
PUFs: Myth, Fact or Busted?
A Security Evaluation of Physically Unclonable

Functions (PUFs) Cast in Silicon

Stefan Katzenbeisser1, Ünal Kocabaş1, Vladimir Rožić3,
Ahmad-Reza Sadeghi2, Ingrid Verbauwhede3, and Christian Wachsmann1

1 Technische Universität Darmstadt (CASED), Germany
katzenbeisser@seceng.informatik.tu-darmstadt.de

{unal.kocabas,christian.wachsmann}@trust.cased.de
2 Technische Universität Darmstadt and Fraunhofer SIT Darmstadt, Germany

ahmad.sadeghi@trust.cased.de
3 KU Leuven, ESAT/COSIC, Leuven, Belgium

{vladimir.rozic,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. Physically Unclonable Functions (PUFs) are an emerging
technology and have been proposed as central building blocks in a va-
riety of cryptographic protocols and security architectures. However, the
security features of PUFs are still under investigation: Evaluation results
in the literature are difficult to compare due to varying test conditions,
different analysis methods and the fact that representative data sets are
publicly unavailable.
In this paper, we present the first large-scale security analysis of ASIC
implementations of the five most popular intrinsic electronic PUF types,
including arbiter, ring oscillator, SRAM, flip-flop and latch PUFs. Our
analysis is based on PUF data obtained at different operating condi-
tions from 96 ASICs housing multiple PUF instances, which have been
manufactured in TSMC 65nm CMOS technology. In this context, we
present an evaluation methodology and quantify the robustness and un-
predictability properties of PUFs. Since all PUFs have been implemented
in the same ASIC and analyzed with the same evaluation methodology,
our results allow for the first time a fair comparison of their properties.

Keywords: Physically Unclonable Functions (PUFs), ASIC implemen-
tation, evaluation framework, unpredictability, robustness

1 Introduction

Physically Unclonable Functions (PUFs) are increasingly proposed as central
building blocks in cryptographic protocols and security architectures. Among
other uses, PUFs enable device identification and authentication [33,28], bind-
ing software to hardware platforms [7,14,4] and secure storage of cryptographic
secrets [37,17]. Furthermore, PUFs can be integrated into cryptographic algo-
rithms [2] and remote attestation protocols [29]. Today, PUF-based security

products are already announced for the market, mainly targeting IP-protection,
anti-counterfeiting and RFID applications [36,11].

PUFs typically exhibit a challenge/response behavior: When queried with a
challenge, the PUF generates a random response that depends on the physical
properties of the underlying PUF hardware. Since these properties are sensitive
to typically varying operating conditions, such as ambient temperature and sup-
ply voltage, the PUF will always return a slightly different response each time it is
stimulated. The most vital PUF properties for PUF-based security solutions are
robustness and unpredictability [1]. Robustness requires that, when queried with
the same challenge multiple times, the PUF should generate similar responses
that differ only by a small error that can be corrected by an appropriate error cor-
rection mechanism. This is an essential requirement in PUF-based applications
that must rely on the availability of data generated by or bound to the PUF and
should be fulfilled under different operating conditions. Unpredictability guaran-
tees that the adversary cannot efficiently compute the response of a PUF to an
unknown challenge, even if he can adaptively obtain a certain number of other
challenge/response pairs from the same and other PUF instances. With a PUF
instance we denote one particular hardware implementation of a PUF design.
Unpredictability is important in most PUF-based applications, such as authenti-
cation protocols, where the adversary could forge the authentication if he could
predict the PUF response. Existing PUF-based security solutions typically rely
on assumptions that have not been confirmed for all PUF types. For instance,
most delay-based PUFs have been shown to be emulatable in software [26], which
contradicts the unpredictability and unclonability properties. Hence, a system-
atic analysis of the security properties of real PUF implementations in hardware
is fundamental for PUF-based security solutions.

In contrast to most cryptographic primitives, whose security can be related
to well established (albeit unproven) assumptions, the security of PUFs relies on
assumptions on physical properties and is still under investigation. The security
properties of PUFs can either be evaluated theoretically, based on mathematical
models of the underling physics [35,30], or experimentally by analyzing PUF im-
plementations [10,34,8,9,16]. However, mathematical models never capture phys-
ical reality in its full extent, which means that the conclusions on PUF security
drawn by this approach are naturally debatable. The main drawback of the ex-
perimental approach is its limited reproducibility and openness: Even though
experimental results have been reported in literature for some PUF implementa-
tions, it is difficult to compare them due to varying test conditions and different
analysis methods. Furthermore, raw PUF data is rarely available for subsequent
research, which greatly hinders a fair comparison.

Our Goal and Contribution. We present the first large-scale security anal-
ysis of ASIC implementations of the five most popular electronic PUF types,
including different delay-based PUFs (arbiter and ring oscillator PUFs) and dif-
ferent memory-based PUFs (SRAM, flip-flop and latch PUFs). Hereby, we focus
on robustness and unpredictability, which are the most vital PUF properties

2

in many security-critical applications. The ASICs have been manufactured in
TSMC 65 nm CMOS technology within a multi-project wafer run and contain
multiple implementations of the same PUF design. Our analysis is based on PUF
data obtained from 96 ASICs at different temperatures, supply voltages and noise
levels that correspond to the corner values typically tested for consumer-grade
IT products. In this context, we developed an evaluation methodology for the
empirical assessment of the robustness and unpredictability properties of PUFs.
Since all PUFs have been implemented in the same ASIC and analyzed with the
same methodology, our results allow for the first time a fair comparison of the
robustness and unpredictability of these PUFs.

Our evaluation results show that all PUFs in the ASIC are sufficiently robust
for practical applications. However, not all of them achieve the unpredictability
property. In particular, the responses of arbiter PUFs have very low entropy,
while the entropy of flip-flop and latch PUF responses are affected by tem-
perature variations. In contrast, the ring oscillator and SRAM PUFs seem to
achieve all desired properties of a PUF: Their challenge/response behavior hardly
changes under different operating conditions and the entropy of their responses
is quite high. Furthermore, the responses generated by different ring oscillator
and SRAM PUF instances seem to be independent, which means that the adver-
sary cannot predict the response of a PUF based the challenge/responses pairs
of another PUF. However, the min-entropy, i.e., the minimum number of random
bits observed in a response of the ring oscillator PUF is low, which means that
some responses can be guessed with high probability.

Outline. We provide background information on PUFs in Section 2 and give
an overview of the ASIC implementation of the analyzed PUFs in Section 3.
We present our evaluation methodology in Section 4 and our analysis results in
Section 5. Finally, we conclude in Section 6.

2 Background on PUFs

A Physically Unclonable Function (PUF) is a function that is embedded into
a physical object, such as an integrated circuit [25,20]. When queried with a
challenge x, the PUF generates a response y that depends on both x and the
unique device-specific physical properties of the object containing the PUF. Since
PUFs are subject to noise induced by environmental variations, they return
slightly different responses when queried with the same challenge multiple times.

PUFs are typically assumed to be robust, physically unclonable, unpredictable
and tamper-evident, and several approaches to quantify and formally define their
properties have been proposed (see [1] for an overview). Informally, robustness
means that, when queried with the same challenge multiple times, the PUF
returns similar responses with high probability. Physical unclonability demands
that it is infeasible to produce two PUFs that are indistinguishable based on their
challenge/response behavior. Unpredictability requires that it is infeasible to pre-
dict the PUF response to an unknown challenge, even if the PUF can be adap-

3

tively queried for a certain number of times. Finally, a PUF is tamper-evident if
any attempt to physically access the PUF changes its challenge/response behav-
ior. The properties required from a PUF strongly depend on the application. For
instance, a PUF with small challenge/response space can be easily emulated by
reading out all its challenge/response pairs and creating a look-up table. While
such a PUF cannot be used directly in authentication schemes (such as in [32]), it
could still be used in a key storage scenario (such as in [17]), where the adversary
is typically assumed not being able to interact with the PUF.

There is a variety of PUF implementations (see [20] for an overview). The
most appealing ones for the integration into electronic circuits are electronic
PUFs, which come in different flavors. Delay-based PUFs are based on race
conditions in integrated circuits and include arbiter PUFs [15,24,18] and ring
oscillator PUFs [6,32,21]. Memory-based PUFs exploit the instability of volatile
memory cells, such as SRAM [7,9], flip-flops [19,16] and latches [31,14].

Note that memory-based PUFs can be emulated in software since the limited
number of memory cells allows creating a look-up table. Further, most delay-
based PUFs are subject to model building attacks that allow emulating the PUF
in software [15,24,18,26]. To counter this problem, additional primitives must
be used: Controlled PUFs [5] and Feed-Forward PUFs [22] use cryptographic
functions or XOR-networks in hardware, respectively, to hide the responses of the
underlying PUF. Furthermore, PUFs are inherently noisy and must be combined
with error correction mechanisms, such as fuzzy extractors [3] that remove the
effects of noise before the PUF response can be processed in a cryptographic
algorithm. Typically, the cryptographic and error correcting components as well
as the link between them and the PUF must be protected against invasive and
side channel attacks.

3 The PUF ASIC

Our analysis is based on data obtained from 96 ASICs that have been manu-
factured in TSMC 65 nm CMOS technology within a Europractice multi-project
wafer run. The ASIC has been designed within the UNIQUE4 research project.
Each ASIC implements multiple instances of three different memory-based PUFs
(SRAM, flip-flop and latch PUFs) and two different delay-based PUFs (ring oscil-
lator and arbiter PUFs). The main characteristics and number of PUF instances
in the ASICs are shown in Table 1. Furthermore, the ASIC is equipped with
an active core that emulates the noisy working environment of a microprocessor.
When enabled, this core performs AES encryption during the PUF evaluation.

The implementation of the arbiter PUF follows the basic approach presented
by Lee et al. [15] and consists of 64 delay elements and an arbiter. The delay
elements are connected in a line, forming two delay paths with an arbiter placed
at the end. Each challenge corresponds to a different configuration of the delay
paths. More detailed, each delay element has two inputs and two outputs and

4 http://www.unique-project.eu/

4

http://www.unique-project.eu/

Table 1: Physically Unclonable Functions (PUFs) implemented in the 96 ASICs.

PUF class PUF type Number of
instances per

ASIC

Total number
of instances

Challenge
space size

Response
space size

Delay-based Arbiter 256 24, 576 264 2
Ring oscillator 16 1, 536 32, 640 ≈ 215 2

Memory-based SRAM 4 (8 kB) 384 211 232

Flip-flop 4 (1 kB) 384 28 232

Latch 4 (1 kB) 384 28 232

can be configured to map inputs to outputs directly (challenge bit 0) or to switch
them (challenge bit 1). During the read-out of the PUF response, the input signal
propagates along both paths and, depending on which of the paths is faster, a
single response bit is generated. To ensure that the delay difference results from
the manufacturing process variations rather than the routing of the metal lines,
a symmetric layout for the delay elements and full-custom layout blocks were
used. Further, to reduce any bias the capacitive loads of the connecting metal
wires was balanced and a symmetric NAND-latch was used as arbiter.

The ring oscillator PUF uses the design by Suh et al. [32]. Each ring oscillator
PUF consists of 256 ring oscillators and a control logic, which compares the
frequency of two different oscillators selected by the PUF challenge. Depending
on which of the oscillators is faster, a single response bit is generated. The
individual ring oscillators are implemented using layout macros to ensure that
all oscillators have exactly the same design, which is fundamental for the correct
operation of the ring oscillator PUF.

The memory-based PUFs are implemented as arrays of memory elements
(SRAM cells, latches, flip-flops). All these memory elements are bi-stable circuits
with two stable states corresponding to a logical 0 and 1. After power-up, each
memory element enters either of the two states. The resulting state depends
on the manufacturing process variations and the noise in the circuit. When
challenged with a memory address, the PUF returns the 32 bit data word at that
address. The implementations of the memory-based PUFs follow the SRAM PUF
design by Holcomb et al. [9], the flip-flop PUF design by Maes et al. [19] and the
latch PUF design by Su et al. [31]. Latch and flip-flop PUFs are implemented
using the standard cells from TSMC’s 65 nm low-power library. The placement
and implementation of the SRAM cells of the SRAM PUF has been done by
TSMC’s memory compiler. The latch and flip-flop PUFs are based on standard
cells using a clustered strategy, where all latches or flip-flops of the same PUF
instance are grouped together in single block.

The test setup consists of an ASIC evaluation board, a Xilinx Virtex 5 FPGA
and a PC (Figure 1). Each evaluation board can take five ASICs and allows con-
trolling the ASIC supply voltage with an external power supply. The interaction
with the evaluation board and the ASICs is performed by the FPGA, which is
connected to a PC that controls the PUF evaluation process and stores the raw

5

Fig. 1: Test setup with Xilinx Virtex 5 FPGA (left) and ASIC evaluation board
with five PUF ASICs (right).

PUF responses obtained from the ASICs. The tests at different temperatures
have been performed in a climate chamber.

4 Our Evaluation Methodology

Many PUF-based applications require PUF responses to be reliably reproducible
while at the same time being unpredictable (see, e.g., [20,1]). Hence, our empirical
evaluation focuses on robustness and unpredictability.

Notation. With |x| we denote the length of some bitstring x. Let E be some
event, then Pr[E] denotes the probability that E occurs. We denote with HW(x)
the Hamming weight of a bitstring x, i.e., the number of non-zero bits of x. With
dist(x, y) we denote the Hamming distance between two bit strings x and y, i.e.,
the number of bits that are different in x and y.

4.1 Robustness Analysis

Robustness is the property that a PUF always generates responses that are simi-
lar to the responses generated during the enrolment of the PUF. Note that PUFs
should fulfil this property under different operating conditions, such as different
temperatures, supply voltages and noise levels. The robustness of PUFs can be
quantified by the bit error rate BER :=

dist(yEi
,yE5

)

|yE5
| , which indicates the number

of bits of a PUF response yEi
that are different from the response yE5

observed
during enrolment. We determine the maximum BER of all PUF instances in all
ASICs based on challenge/response pairs collected at different ambient tempera-
tures (−40 ◦C to +85 ◦C), supply voltages (±10% of the nominal 1.2V) and noise
levels (active core enabled and disabled), which correspond to the corner values
that are typically tested for consumer grade IT products. This shows the impact
of the most common environmental factors on the BER of each PUF type. We
did not test different noise levels at different temperatures and supply voltages
since most PUFs (except the arbiter PUF) turned out to be hardly affected by
even the maximum amount of noise the active core can generate. An overview
of all test cases considered for robustness is given in Table 2. We estimate the
BER of all PUFs in all ASICs using the following procedure:

6

Table 2: Robustness test cases.

Test Active Core Ambient Temperature Supply Voltage Iter.
Case Off On −40 ◦C +25 ◦C +85 ◦C 1.08V 1.2V 1.32V k

E1 × × × 20
E2 × × × 40
E3 × × × 20

E4 × × × 30
E5 × × × 60
E6 × × × 30

E7 × × × 20
E8 × × × 40
E9 × × × 20

E11 × × × 60

Step 1: Sample challenge set generation. A sample challenge set X ′ is generated
for each PUF type (arbiter, ring oscillator, SRAM, flip-flop and latch PUF) and
used in all subsequent steps. For all but the arbiter PUF the complete challenge
space is used as a sample set. Since the arbiter PUF has an exponential challenge
space, we tested it for 13, 000 randomly chosen challenges, which is a statistically
significant subset and representative for the whole challenge space.

Step 2: Enrolment. For each PUF instance, the response yi to each challenge
xi ∈ X ′ is obtained under nominal operating conditions (test case E5) and stored
in a database DB0.

Step 3: Data acquisition. For all test cases Ep in Table 2, each PUF instance
is evaluated k times on each xi ∈ X ′ and its responses are stored in a database
DBp for p = 1, . . . , 11.

Step 4: Analysis. For each PUF instance, the maximum BER between its re-
sponses in DB0 and its responses in DB1,. . . ,DB11 over all xi ∈ X ′ is computed.

4.2 Unpredictability Analysis

Unpredictability ensures that the adversary cannot efficiently compute the re-
sponse of a PUF to an unknown challenge, even if he can adaptively obtain a
certain number of other challenge/response pairs from the same and other PUF
instances [1]. This is important in most PUF-based applications, such as authen-
tication protocols, where the adversary can forge the authentication when he can
predict a PUF response. Note that unpredictability should be independent of the
operating conditions of the PUF, which could be exploited by an adversary.

The unpredictability of a PUF implementation can be estimated empirically
by applying statistical tests to its responses and/or based on the complexity
of the best known attack against the PUF [20,1]. Statistical tests, such as the
DIEHARD [23] or NIST [27] test suite, can in principle be used to assess the

7

Table 3: Unpredictability test cases.

Test Case Active Core Ambient Temperature Supply Voltage
Off On −40 ◦C +25 ◦C +85 ◦C 1.08V 1.2V 1.32V

E13 × × ×
E14 × × ×
E15 × × ×

E16 × × ×
E17 × × ×

unpredictability of PUF responses. However, since these test suites are typi-
cally based on a series of stochastic tests, they can only indicate whether the
PUF responses are random or not. Moreover, they require more input data than
the memory-based PUFs and ring oscillator PUFs in the ASIC provide. Similar
as in symmetric cryptography, the unpredictability of a PUF can be estimated
based on the complexity of the best known attack. There are attacks [26] against
delay-based PUFs that emulate the PUF in software and allow predicting PUF re-
sponses to arbitrary challenges. These attacks are based on machine learning tech-
niques that exploit statistical deviations and/or dependencies of PUF responses.
However, emulation attacks have been shown only for simulated PUF data and it
is currently unknown how these attacks perform against real PUFs [26]. Another
approach is estimating the entropy of the PUF responses based on experimental
data. In particular, min-entropy indicates how many bits of a PUF response are
uniformly random. The entropy of PUFs can be approximated using the context-
tree weighting (CTW) method [39], which is a data compression algorithm that
allows assessing the redundancy of bitstrings [10,34,8,16].

We assess the unpredictability of PUFs using Shannon entropy, which is
a common metric in cryptography and allows establishing relations to other
publications that quantify the unpredictability of PUFs using entropy (such
as [35,32,9,1]). We estimate the entropy and min-entropy of the responses of
all available PUFs. Specifically, we first check whether PUF responses are biased
by computing their Hamming weight and estimate an upper bound of the en-
tropy of PUF responses using a compression test. Eventually, we approximate
the entropy and min-entropy of the responses of all available PUFs. Our entropy
estimation is more precise than previous approaches since it considers dependen-
cies between the individual bits of the PUF responses. Furthermore, to get an
indication of whether responses of different PUF instances are independent, we
compute the Hamming distance between responses of different PUF instances.

We assess the unpredictability of all available PUFs at different temperatures
and supply voltage levels (Table 3) to determine the effects of environmental
variations on the unpredictability using the following procedure: We assess the
unpredictability of all PUFs in the ASICs using the following procedure:

Step 1: Sample challenge set generation. For each PUF type, a sample challenge
set X ′ is generated that is used in all subsequent steps. For all but the arbiter
PUF, the complete challenge space is used as a sample challenge set. Since the

8

arbiter PUF has an exponential challenge space, we again test it only for 13, 000
challenges. The subsequent analysis steps require X ′ := {x′ ∈ X ′′| dist(x, x′) ≤
k}, which includes a set X ′′ of randomly chosen challenges and all challenges
that differ in at most k bits from the challenges in X ′′ (that may be known to
the adversary).

Step 2: Data acquisition. For all test cases Eq in Table 3, each PUF instance is
evaluated on each xi ∈ X ′ and the responses y are stored in a database DBq.

Step 3: Analysis. For each test case Eq, the responses in DBq are analyzed as
detailed in the following items:

Step 3a: Hamming weight. For each PUF instance, the average Hamming weight
of all its responses yi in DBq is computed, which indicates whether the responses
are biased towards 0 or 1.

Step 3b: CTW Compression. For each PUF instance, a binary file containing all
its responses in DBq is generated and compressed using the context-tree weight-
ing (CTW) algorithm [38]. The resulting compression rate is an estimate of the
upper bound of the entropy of the PUF responses.

Step 3c: Entropy estimation. For each PUF instance, the entropy and min-
entropy of all its responses in DBq is estimated as detailed in the next paragraph.

Step 3d: Hamming distance. For each PUF type, the Hamming distance dist(y, y′)
of all pairs of responses (y, y′) in DBq generated by pairwise different PUF in-
stances for the same challenge x is computed. While all previous steps con-
sider only responses of the same PUF instance, the Hamming distances indicate
whether responses of different PUF instances are independent. This is important
to prevent the adversary from predicting the responses of one PUF implemen-
tation based on the challenge/response pairs of another (e.g., his own) PUF
implementation, which would contradict the unpredictability property.

Entropy Estimation. Let x be the PUF challenge for which the adversary
should predict the response y. Further, let Y (x) be the random variable repre-
senting y. Moreover, let W (x) be the random variable representing the set of all
responses of the PUF except y, i.e., W (x) = {y′|y′ ← PUF(x′); x′ ∈ X \ {x}}.
We are interested in the conditional entropy

H(Y |W) = −
∑
x∈X

Pr
[
Y (x),W (x)

]
· log2 Pr

[
Y (x)|W (x)

]
(1)

and the conditional min-entropy

H∞(Y |W) = − log2
(
max
x∈X

{
Pr
[
Y (x)|W (x)

]})
, (2)

9

which quantify the average and minimal number of bits of y, respectively, that
cannot be predicted by the adversary, even in case all other responses in W (x)
are known.5 Hence, 2−H∞(Y |W) is an information-theoretic upper bound for the
probability that an adversary guesses the PUF response y to challenge x.

However, computing Equations 1 and 2 forW (x) is difficult since (1) the sizes
of the underlying probability distributions are exponential in the response space
size, and (2) the complexity of computing H(Y |W) grows exponentially with the
challenge space size of the PUF to be analyzed. Hence, Equations 1 and 2 can
at most be estimated by making assumptions on the physical properties of the
PUFs that reduce the size ofW (x). In the following, we explain how we estimated
these entropies for each PUF type and discuss the underlying assumptions.

Memory-based PUFs. A common assumption on memory-based PUFs is that
spatially distant memory cells are independent [20,1]. A similar assumption has
been used by Holcomb et al. [9], who estimate the entropy of SRAM PUF re-
sponses based on the assumption that individual bytes of SRAM are independent.
However, physically neighboring memory cells can strongly influence each other,
in particular when they are physically connected.6 Hence, our entropy estima-
tion considers dependencies between neighboring memory cells (which could be
exploited by an adversary) while assuming that spatially distant memory cells
are independent. More specifically, we compute the entropy of the PUF response
bit Yi,j of the memory cell at row i and column j of the underlying memory
under the worst case assumption that the values of all neighboring memory cells
W ′(x) = (Yi−1,j , Yi,j+1, Yi+1,j , Yi,j−1) are known, i.e., we compute Equations 1
and 2 for W ′(x).

Ring Oscillator PUFs. The ring oscillator PUFs in the ASICs compare the oscil-
lation frequency of two ring oscillators Oi and Oj selected by the PUF challenge
x = (i, j) and returns a response Y (i, j), depending on which of the two oscil-
lators was faster. Since neighboring ring oscillators may affect each other (e.g.,
by electromagnetic induction), we consider the potential dependency between
the frequencies of neighboring oscillators and assume that the frequency of spa-
tially distant oscillators is independent. Thus, we compute Equations 1 and 2
for W ′(i, j) =

(
Yi−2,j , Yi−1,j , Yi+1,j , Yi+2

)
.

Arbiter PUFs. Arbiter PUFs measure the delay difference of two delay lines
that are configured by the PUF challenge. The individual delays caused by the
switches and their connections are additive, which implies that the PUF response
y to a challenge x can be computed if a sufficient number of responses to chal-
lenges that are close to x are known. Hence, we compute Equations 1 and 2 for
W ′(x) = {y′ ← PUF(x′)|x′ ∈ X ′, dist(x, x′) ≤ k}, which corresponds to the
5 Note that this corresponds to the game-based security definition of unpredictability
by Armknecht et al. [1], which formalizes the difficulty of predicting Y in case the
PUF responses in W are known.

6 SRAM cells are typically arranged in a matrix, where all cells in a row are connected
by a word line and all cells in a column are connected by a bit line.

10

worst case where the adversary knows responses to challenges that differ in at
most k bits from the challenge whose response he must guess. Specifically, we
use X consisting of 200 randomly chosen challenges and k = 1.

Computing the Entropy. To compute the entropy and min-entropy (Equations 1
and 2) for each test case Eq, we first estimate Pr

[
x = Y (x), w = W (x)

]
for

each x ∈ X ′ by dividing the number of observations of each tuple (x,w) in
database DBq by the size of the sample challenge set X ′. Further, to compute
Pr
[
x = Y (x)

∣∣w = W (x)
]
= Pr

[
x = Y (x), w = W (x)

]
/Pr

[
w = W (x)

]
, we

estimated Pr
[
w = W (x)

]
by dividing the number of observations of each tuple(

Y (x), w = W (x)
)
in database DBi by the size of X ′. Eventually, we computed

Equations 1 and 2.

5 Evaluation and Results

We applied the evaluation methodology in Section 4 to all PUF instances in
all ASICs. Most of our results are illustrated using bean plots [12] that allow
an intuitive visualization of empirical probability distributions (Figures 2 to 5).
Each bean shows two distributions, smoothed by a Gaussian kernel to give the
impression of a continuous distribution, together with their means indicated by
black bars. The distribution in black on the left side typically corresponds to
data collected under normal PUF operating conditions, while the one in gray on
the right side corresponds to some other test case in Table 2 and 3.

Due to space restrictions, we illustrate only the most important results and
provide a detailed discussion in the full version of this paper [13].

5.1 Robustness Results

We computed the bit error rate (BER) under varying environmental conditions
(Table 3). Our results show that all arbiter, ring oscillator and SRAM PUF
instances have a very similar BER, while there is a big variability in the BERs of
the flip-flop and latch PUF instances (Figure 2). Further, the BER of the arbiter,
ring oscillator and SRAM PUF instances is below 10% for all test cases, which
can be handled by common error correction schemes, such as fuzzy extractors [3].
The BER of most PUFs depends on the operating temperature (Figure 2a):
Compared to +25 ◦C (test case E5), at −40 ◦C (test case E2) the BER of the flip-
flop and latch PUF increases significantly, while the BER of the ring oscillator
and SRAM PUF increases only slightly and the BER of the arbiter PUF hardly
changes. A similar behavior of the BERs can be observed at +85 ◦C (test case
E8). All PUFs in all ASICs turned out to be robust against variations of their
supply voltages. Compared to nominal operating conditions (test case E5), the
distributions of the BERs only slightly increase when varying the supply voltage
by 10% (test case E4 and E6). The arbiter PUF exhibits a significantly increased
BER when operated in a noisy working environment (test case E11; Figure 2b)
while there is no significant change of the BER of all other PUFs. Hereby, we

11

0
5

10
15

20
25

30

Arbiter RO DFF Latch SRAM

B
it−

E
rr

or
−

R
at

e
(%

)

E5
E2

(a) Bit error rates at +25 ◦C (test case
E5, black) and at −40 ◦C (test case E2,
gray)

0
1

2
3

4
5

6

Arbiter RO DFF Latch SRAM

B
it−

E
rr

or
−

R
at

e
(%

)

E5
E11

(b) Bit error rates with active core off
(test case E5, black) and active core on
(test case E11, gray)

Fig. 2: Distribution of the bit error rate (BER) in percent over all PUF instances
at different ambient temperatures and noise levels. The two peaks of the BER
distribution of the arbiter PUF show that those arbiter PUFs that are spatially
close to the active core are more affected than those farther away.

observed that the BER of arbiter PUF instances that are spatially close to
the active core significantly changes, while those that are farther away are not
directly affected.

5.2 Unpredictability Results

In this section, we present the results of our unpredictability analysis. Due to
the time-limited access to the climate chamber, the data required to analyze
the unpredictability of the arbiter PUF at −40 ◦C and at +85 ◦C is not avail-
able. However, we show the results for normal operating conditions and different
supply voltages.

Hamming Weights. To get a first indication of randomness in the PUFs, we
computed the Hamming weight of their responses as described in Section 4.2.
Our results show that ring oscillator and SRAM PUF responses are close to the
ideal Hamming weight of 0.5, independent of the operating conditions (Figure 3),
which indicates that their responses may be random. The Hamming weight of
the flip-flop PUF and latch PUF responses strongly depends on the ambient
temperature (Figure 3a) and is clearly biased. Supply voltage variations (test
cases E16 and E17) have no significant impact on the Hamming weight of the
responses of any of the PUF instances in the ASIC (Figure 3b).

12

0.
2

0.
4

0.
6

0.
8

Arbiter RO DFF Latch SRAM

H
am

m
in

g
w

ei
gh

t

E14
E13

(a) Hamming weight at +25 ◦C (test case
E14, black) and −40 ◦C (test case E13,
gray)

0.
2

0.
4

0.
6

0.
8

Arbiter RO DFF Latch SRAM

H
am

m
in

g
w

ei
gh

t

E14
E17

(b) Hamming weight at 1.20V (nominal
voltage, test case E14, black) and 1.32V
(+10% overvoltage, test case E17, gray)

Fig. 3: Distribution of the Hamming weight over all PUF instances at different
ambient temperatures and supply voltage levels. The two peaks of the Hamming
weight distribution of the latch PUF may come from the fact that one of the four
latch PUF instances on each ASIC is implemented in a separate power domain.

CTW Compression. The context-tree weighting (CTW) compression test
gives a good indication of the upper bound of the entropy of PUF responses.
The higher the compression rate, the lower the entropy of the PUF. The results
of this test (Table 4) confirm the Hamming weight test results: The compres-
sion rate of the ring oscillator and SRAM PUF responses is invariant for all
test cases; the compression rates of the flip-flop and latch PUF responses do not
change for different supply voltages (test case E16 and E17), but vary with the
ambient temperature (test cases E13, E14 and E15). The compression rate of
the SRAM PUF responses strongly indicates that these responses are uniformly
random, while there seem to be some dependencies in the responses generated
by all other PUFs.

Entropy Estimation. The results of the entropy estimation described in Sec-
tion 4.2 confirm the results of all previous tests and provide more insights into
the entropy and min-entropy of the PUF responses (Figure 4). The entropy of
responses corresponding to neighboring arbiter PUF challenges is remarkably
low, which confirms the high prediction rate of emulation attacks against arbiter
PUFs reported in literature [26]. The entropy and min-entropy of the ring os-
cillator and SRAM PUF responses is invariant to temperature (test cases E13,
E14 and E15) and supply voltage (test case E16 and E17) variations. Moreover,
the entropy and min-entropy of flip-flop and latch PUFs vary with the operating

13

Table 4: CTW compression results.

Test Size of PUF response after CTW compression in percent
Case Arbiter Ring-Oscillator Flip-Flop Latch SRAM

E13 — 0.77 0.77 0.84 1.00
E14 0.51 0.77 0.87 0.70 1.00
E15 — 0.77 0.98 0.53 1.00

E16 0.53 0.77 0.88 0.69 1.00
E17 0.49 0.77 0.87 0.71 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Arbiter RO DFF Latch SRAM

E
nt

ro
py

Ent−E14
Min.Ent−E14

(a) Entropy (black) and min-entropy
(gray) at +25 ◦C (test case E14)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Arbiter RO DFF Latch SRAM

E
nt

ro
py

Ent−E17
Min.Ent−E17

(b) Entropy (black) and min-entropy
(gray) at 1.32V (+10%, test case E17)

Fig. 4: Distribution of the entropy (black) and min-entropy (gray) over all PUF
instances at different ambient temperatures and supply voltage levels.

temperature (test cases E13, E14 and E15) and are constant for different supply
voltages (test case E16 and E17).

Hamming Distances. The Hamming distance test (Section 4.2) gives an in-
dication of whether the responses generated by different PUF instances to the
same challenge are independent. Our results show that, independent of the am-
bient temperature (test cases E13, E14 and E15) and supply voltage (test cases
E16 and E17), the responses of different ring oscillator and SRAM PUF instances
have the ideal Hamming distance of 0.5, while there seem to be dependencies
between the responses generated by different arbiter PUF instances to the same
challenge (Figure 5). The Hamming distance of the responses of the flip-flop
PUFs changes for different temperatures and supply voltages. At +85 ◦C (test
case E15) the Hamming distance of the flip-flop PUF is ideal, while it is biased
towards zero at −40 ◦C (test case E13). Moreover, at 1.08V (−10% undervoltage,
test case E16) we observed a bias of the Hamming distance towards one, while

14

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Arbiter RO DFF Latch SRAM

H
am

m
in

g
di

st
an

ce

E14
E13

(a) Hamming distance at +25 ◦C (test
case E14, black) and at −40 ◦C (test case
E13, gray)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Arbiter RO DFF Latch SRAM

H
am

m
in

g
di

st
an

ce

E14
E16

(b) Hamming distance at 1.20V (nom-
inal voltage, test case E14, black) and
at 1.08V (−10% undervoltage, test case
E16, gray)

Fig. 5: Distribution of the Hamming distance over all PUF instances at different
ambient temperatures and supply voltage levels.

the Hamming distance at 1.32V (+10% overvoltage, test case E17) is similar to
the distribution at nominal operating conditions (test case E14). The Hamming
distance of the responses of the latch PUFs are biased towards zero and invariant
for different supply voltages.

5.3 Discussion

Our results show that arbiter, ring oscillator and SRAM PUFs are more robust
to temperature variations than the latch and flip-flop PUFs. This could be due
to the dual nature of these PUFs, i.e., the two delay paths, two ring oscillators,
and the symmetrical structure of the SRAM cells, respectively. As discussed in
Section 3, we do not have access to the internal circuit diagrams and layout of
the standard cells provided by TSMC and thus can only speculate about the
transistor schematics of the flip-flops and latches. Standard cell libraries typi-
cally use implementations based on transmission gates, which are more compact
than static latches or flip-flops with a dual structure and there is no duality or
symmetry in these transistor schematics. Further, the results of the Hamming
weight and Hamming distance tests indicate that the unpredictability of PUFs
with a dual structure are less affected by temperature variations.

The entropy of the arbiter PUF is remarkably low, which can be explained
by the linear structure of this PUF. Note that in the arbiter PUF implementa-
tion, two signals travel along two delay paths and finally arrive at an arbiter
(Section 3). In case the delay difference δt of the two paths is greater than the

15

setup-time tsetup plus the hold time thold of the arbiter, the PUF response will
be correctly generated according to which signal arrives first. However, in case
δt < tsetup + thold, the arbiter will be in the metastable state and the PUF re-
sponse will depend on the bias of the arbiter caused by manufacturing process
and/or layout variations of the arbiter and the noise in the circuit. A limited
number of simulations (with 20 PUFs for 3 challenges) including extracted post
layout parasitics were performed before the tape-out of the ASIC to estimate
this effect.

Since the arbiter PUF design is based on delay accumulation, it is very sus-
ceptible to emulation attacks [26]. An example illustrating this fact is the case
where two challenges differ in only the last bit. In this case, signals will travel
along the same paths through 63 delay elements, and only in the last element
the paths will be different. If the attacker knows the outcome for one challenge,
he can guess the outcome of the other one with high probability, which might
explain the low entropy and min-entropy of the arbiter PUFs.

5.4 Summary

The arbiter PUF responses have a very low entropy and their use in applications
with strict unclonability and unpredictability requirements should be carefully
considered. Further, the arbiter PUFs are susceptible to changes of their supply
voltage and to environmental noise, which significantly increases the bit error
rate of the PUF. However, the bit error rate stays within acceptable bounds and
can be compensated by existing error correction mechanisms.

The flip-flop and latch PUFs are susceptible to temperature variations, which
have a significant effect on the bit error rate and the unpredictability of the PUF
responses. Hence, flip-flop and latch PUFs should not be used in an environment,
where the adversary can lower the ambient temperature of the PUF, reducing
the entropy of the PUF responses.

The SRAM and ring oscillator PUFs achieve almost all desired properties of
a PUF: The bit error rate does not change significantly under different operating
conditions, the entropy of the PUF responses is high and the responses generated
by different PUF instances seem to be independent. However, the ring oscillator
exhibits a low min-entropy, which might be problematic in some applications.

6 Conclusion

We performed the first large-scale analysis of the five most popular PUF types
(arbiter, ring oscillator, SRAM, flip-flop and latch PUFs) implemented in ASIC.
Our analysis is based on PUF data obtained from 96 ASICs, each housing several
PUF instances. Our results allow for the first time a fair comparison of these
PUFs. In this context, we presented an evaluation methodology for the empirical
assessment of the robustness and unpredictability properties of PUFs that are
fundamental in most applications of PUFs.

16

Our results show that the SRAM and ring oscillator PUFs seem to achieve all
desired properties of a PUF. However, the arbiter PUFs have a very low entropy
and the entropy of the flip-flop and latch PUFs is susceptible to temperature
variations. Hence, the suitability of these PUFs for security-critical applications,
such as authentication or key generation must be carefully considered.

Future work includes the analysis of stronger PUF constructions and the
development of entropy estimation methodologies that also include potential
dependencies between different PUF instances.

Acknowledgement. We thank all our partners Intel, Intrinsic ID, KU Leuven,
and Sirrix AG, who developed the ASIC and evaluation board. Further, we thank
Intrinsic ID for providing us the raw PUF data for the test cases at −40 ◦C and
+85 ◦C. Moreover, we thank Vincent van der Leest (Intrinsic ID), Roel Maes
(KU Leuven) and our anonymous reviewers for their helpful comments. This
work has been supported by the European Commission under grant agreement
ICT-2007-238811 UNIQUE.

References

1. Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachsmann, C.: A for-
mal foundation for the security features of physical functions. In: IEEE Symposium
on Security and Privacy (SSP). pp. 397–412. IEEE Computer Society (May 2011)

2. Armknecht, F., Maes, R., Sadeghi, A.R., Sunar, B., Tuyls, P.: Memory Leakage-
Resilient encryption based on physically unclonable functions. In: Advances in
Cryptology (ASIACRYPT). LNCS, vol. 5912, pp. 685–702. Springer Berlin/Heidel-
berg (2009)

3. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Advances in Cryptology (EUROCRYPT).
LNCS, vol. 3027, pp. 523–540. Springer Berlin/Heidelberg (2004)

4. Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable PUFs: Memory-
based secure key storage. In: ACM Workshop on Scalable Trusted Computing
(ACM STC). pp. 59–64. ACM, New York, NY, USA (2011)

5. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random
functions. In: Computer Security Applications Conference (ACSAC). pp. 149–160.
IEEE (2002)

6. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: ACM Conference on Computer and Communications Security (ACM
CCS). pp. 148–160. ACM, New York, NY, USA (2002)

7. Guajardo, J., Kumar, S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their
use for IP protection. In: Cryptographic Hardware and Embedded Systems (CHES).
LNCS, vol. 4727, pp. 63–80. Springer Berlin/Heidelberg (2007)

8. Hammouri, G., Dana, A., Sunar, B.: CDs have fingerprints too. In: Cryptographic
Hardware and Embedded Systems (CHES). LNCS, vol. 5747, pp. 348–362. Springer
Berlin/Heidelberg (2009)

9. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-Up SRAM state as an identifying
fingerprint and source of true random numbers. IEEE Transactions on Computers
58(9), 1198–1210 (2009)

17

10. Ignatenko, T., Schrijen, G.J., Škorić, B., Tuyls, P., Willems, F.: Estimating the
Secrecy-Rate of physical unclonable functions with the Context-Tree weighting
method. In: IEEE International Symposium on Information Theory (ISIT). pp.
499–503. IEEE (Jul 2006)

11. Intrinsic ID: Product webpage. http://www.intrinsic-id.com/products.htm
(November 2011)

12. Kampstra, P.: Beanplot: A boxplot alternative for visual comparison of distribu-
tions. Journal of Statistical Software 28(1), 1–9 (Oct 2008)

13. Katzenbeisser, S., Ünal Kocabaş, Rožić, V., Sadeghi, A.R., Verbauwhede, I., Wachs-
mann, C.: PUFs: Myth, fact or busted? A security evaluation of physically unclon-
able functions (PUFs) cast in silicon. Cryptology ePrint Archive, To appear (2012)

14. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended abstract:
The butterfly PUF protecting IP on every FPGA. In: Workshop on Hardware-
Oriented Security (HOST). pp. 67–70. IEEE (Jun 2008)

15. Lee, J.W., Lim, D., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
applications. In: Symposium on VLSI Circuits. pp. 176–179. IEEE (Jun 2004)

16. van der Leest, V., Schrijen, G.J., Handschuh, H., Tuyls, P.: Hardware intrinsic
security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing
(ACM STC). pp. 53–62. ACM, New York, NY, USA (2010)

17. Lim, D., Lee, J.W., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on 13(10), 1200–1205 (Oct 2005)

18. Lin, L., Holcomb, D., Krishnappa, D.K., Shabadi, P., Burleson, W.: Low-power
sub-threshold design of secure physical unclonable functions. In: International Sym-
posium on Low-Power Electronics and Design (ISLPED). pp. 43–48. IEEE (Aug
2010)

19. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfig-
urable devices (Nov 2008)

20. Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state of
the art and future research directions. In: Towards Hardware-Intrinsic Security. pp.
3–37. Information Security and Cryptography, Springer Berlin/Heidelberg (2010)

21. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characteriza-
tion of RO-PUF. In: International Symposium on Hardware-Oriented Security and
Trust (HOST). pp. 94–99. IEEE (Jun 2010)

22. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing techniques for hardware
security. In: International Test Conference (ITC). pp. 1–10. IEEE (Oct 2008)

23. Marsaglia, G.: The Marsaglia random number CDROM including the diehard bat-
tery of tests of randomness. http://www.stat.fsu.edu/pub/diehard/

24. Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication
for pervasive devices. In: International Conference on Pervasive Computing and
Communications (PerCom). pp. 170–178. IEEE, Washington, DC, USA (Mar 2008)

25. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-Way functions.
Science 297(5589), 2026–2030 (Sep 2002)

26. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: ACM Conference on Computer
and Communications Security (ACM CCS). pp. 237–249. ACM, New York, NY,
USA (2010)

27. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson,
M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite

18

http://www.intrinsic-id.com/products.htm
http://www.stat.fsu.edu/pub/diehard/

for random and pseudorandom number generators for cryptographic applications.
Special Publication 800-22 Revision 1a, NIST (April 2010)

28. Sadeghi, A.R., Visconti, I., Wachsmann, C.: Enhancing RFID security and privacy
by physically unclonable functions. In: Towards Hardware-Intrinsic Security. pp.
281–305. Information Security and Cryptography, Springer Berlin/Heidelberg (Nov
2010)

29. Schulz, S., Sadeghi, A.R., Wachsmann, C.: Short paper: Lightweight remote attes-
tation using physical functions. In: Proceedings of the Fourth ACM Conference
on Wireless Network Security (ACM WiSec). pp. 109–114. ACM, New York, NY,
USA (2011)

30. Škorić, B., Maubach, S., Kevenaar, T., Tuyls, P.: Information-theoretic analysis of
capacitive physical unclonable functions. Journal of Applied Physics 100(2) (Jul
2006)

31. Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pJ/bit chip identification circuit
using process variations. IEEE Journal of Solid-State Circuits 43(1), 69–77 (Jan
2008)

32. Suh, E.G., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: ACM/IEEE Design Automation Conference (DAC).
pp. 9–14. IEEE (Jun 2007)

33. Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: Topics in Cryptology
(CT-RSA). LNCS, vol. 3860, pp. 115–131. Springer Berlin/Heidelberg (Feb 2006)

34. Tuyls, P., Škorić, B., Ignatenko, T., Willems, F., Schrijen, G.J.: Entropy estimation
for optical PUFs based on Context-Tree weighting methods security with noisy
data. In: Security with Noisy Data. pp. 217–233. Springer London (2007)

35. Tuyls, P., Škorić, B., Stallinga, S., Akkermans, A.H.M., Ophey, W.: Information-
Theoretic security analysis of physical uncloneable functions. In: Financial Cryptog-
raphy and Data Security (FC). LNCS, vol. 3570, p. 578. Springer Berlin/Heidelberg
(2005)

36. Verayo, Inc.: Product webpage. http://www.verayo.com/product/products.html
(November 2011)

37. Škorić, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable
functions. In: Applied Cryptography and Network Security (ACNS). LNCS, vol.
3531, pp. 99–135. Springer Berlin/Heidelberg (2005)

38. Willems, F.: CTW website. http://www.ele.tue.nl/ctw/
39. Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting

method: basic properties. IEEE Transactions on Information Theory 41(3), 653–
664 (May 1995)

19

http://www.verayo.com/product/products.html
http://www.ele.tue.nl/ctw/

	PUFs: Myth, Fact or Busted? A Security Evaluation of Physically Unclonable Functions (PUFs) Cast in Silicon
	1 Introduction
	2 Background on PUFs
	3 The PUF ASIC
	4 Our Evaluation Methodology
	4.1 Robustness Analysis
	4.2 Unpredictability Analysis

	5 Evaluation and Results
	5.1 Robustness Results
	5.2 Unpredictability Results
	5.3 Discussion
	5.4 Summary

	6 Conclusion

