . , Z−1}, thus Z possible multiples
of B are to be taken into account. Note that α0 is the MSB part.

(ii) We have exactly ⌈l/z⌉ cycles to go in the loop, a fixed timing.

(iii) It is sufficient to store the multiples for α ≥ Z/2, and α = 0, by supplying
shifted copies for the smaller cases, e.g. cases 3 · B, 6 · B (for α = 3 and 6)
from 12 · B, α = 12 for z = 4, Z = 16.

(iv) The “1-off trick” [15, 16, 20, 7]: A further saving is possible by replacing the
odd multiples by the next higher even ones, and subtract Z · B in the next
clock cycle:
((αk · B) << z) + αk+1 · B = (((αk + 1) · B) << z) + (αk+1 − Z) · B.

Putting Cα,k := 1, iff αk is odd, 0 otherwise, we then set

αk := αk + Cα,k − Z · Cα,k−1 and M := (M << z) + αk · B.

Hence, (iii) and (iv) combined leave us with the necessary multiples
±(Z/2 + 2),±(Z/2 + 4), . . . ,±Z, 0, where we first applied (iv), then (iii).

While these are still Z/2 choices, and including shifts we again have Z mul-
tiples, as are necessary by using base Z, the ± comes for free in hardware as
two’s complement, taking the inverse outputs Q of the register latches. Only the
Z/4 multiples Z/2 + 2, Z/2 + 4, . . . , Z have to be stored in hardware.
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3 Reduce-by-Feedback

History:
This algorithm was first introduced in 1987 by Vielhaber [15],
also [16], and in 1990 the German patent [20] was granted.
Beth and Gollmann describe the algorithm in [2], in 1989.
Benaloh and Dai rediscovered the algorithm and gave a talk at
the Rump Session of CRYPTO’95 [1], patenting it in the United
States in 1998 as [19].
Finally, Jeong and Burleson re-re-discovered the algorithm in
1997, when it appeared in the journal article [7].

3.1 The Algorithm

The original idea stems from the analogy with LFSR’s: The z bits running off
in front for each Shift-and-Add step are fed back into the accumulator:

Let K ≡ 2l+2z+1 mod N, 0 ≤ K < N .
Also, partition M into its lower l + z + 1 bits and the higher part,

MH = ⌊M/2l+z+1⌋,ML = M mod 2l+z+1, M = (MH |ML). Then

(MH |ML) << z = MH · 2l+2z+1 + ML · 2z ≡ MH · K + ML · 2z mod N

The Shift-and-Add-with-Reduce-by-Feedback algorithm now runs as follows
(note that µk is MH):

Algorithm 2 Shift-and-Add-with-Reduce-by-Feedback
M := 0, Cα,−1 := 0, Cµ,−1 := 0
FOR k := 0 TO ⌈l/z⌉ − 1

Cα,k := αk mod 2, αk := αk + Cα,k − Z · Cα,k−1

µk := ⌊M/2l+z+1⌋
Cµ,k := µk mod 2, µk := µk + Cµ,k − Z · Cµ,k−1

M := ((M mod 2l+z+1) << z) + αk · B + µk · K
ENDFOR

// M = A · B mod N, 0 ≤ M < 2l (not necessarily M < N)

Reduce-by-Feedback preserves the 4 properties of Shift-and-Add:

(i) The standard range for the multiples of K is µk ∈ {−1, 0, 1, . . . , 2z}.
(ii) The FOR loop excutes exactly ⌈l/z⌉ times, each run comprising a shift and 2

additions. This amount is independent of the values.
(iii) The multiples of K required according to (i) can be restricted to µk ∈

{0} ∪ {Z/2 + 1, . . . , Z}, supplying the others by shifting.
(iv) The odd multiples can be traded for negative ones, applying the “1-off trick”.

Hence in total we need αk, µk ∈ {0,±(Z/2 + 2),±(Z/2 + 4), . . . ,±Z}, with
0 and ± for free in hardware.

Reduce-by-Feedback is thus completely analogous to Shift-and-Add.
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3.2 Overflow Avoidance

We check overflow avoidance by proving the inequality

−Z ≤ µk = MH ≤ Z,∀k

by induction.
We have 0 ≤ B,K < 2l and 0 ≤ ML < 2l+z+1. Including the “1-off trick”,

we require −Z ≤ αk, µk ≤ Z, and αk, µk being even. This is true for αk,∀k and
can be assumed for µ0 = 0 at the start.

Then

−1 · 2l+z+1 ≤ (ML << z) + αk · B + µk · K < 2l+z+1 · (2z + 1/2 + 1/2)

i.e. −1 ≤ M+

H ≤ 2z. As with Cα, we put Cµ,k = 1, if µk is odd and has to be
increased by the “1-off trick”, Cµ,k = 0 otherwise, and then have

µk+1 = M+

H + Cµ,k+1 − Cµ,k · Z ∈ {−Z,−Z + 2, . . . , Z − 2, Z},

which proves the induction step.
Therefore, the accumulator M never exceeds the range −1 · 2l+z+1 ≤ M <

(Z + 1) · 2l+z+1 and the even multiples of B up to ±Z · B are sufficient.

4 Implementation Issues

4.1 Re-use of MUX Tree

Since the choice of the correct multiples, αk ·B +µk ·K, is completely analogous
for B and for K, we may use the same logic (calculation of decision variables,
MUX tree, shifter) first for the part αk · B (in one half clock cycle), and then
for µk · K (in the other half clock cycle), as described in [15, 16, 20].

This 1:1 analogy between Shift-and-Add and Reduce-by-Feedback was the
central idea of the algorithm and leads to very compact VLSI designs:

Mapping the implementation in [16] to current 65 nm rules, and näıvely as-
suming a shrinking factor (65/1000)2, this would roughly lead to 13·(1000/65)2 ≈
3000 bits/mm2, or a full 4096 bit RSA with control unit on about 1.5 square
millimeters.

4.2 Delayed-Carry-Adder

Brickell [3] introduced the Delayed-Carry-Adder, a chain of halfadders instead of
full adders, and where the resulting double register has the property ci+1∧si = 0.

The advantage of the Delayed-Carry-Adder is the locality of carries. We do
not have to wait for carry propagation and thus addition is fast. At the end
of a multiplication, however, the final Delayed-Carry result has eventually to be
added into the standard form, which may lead to a timing attack (see Section 5).
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Nevertheless, without carry-save techniques, this carry propagation problem
would arise at each addition intead of just once at the end.

Also, we have to take extra care when dealing with the upper part MH (µk)
of the accumulator, see next subsection.

The addition (c, s)+ := (c, s) + b + k usually requires two full adders in
carry-save technique. With Brickell’s delayed-carry scheme, we add as follows,
where (c, s) is the delayed-carry register, (b) and (k) are the terms α · B and
µ·K, respectively. t, u, v are intermediate sum terms, d, e, f, g, h are intermediate
carries. In NAND-logic, the variable c will only be used invertedly.

Standard Boolean function Using Nand-2 gates

di := si ∧ bi, ti := si ⊕ bi di := si ∧ bi, ti := si ⊕ bi

ei := ti ∧ ki, ui := ti ⊕ ki ei := ti ∧ ki, ui := ti ⊕ ki

fi := ci ∨ di−1 (which are not both 1, fi := ci ∧ di−1

due to ci+1 ∧ si = 0)

gi+1 := ui ∧ fi, vi := ui ⊕ fi gi+1 := ui ∧ fi, vi := ui ⊕ fi

hi+1 := ei ∨ gi (not both 1: ei = 1 ⇒ ui = 0) hi+1 := ei ∧ gi

c+
i+1 := vi ∧ hi, s+

i := vi ⊕ hi c+
i+1 := vi ∧ hi, s+

i := vi ⊕ hi

Table 1. Boolean logic for Delayed-Carry adder

This leaves us with 4 halfadders plus two or’s, the equivalent of two full
adders. We thus need the same number of gate equivalents, but the result now
has the Delayed-Carry Property ci+1 ∧ si = 0, which is crucial, when calculating
µk (see next paragraph).

4.3 How to keep the invariant when using the delayed-carry

representation

We feed back the z leading MSB bits, which have to be in the range −1, 0, . . . , Z
(assumption for overflow avoidance).

With delayed-carry, we have ci+1 ∧ di = 0, hence the following patterns are
the highest values possible (shown for the case z = 3, Z = 8), Table 1.

As can be seen in Table 2, cases 4 and 5 would lead to an overflow (MH > Z =
8) due to the Delayed-Carry representation. We avoid this by looking further to
the right and (cases 1 and 2) detect and avoid a subsequent overflow already in
the previous cycle.

4.4 Fast computation of MUX control variables

It is crucial that the clock frequency depends only on the data propagation
within the bit slices, and not on the control module.

In each clock cycle, we add α · B and µ · K to the delayed-carry register
(c, s). In the two previous half cycles, we choose these multiples by the same
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1 c2l+z+1+2,1,0;−1,−2 0 0 0 0 1 sum is 8 with carry, OK, avoids case 4
s2l+z+1+2,1,0;−1,−2 1 1 1 1 1
MH,2l+z+1+3,2,1,0;−1,−2 1 0 0 0 0 0

2 c2l+z+1+2,1,0;−1,−2 0 0 0 1 1 sum is 8 with carry, OK, avoids case 5
s2l+z+1+2,1,0;−1,−2 1 1 1 1 0
MH,2l+z+1+3,2,1,0;−1,−2 1 0 0 0 0 1

3 c2l+z+1+2,1,0;−1,−2 0 0 1 1 1 sum is 8, OK
s2l+z+1+2,1,0;−1,−2 1 1 1 0 0
MH,2l+z+1+3,2,1,0;−1,−2 1 0 0 0 1 1

4 c2l+z+1+2,1,0;−1,−2 0 1 1 1 1 sum is 9, to be avoided by case 1
s2l+z+1+2,1,0;−1,−2 1 1 0 0 0
MH,2l+z+1+3,2,1,0;−1,−2 1 0 0 1 1 1

5 c2l+z+1+2,1,0;−1,−2 1 1 1 1 1 sum is 11, to be avoided by case 2
s2l+z+1+2,1,0;−1,−2 1 0 0 0 0
MH,2l+z+1+3,2,1,0;−1,−2 1 0 1 1 1 1

Table 2. MSB sum of Delayed-Carry-Adder

hardware (MUX, shifter, logic), which is not time-critical for α · B, since in
principle, all values α are known. On the other hand, µ depends on the addition
just performing in the half cycle (k + 1,H), while the next multiple µ · K must
be selected in (k + 1, L). We proceed as follows (see [15][16]):

Clock Half Selection Computation
cycle cycle

k H αk · B (MH |ML)k := . . .
k L µk · K

k + 1 H αk+1 · B (MH |ML)k+1 := ((ML)k << z) + αk · B + µk · K
k + 1 L µk+1 · K

Table 3. Precomputation of control variables

Having calculated (MH)k+1 in half cycle (k + 1,H), immediately afterwards
we need µk+1 in half cycle (k+1, L). We therefore have to precompute as much as
we can: In (k,H), we already compute a partial sum (MH)k ·Z+αk ·B for the bit
positions of MH , including 2 more bits to the right, as described in the previous
paragraph, to avoid possible overflow in the future. We then add the part µk ·K
in (k, L), for these bit positions. We also add 0,1,2,3 to obtain the four possible
final values for µ, and for all four possibilities, we precompute the MUX control
variables for the next choice of µ · K. The only missing part are up to 3 carries
from the lower part, ML, of the sum. In this way, terminating (k + 1,H), we
obtain the new sum (MH)k+1, and immediately select the MUX-control values
to fetch µk+1 · K in (k + 1, L) from the 4 precomputed sets.
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The full-custom implementation in [16] achieves a control unit faster than
the bit slices. We have this design goal also for the FPGA implementation. It
remains to be verified though, whether this will apply or whether the FPGA
architecture (6-input LUTs instead of a chain of half-adders) will actually make
the bit slices even faster.

5 Timing Attacks

We may trivially find the Hamming weight of the exponent by just counting
multiplications and squarings. To prevent this, we would have to either do both
in parallel, wasting space, or introduce dummy multiplications, wasting time.

In any case, this issue is independent of the implementation of modular mul-
tiplication.

As Kocher [9] points out, however, apart from the Hamming weight, we can
indeed recover the full exponent — provided that multiplication time is sensitive
on the values, some lead to faster calculation than others.

The attack by Schindler [13] on Montgomery multiplication can easily be
overcome by introducing a dummy subtraction, costing a single clock cycle.
There is no analogue of this attack against Reduce-by-Feedback.

Therefore, with Reduce-by-Feedback as well as with Montgomery multiplica-
tion (+dummy), timing attacks are ruled out during the modular multiplication,
taking in any case exactly ⌈l/z⌉ cycles. The result is then in a delayed-carry- or
carry-save-register.

The final carry however, may introduce timing information. Either

(i) we use carry-look-ahead logic, space-intensive, or

(ii) we keep the result in delayed-carry-form, space-intensive, or

(iii) we wait until the longest carry chain (l + z bits) will have passed, time-
intensive, or

(iv) we use interrupt techniques, efficient, but time-variant.

The variation due to carries in case (iv) is the only potential information
leak for a timing attack. This is though independent of Reduce-by-Feedback (or
Montgomery multiplication), but a consequence of using carry-save or delayed-
carry techniques.

Up to here, this concerned the modular multiplication as building block. As to
the exterior loop, exponentiation, Square-and-Multiply, there must of course be
the same number of clock cycles between any two multiplications and/or squar-
ings to avoid a timing/DPA mix just concentrating on the transition between two
of them. Otherwise, use the double-add scheme by Joye [8] in the multiplicative
version “square-multiply”, wasting time though. However, this does not concern
modular multiplication proper, but exponentiation.
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6 How to break RSA with Differential Power Analysis

Both Reduce-by-Feedback and Montgomery multiplication make RSA suscep-
tible to the following DPA [10] attack. For other attacks against RSA see the
power attack by Yen et al. [18], and the timing attack by Miyamoto et al. [11].

Now to our DPA attack: Every multiplication (in this section this includes
squarings) starts with an empty accumulator M = 0, and also a zero adjustment
value µ0 (both for Reduce-by-Feedback and Montgomery multiplication).

The first factor, A, will on average start with z zeroes every Z’th multipli-
cation. In this case, α0 · B = 0, while the term will be nonzero otherwise.

For µ0 = α0 = 0 (in terms of Reduce-by-Feedback), we compute

M+ = (M << z) + α0 · B + µ0 · K = (0 << z) + 0 + 0 = 0,

hence the register M was empty before the step and is overwritten again with
zeroes.

If, on the other hand, α0 6= 0,

M+ = (M << z) + α0 · B + µ0 · K = 0 + α0 · B + 0 6= 0,

and roughly half of the flip-flops of register M will change state from 0 to 1.
This gives a strong difference in power consumption during this first cycle of the
multiplication, compared to M+ = M = 0, a “point-of-interest” in terms of the
template attack [4].

We focus only on this information (about half a bit for z = 3) and will assume
that we can distinguish between A < 1

Z · 2l, case α0 = 0, and A ≥ 1

Z · 2l, case
α0 6= 0, for every multiplication step.

We assume that we have access to the public RSA modulus N and to several
known ciphertexts χ1, χ2, . . . . We observe the decryptions χd

i mod N for a fixed
unknown exponent d (unblinded case). We compute the multiplication chains for
all 2L possible initial segments of d of a certain length L. These segments will
consist of L squarings and furthermore L′, 0 ≤ L′ ≤ L, multiplications, depend-
ing on the number of 1’s in the segment. For each hypothetical segment, we
do the corresponding calculations (multiplications and squarings) and memorize
the sequence of initial coefficients α0 of length L + L′.

We now observe the actual H/W decryption and obtain a sequence {= 0, 6=
0}2L, whose first L+L′ components we check against all possible initial segments.

The per-symbol information is −
(

log2

(

1

Z

)

· 1

Z + log2

(

Z−1

Z

)

· Z−1

Z

)

= 1.0,
0.811, 0.544, and 0.337 bits for z = 1, 2, 3, and 4, respectively. Hence, 1,2,2,3
decryptions χi should be sufficient.

The crucial case is, however, the large set of initial segments leading to the
sequence ( 6= 0)L′

, in the case that this is the actual observation. We expect this

to happen with probability
(

Z−1

Z

)L′

, thus leading to
(

Z−1

Z

)L′

×2L cases. We set
L′ := 0.5L from now on and consider C decryptions χ1, . . . , χC , whose outcomes
(α = 0 or α 6= 0) we assume independent.
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The expected number of segments which always lead to ( 6= 0)L+L′

, in all C
decryptions, is then

(

Z − 1

Z

)1.5L·C

× 2L.

To have uniqueness, we want this size down to 1, hence
(

Z−1

Z

)1.5L·C
× 2L =

1 or C = −1/(1.5 log2(7/8)), which gives C = 0.67, 1.61, 3.47, and 7.16 for
z = 1, 2, 3, and 4, respectively. Therefore, C ≥ Z/2 samples (asymptotically
Z · ln(2)/1.5 samples) are necessary.

We now compare the C ≥ Z/2 sequences actually observed from {= 0, 6=
0}L′

with all initial segments of d, saving only the matches, where under ideal
conditions, only a single match should occur. These matches are then extended,
compared to the observations, and so forth, until recovering the full secret RSA
exponent d.

Certainly, there will be noise in our measurements, so quite some more than
Z/2 ciphertexts will be needed under realistic conditions.

And that breaks RSA!

7 How to repair Reduce-by-Feedback to avoid the DPA

attack on RSA

In this section, we suggest modifications to strengthen Reduce-by-Feedback
against Differential Power Analysis.

As we have seen, the initial all-zero phase is exploitable by DPA. We can
neither avoid µ0 = 0 in the first step, nor α0 = 0 once in a while — if using
directly the z bits of A, and MH , respectively.

We can, however, avoid M = 0 7→ M+ = 0 in this cases, by using the same
“1-off” trick as in property (iv) of Shift-and-add and Reduce-by-Feedback:

0 = 1 + (−1)

We just never add a zeroth multiple, but instead add B once, and subtract it (Z-
fold) in the next step. This brings us back to zero every second step. Assuming
B to have 50% 1’s, the effect is flipping back-and-forth half of the register bits.

To be explicit, we use the case z = 3, Z = 8 in the sequel. The columns “old”
show the regular case [15, 16, 20], applying properties (iii) and (iv), including
a multiple 0. We also adjust the treatment of values Σ = −1, 1, 2, and 3 to
minimize the information flow (bias) from α, µ to C,A,MH , see columns “new”.

Note that we still use the “1-off trick”, however in an irregular way, so that
the required multiples are no longer just the even ones. In any case, all required
multiples can still be obtained by shifting from only Z/4 values, e.g. 6, and 8.

Description of Table 4, multiples αk, µk from A, MH

The original αk (bits from A), may vary from 0 to Z − 1 = 7, MH (upper part
of M) may vary from −1 to Z = 8. Applying property (iv), a previous odd
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Cα, αk, Σ αk, C+ αk, C+

Cµ MH µk(old) µk(new)
0 −1 −1 0 1 −1 0
0 000 0 0 0 1 1
0 001 1 2 1 1 0
0 010 2 2 0 3 1
0 011 3 4 1 3 0
0 100 4 4 0 4 0
0 101 5 6 1 6 1
0 110 6 6 0 6 0
0 111 7 8 1 8 1
0 1000 8 8 0 8 0

Cα, αk, Σ αk, C+ αk, C+

Cµ MH µk(old) µk(new)
1 −1 −9 −8 1 −8 1
1 000 −8 −8 0 −8 0
1 001 −7 −6 1 −6 1
1 010 −6 −6 0 −6 0
1 011 −5 −4 1 −4 1
1 100 −4 −4 0 −3 1
1 101 −3 −2 1 −3 0
1 110 −2 −2 0 −1 1
1 111 −1 0 1 −1 0
1 1000 0 0 0 1 1

Table 4. Old and new multiples αk, µk

value was adjusted by +1, hence we may have to adjust now (Cα, Cµ = 1) by
−Z = −8, giving an overall sum Σ between −9 and +8. Σ is now split into a
multiple actually added, αk, µk, minus a possible new carry C+

α , C+
µ = 1. In the

original scheme, the multiples were 0,±2,±4,±6, and ±8, while we now have
±1,±3,±4,±6, and ±8, avoiding zero.

Observe that in both cases, all multiples are shifts and negatives of just the
two multiples 6 and 8. Hence, even after the modification, only these 2 multiples
have actually to be stored (and computed).

Description of Table 5, Bias

There is now less bias between Σ,C and the bits of αk, µk. We define bias as
pr(1) − pr(0) (not as pr(1) − 1

2
).

We assume probability 1/8 each for α = 0, . . . , 7. For, µ, by folding 3 equidis-
tributions over the intervals [0, 8[, [−1/2, 1/2[, and [−1/2, 1/2[, we obtain proba-
bility 1/8 each for µ = 1, . . . , 6, probability 5/48 for µ = 0 and 7, and probability
1/48 for µ = −1 and 8, each comprising the interval MH ∈ [µ, µ + 1[.

C = 0 and C = 1 are each assigned probability 1/2.
We consider the bias of the bits of C and Σ (internal values revealing infor-

mation about the actual contents of A and M), conditional on certain value sets
for α, µ, namely zero, positive, shifts of 8, and shifts of 6 (potentially observable
by DPA).

We now have probability zero for α = 0, which was 1/8 before. Neither can
we infer anything on observing a shift of 8 (1,2,4,8) vs. a shift of 6 (3,6).

What remains is a bias from α positive to C = 0 (which is almost a tautol-
ogy). The fact α > 0 , however, is a mix of the cases α = 1, 2, 3, 4, 6, 8, far more
difficult to analyze by DPA than the distinction α = 0 vs. α 6= 0, now ruled out.

We now give the complete Shift-and-Add-with-Reduce-by-Feedback algo-
rithm for z = 3, including the mentioned modifications, and the final adjustment
from delayed-carry to a single register.
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C|α Σ2|α Σ1|α Σ0|α C|µ Σ2|µ Σ1|µ Σ0|µ
α, µ = 0 new=old 0 0 0 0 0 0 0 0
α, µ > 0 new −1 0 0 0 −23/24 1/24 1/24 1/24
α, µ > 0 old −1 1/7 1/7 1/7 −1 −2/21 −2/21 −2/21
α, µ ∈ {±1,±2,±4,±8} new=old 0 0 0 0 0 0 0 0
α, µ ∈ {±3,±6} new=old 0 0 0 0 0 0 0 0

Table 5. Bias of C, Σ, conditional on α, µ

Algorithm 3 Shift-and-Add-with-Reduce-by-Feedback
IN A,B,N // each at most l bits long, N odd
OUT M // the product M = A · B mod N, 0 ≤ M < 2l (not necessarily M < N)
// M is actually stored in a delayed-carry register (c, s). Table 2 :
const mult[-9..8] = (−8,−8,−6,−6,−4,−3,−3,−1,−1, 1, 1, 3, 3, 4, 6, 6, 8, 8)
const C[-9..8] = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0)
M := 0, Cα := 0, Cµ := 0
FOR k := 0 TO ⌈l/z⌉ − 1

α := 4 · a3k+2 + 2 · a3k+1 + 1 · a3k − 8 · Cα

α := mult[α], Cα := C[α]
µ := ⌊M/2l+z+1⌋ − 8 · Cµ

µ := mult[µ], Cµ := C[µ]
M := ((M mod 2l+z+1) << z) + α · B + µ · K

ENDFOR

// Multiply by 29

FOR k := 1 TO 3

α := −8 · Cα, Cα := 0
µ := ⌊M/2l+z+1⌋ − 8 · Cµ

µ := mult[µ], Cµ := C[µ]
M := ((M mod 2l+z+1) << z) + α · B + µ · K

ENDFOR

// Divide by 29, leaving M < 2l

FOR k := 1 TO 9

IF M is odd N ′ := N else N ′ := 0
M := (M + N ′) >> 1

ENDFOR

M := C + S // the final carry, using e.g. carry-look-ahead or interrupts

Although N ′ is either N or zero in the last 9 steps, the result (M +N ′) >> 1
will differ from M in about half of the bits in both cases, making DPA based on
flip-flop recharges extremely difficult.

Unfortunately (or luckily, if we want to promote Reduce-by-Feedback), we
see no way to implement this modification with Montgomery multiplication:

The two properties (iii) and (iv) of Shift-and-Add-with-Reduce-by-Feedback
can be mapped to Montgomery multiplication as
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(iii) use shifted multiples (of N) to compensate results terminating in . . . 0, and
(iv) use the 2’s complement of multiples of N terminating in . . . 01 to account
for those terminating in . . . 11.

Again, we have a total of Z/4 multiples physically to be stored, those mul-
tiples of N terminating in . . . 01. However, there seems to be no workaround to
replace the do-nothing (subtract 0 · N) in the case . . . 000 by anything else.

Conclusion

We have (re-)introduced the Reduce-by-Feedback algorithm, which can be seen
as “Montgomery on the high end”, but was inspired by LFSR feedback.

Reduce-by-Feedback is immune against timing attacks (as is Montgomery
multiplication with dummy subtraction), with the possible exception of the final
carry run.

We recalled how to avoid physically storing multiples, by providing shifted
multiples, and using the “1-off trick”, saving 75%.

RSA can be broken by DPA, when executed with Montgomery multiplication,
or the unmodified Reduce-by-Feedback.

We proposed modifications for the choice of multiples of both the second
factor B and the feedback value K ≡ 2l+2z+1 mod N . These modifications di-
minish bias, avoid the multiple zero, and thereby avoid the accumulator being
zero in consecutive time steps. These effects of the modification will diminish
the susceptibility of Reduce-by-Feedback to Differential Power Analysis consid-
erably. In particular, the DPA attack of Section 6 on RSA, exploiting the partial
multiplier zero, is no longer possible.

Replacing a multiple zero with “1+(−1)” by the “1-off trick” is not possible
for Montgomery multiplication. Therefore, the DPA attack against RSA with
Montgomery multiplication is still possible.

We have therefore shown that Reduce-by-Feedback-with-Shift-and-Add is the
method of choice, to implement a timing-resistant and DPA-aware modular mul-
tiplication.
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