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Abstract. Leakage-resilient constructions have attracted significant at-
tention over the last couple of years. In practice, pseudorandom functions
are among the most important such primitives, because they are state-
less and do not require a secure initialization as, e.g. stream ciphers.
However, their deployment in actual applications is still limited by secu-
rity and efficiency concerns. This paper contributes to solve these issues
in two directions. On the one hand, we highlight that the condition of
bounded data complexity, that is guaranteed by previous leakage-resilient
constructions, may not be enough to obtain practical security. We show
experimentally that, if implemented in an 8-bit microcontroller, such con-
structions can actually be broken. On the other hand, we present tweaks
for tree-based leakage-resilient PRFs that improve their efficiency and
their security, by taking advantage of parallel implementations. Our se-
curity analyses are based on worst-case attacks in a noise-free setting and
suggest that under reasonable assumptions, the side-channel resistance
of our construction grows super-exponentially with a security parameter
that corresponds to the degree of parallelism of the implementation. In
addition, it exhibits that standard DPA attacks are not the most relevant
tool for evaluating such leakage-resilient constructions and may lead to
overestimated security. As a consequence, we investigate more sophisti-
cated tools based on lattice reduction, which turn out to be powerful in
the physical cryptanalysis of these primitives. Eventually, we put forward
that the AES is not perfectly suited for integration in a leakage-resilient
design. This observation raises interesting challenges for developing block
ciphers with better properties regarding leakage-resilience.

1 Introduction

Physical attacks, in which adversaries take advantage of the peculiarities of
the devices on which cryptographic operations are running, are an important
concern for modern security applications. They typically include side-channel
attacks (where the adversary monitors the leakage due to the cryptographic
computations [26]), fault attacks (where the adversary tries to force a device to
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perform erroneous computations [6]), tampering attacks (where the adversary
probes a few wires of the implementation [4]) and memory attacks (where the
adversary directly monitors parts of the memory [18]). As a result, a variety
of hardware-level countermeasures have been proposed, in order to reduce the
amount of information an implementation may provide to adversaries. Over the
last few years, such hardware-level countermeasures have been complemented
by significant efforts to extend the formal guarantees of provable security from
cryptographic algorithms towards cryptographic implementations. For this pur-
pose, various models have been introduced, trying to capture physical reality
in abstract terms, with the goal of allowing meaningful reasoning about physi-
cal security. Examples of models to formalize side-channel attacks include Mi-
cali and Reyzin’s physically observable cryptography [29] and Dziembowski and
Pietrzak’s leakage-resilient cryptography [14]. Examples of models to formalize
fault attacks, tampering attacks and memory attacks can also be found, e.g.
in [3, 16, 21, 22]. Eventually, more general abstractions, such as the auxiliary in-
put model [11], or the bounded retrieval model [10, 13], have been introduced for
similar purposes. Quite naturally, these different models raise numerous ques-
tions about their relevance to practice, e.g. regarding the correspondence (or lack
thereof) between the basic assumptions used in proofs and what can actually be
guaranteed by hardware designers. In general, there remain many open problems
to answer in order to specify a fully satisfying model (see, e.g. [38, 39]).

Nevertheless, and somewhat independent of the practical relevance of the
models used to formalize physical security issues, it may very well be that (small
variations of) ideas proposed in these theoretical works actually provide sig-
nificantly enhanced security against large categories of “practical” side-channel
attacks (such as surveyed in [28]), when analyzed in more restricted frameworks
such as [41]. In this paper, we follow this direction and focus on the security of
symmetric cryptographic primitives such as block and stream ciphers. This focus
is naturally motivated by the fact that such low-cost algorithms are among the
most frequently considered targets, e.g. for power and EM analysis.

Related work. The very idea to prevent side-channel attacks at the protocol level
relying on key updates refers to Kocher [25]. Following, Pseudo-Random Num-
ber Generators (PRNGs) allowing security against side-channel attacks have first
been proposed and analyzed in a specialized setting [33] (with noisy Hamming
weight or identity leakage functions). Leakage-resilient stream ciphers based on
an “alternating structure”, with a proof of security in the standard model have
then been described in [14, 34]. Similar constructions without alternating struc-
ture, but with a proof in a model relying on a random-oracle assumption can
be found in [42, 43]. Finally, an attempt to prove the security of a PRG without
alternating structure and in the standard model, assuming non-adaptive leak-
age functions, was also suggested in [43], and was later shown to require large
amounts of public randomness for the proof to hold in [15]. It remains an open
question to determine if the exact construction proposed in [43], using only two
alternating public values, can be proven secure or attacked in a practical setting.



While theoretically interesting (and efficiently implemented), these stream
ciphers and PRNGs all suffer from the limitation that they require a secure ini-
tialization mechanism. As already clear in [33], this problem of initialization is
an important issue for deploying leakage-resilient constructions in real-world de-
vices, as it typically implies much larger performance overheads. Roughly speak-
ing, and taking AES-based designs as an example, all previous leakage-resilient
PRNGs can output one 128-bit block every two AES executions. By contrast, the
initialization mechanism proposed at ASIACCS 2008 [33] requires 128 AES exe-
cutions per block (if the best security against side-channel attacks is privileged).
Following solutions did not allow any improvement in this respect.

Interestingly, this requirement of a secure initialization process for PRNGs
can actually be translated into the need of a leakage-resilient PseudoRandom
Function (PRF). As a consequence, it was first observed in [42] that a tree-based
construction such as the one of Goldreich, Goldwasser and Micali (GGM) [17]
inherently brings improved resistance against side-channel attacks. Again taking
an AES-based example, these PRFs allow ensuring that every intermediate key
in the tree is only used twice. The construction in [42] was proven secure against
side-channel attacks under a random-oracle assumption, together with the ob-
servation that leakage-resilience for stateless PRFs requires to limit the leakage
function to be non-adaptive. Next, Dodis and Pietrzak constructed a leakage-
resilient PRF and proved its security in the standard model (with non-adaptive
leakages as well) [12], by applying a GGM-like construction to the stream cipher
with alternating structure from [34]. How to replace the alternating structure by
alternating public randomness is additionally discussed in [15].

Finally, the construction of PseudoRandom Permutations (PRPs) was first
discussed at CRYPTO 2010 [12]. In this paper, Dodis and Pietrzak describe ef-
ficient attacks (with non-adaptive leakage functions) against Feistel ciphers con-
structed from leakage-resilient PRFs. It is shown in [15] that more positive results
can be obtained in a known-plaintext (rather than chosen-plaintext) adversarial
scenario. However, as for the PRF constructions listed above, the practicality of
these PRP constructions is strongly limited by performance overheads.

In this work, we tackle two important questions related to leakage-resilient PRFs.

First, we study their implementation in leaking devices and the security level
that they provide against standard side-channel attacks. Doing so, we put for-
ward the difference between a side-channel attack with bounded data complexity
and a side-channel attack with bounded number of measurements. As previous
constructions in [12, 15, 42] all guarantee a bounded data complexity, but do
not prevent unbounded number of measurements for the PRF executed on the
same inputs, we exhibit attacks in low-cost (8-bit) microcontrollers taking ad-
vantage of these capabilities. We use these experiments to argue about the need
of parallelism for leakage-resilient PRF implementations in general.

Second, we study how to exploit parallelism in the implementations of PRFs,
in order to significantly improve their efficiency. For this purpose, we take advan-
tage of a careful selection of the public values used in an AES-based construction.
By enforcing that these public values are such that all the bytes corresponding



to the first-round S-boxes are identical, we succeed in significantly reducing the
success rate of a Differential Power Analysis (DPA) against our implementations.
Doing so, we also observe that DPA is not the most suitable tool for cryptan-
alyzing such leakage-resilient designs, and describe advanced attacks exploiting
lattice reduction, that allow us to better evaluate worst-case security levels. This
analysis puts forward the need to enumerate a permutation of the AES bytes,
which offers an interesting security parameter (as the number of such permuta-
tions grows as a factorial function). Furthermore, this trick allows us to reduce
the 128 AES iterations per block, required in the execution of previous PRFs
constructions, down to 17 (and even less if the PRF is used for encryption in
counter mode). This results in an overhead factor that is much more in line
with the ones of other countermeasures against side-channel attacks. While our
proposal goes against the requirement of independent public randomness in [15],
it is backed up by a practical security analysis, which again raises the question
whether this requirement is motivated by the physics or by proof artifacts. Be-
sides, our proposal could be integrated into the PRF of CRYPTO 2010, in which
the alternative structure removes the need of public randomness in the proofs.

We finally remark that the techniques analyzed in this paper raise interesting
challenges for the design of new block ciphers allowing efficient implementations
when inserted in leakage-resilient PRFs, or for the direct design of ad hoc con-
structions. As suggested by the AES-128 instance that we study in Section 6,
the Rijndael algorithm may not be the best suited block cipher for this purpose,
and we suggest a few directions that could lead to improved solutions.

2 The leakage resilient PRF constructions

In the first sections of this paper, we will base our discussions on the GGM
construction depicted in the left part of Figure 1. Let Fk(x) denote the PRF
indexed by k and evaluated on x. Further, let the building blocks Eki(pij) denote

the application of a block cipher E to a plaintext pij under a key ki (the figure
takes the example of E = AES-128 with 1 ≤ i ≤ 128 and 0 ≤ j ≤ 1). Let also
x(i) denote the ith bit of x. The PRF first initializes k0 = k and then iterates
as follows: ki+1 = Eki(pi0) if x(i) = 0 and ki+1 = Eki(pi1) if x(i) = 1. Eventually,
the (n+ 1)th intermediate key k128 is the PRF output as Fk(x).

In this basic version, the execution of the PRF guarantees that any side-
channel adversary will at most observe the leakage corresponding to two plain-
texts pi0 and pi1 per intermediate key. This implies 128 executions of the AES-128
to produce a single 128-bit output. A straightforward solution to trade improved
performances for additional leakage is to increase the number of observable plain-
texts per intermediate key. If one has Np such plaintexts per stage, the number of
AES-128 executions to produce a 128-bit output is divided by log2(Np). However,
as will be discussed in Section 3, such a tradeoff scales badly and very rapidly
decreases the side-channel security of an implementation. The more efficient al-
ternative that we propose in this paper is based on a slight variation of this idea,



Fig. 1. Leakage-resilient PRFs: straight GGM (left) and efficient alternative (right).

illustrated in the right part of Figure 1. It can be viewed as a GGM construc-
tion with Np = 256, but where the same set of 256 carefully chosen plaintexts
is re-used in each PRF stage, excepted for the last stage where Np = 1. Note
that this is in contrast with the proof of leakage-resilience in [15], that requires
all the pij ’s to be public random values that are independently picked prior to
encryption. In terms of efficiency, this proposal reduces the number of stages of
a PRF based on the AES-128 to 17 (i.e. 16 plus one final whitening). As will be
seen in Section 5, it also leads to interesting practical security guarantees.

3 Bounded data complexity may not be enough

Let us consider the PRF construction in the left part of Figure 1 with the
AES-128 as block cipher. As previously mentioned, for each intermediate key ki,
this construction prevents adversaries to mount side-channel attacks with data
complexity larger than 2. By contrast, nothing prevents the repetition of large
number of measurements for the same input pij . In this section, we investigate
whether this condition of bounded data complexity is sufficient to guarantee
practical security against side-channel attacks. For this purpose, we set up ex-
perimental attacks against an implementation of the AES in an 8-bit microcon-
troller, with limited data complexity (i.e. small Np values). For illustration, we
used the measurement setup and statistical tools previously described in [40].
More precisely, we considered template attacks in principal subspaces, using only
power consumption measurements, and Principal Component Analysis (PCA)
as dimensionality reduction technique. We exploited templates for two target
operations, namely the AddRoundKey and SubBytes in the first AES round.



Fig. 2. Experimental attacks against the AES with bounded data complexity.

The results of attacks targeting the first AES master key byte are given in
Figure 2 for Np = 1, 2. The number of measurements used in the attacks is given
on the x-axis, and their first-order success rate (following the definition in [41]) is
given on the y-axis. The right part of the figure corresponds to the result forNp =
2, i.e. the exact data complexity tolerated by the PRF construction. It can be
observed that high success rates can already be obtained with our simple attack
setting. In fact, due to the 8-bit bus of our microcontroller, even attacks with
data complexity Np = 1 allow reaching non-negligible success rates. As shown in
Appendix C, Figure 8, this success rate dramatically increases with Np, clearly
suggesting that enhancing the PRF efficiency in this direction is not acceptable
for security reasons. Admittedly, this simple scenario may not be reflective of
better protected or larger, parallel devices. But it at least suggests that the
security assumptions in all previous works on leakage-resilient PRFs overlook
the important difference between data complexity and number of measurements.

As a result, two natural directions can be envisioned. On the one hand, one
could design new (stateful) PRFs ensuring a bounded number of measurements.
This would essentially correspond to the storage of all the intermediate nodes
that have been computed in previous invocations of the tree-based PRF in Fig-
ure 1. Although different security vs. memory tradeoffs could be considered,
this solution is hardly realistic from an implementation cost point of view. On
the other hand, one could investigate the impact of large (parallel) implemen-
tations, where the bounded data complexity would be better reflected in the
attacks’ success rates. The following section investigates this second option.

4 Efficiently exploiting parallelism

In this section, we study how parallelism improves the security against DPA
attacks and the efficiency of a tree-based PRF. For this purpose, we will mainly
focus on one step of the constructions in Figure 1, and take the example of k0 = k.
In this context, there are three main parameters to consider when evaluating
the side-channel security of the PRF, next denoted as Np, Ns and σ2

n. First, the



adversary is allowed to encrypt Np (for now, random) plaintexts pj (1 ≥ j ≥ Np)
under the key k. Second, we target an AES-like block cipher where Ns S-boxes
are executed in parallel. Finally, the leakage measurements are affected by a
noise with variance σ2

n. Let us denote the bytes of the plaintexts as pj [i] and the
bytes of the key as k[i]. We will consider leakages of the form:

lj =

Ns∑
i=1

L(S(pj [i]⊕ k[i])) + n, (1)

with S the AES S-box, L a leakage function and n a Gaussian-distributed noise
with variance σ2

n. In such a setting, parallelism essentially depends on the number
of S-boxes Ns. Increasing this parameter typically allows increasing the amount
of “algorithmic noise” in the attacks, as we now detail. For illustration, we con-
sidered a Hamming weight leakage function L = WH(·) with σ2

n = 0, and a DPA
adversary using Bayesian templates [9]. The left part of Figure 3 summarizes the
joint effect of Ns and Np in this random plaintext scenario, where the guessing
entropy (in log2 scale) of the first master-key byte is used as evaluation met-
ric [41]. It indicates the average position of the correct key byte in the scored list
provided by the DPA attack, and thus reflects the key-search complexity of an
adversary who is given such a list. One can clearly see the strong impact of in-
creasing Np, as the key search complexity decreases almost exponentially with it.
In addition, the random plaintext scenario allows directly recovering information
on all key bytes, by applying a straightforward divide-and-conquer strategy.

Fig. 3. Guessing entropy of the first AES master-key byte (log2 scale). Left: random
(uniform) plaintext scenario. Right: carefully chosen plaintext scenario.

Careful selection of the plaintexts. The previous discussion highlighted that par-
allelism is not sufficient to guarantee security against side-channel attacks. In this
section, we propose to tweak the PRF design with carefully chosen plaintexts,
in order to prohibit the application of standard divide-and-conquer strategies.
For this purpose, we define our plaintexts as the concatenation of Ns identical
values j, i.e. pj = j||j|| . . . ||j, with 1 ≤ j ≤ Np and Np limited by the S-box



input space. Under conditions discussed later in this section, the effect of this
measure is that in a DPA attack, the predictions corresponding to the Ns key
bytes cannot be distinguished anymore. That is, all key bytes are targeted at the
same time. As a result, and even when increasing Np, not all the Ns key bytes
can be highly ranked by the attack. This effect can be seen in the right part of
Figure 3 and is reflected in a higher guessing entropy for the target key byte.

One important consequence of this observation is that the reduced guessing
entropy of one key byte does not directly translate towards more key bytes.
Indeed, the adversary now has to reconstruct a full key from a single score vector
(rather than Ns ones in the random plaintext scenario). Intuitively, the task of
reconstructing the full key could be divided into two steps: (1) picking a subset
of Ns key bytes and (2) afterwards determining their order. Probably the most
important result for this countermeasure is that even if the Ns correct key bytes
are always ranked in the Ns first positions, task (2) still has a complexity of Ns!,
a number which grows super-exponentially. We now discuss the conditions upon
which this security parameter can actually be observed:

1. The leakage function L in Equation (1) has to be identical for all S-boxes.
2. Side-channel attacks exploiting unknown ciphertexts should be hard.

As far as the first condition is concerned, it is admittedly a new type of assump-
tion. Therefore we investigated its practicality in Section 6, based on an FPGA
case study. Our conclusions can be summarized as follows. (a) This assump-
tion is indeed implementation-dependent. That is, we were able to identify both
implementations with close to identical leakage models for all S-boxes, and imple-
mentations in which these models exhibit significant differences. (b) Even in the
cases where significant differences occur, these differences could not be exploited.
Essentially, this is because constructing the models (byte per byte, as imposed
by computational constraints) has to be done for uniform plaintexts. That is,
we assume parts of the bytes in the implementation to produce independent
algorithmic noise (binomially, or approximately Gaussian distributed). By con-
trast, during an attack, the plaintexts are carefully chosen for all the bytes, hence
generating a strongly key-dependent noise that was not characterized during pro-
filing. As a result, the modeled leakage and the leakage during an attack do not
match, which prohibits successful key recoveries. Summarizing, our experiments
provide good indication that our assumption is sufficiently fulfilled for power
measurements. As for EM measurements, it depends on the localization capabil-
ities of the adversary. As discussed in [27], Chapter 3, distinguishing structures
of a few hundred gates in complex circuits is a non-trivial task, especially for
deep-submicron technologies. Hence, we believe that our countermeasure rules
out an important part of low-cost EM attacks, and leave the investigation of
advanced localization issues as an interesting question for future research.

As far as the second condition is concerned, first note that only the cipher-
texts of the last step in the right construction of Figure 1 are given to the
adversary. But for this last iteration, only one public plaintext p can be queried
(i.e. the data complexity is bounded to one). For all the other steps, the ci-
phertexts remain internal intermediate values. In this context, we just observe



that most DPA attacks against block cipher implementations are based on the
knowledge of either the plaintexts or the ciphertexts. To our knowledge, the best
attacks in fully unknown input conditions are algebraic ones, e.g. [35, 36], which
are hardly realistic in large parallel devices. Hence, it is reasonable to assume
that the most critical threat against this PRF construction is taking advantage
of the carefully chosen plaintexts. This scenario is investigated next.

5 Worst case security analyses

The previous section argued that breaking an AES-based leakage-resilient PRF
taking advantage of parallelism could be at least as hard as enumerating a permu-
tation over the AES S-boxes. This would correspond to 16! ≈ 244 for AES-128,
24! ≈ 279 for Rijndael-192 and 32! ≈ 2117 for Rijndael-256. Hence, a natural
question is to determine whether one can hope for more security, i.e. indepen-
dent of their order, how difficult is the task of finding the correct Ns key bytes
of the PRF? For this purpose, a first strategy is to apply a standard DPA attack
and to enumerate the keys from the single score vector it provides. As discussed
in Appendix A, this does not lead to any efficient key recovery and suggests large
security guarantees. However, it turns out that in view of the design tweaks used
in our PRF construction, standard DPA attacks are not anymore the most rele-
vant tool for their security evaluation. In the rest of this section, we discuss two
alternative techniques for attacking a PRF implementation. In both cases, the
attacks rely on strong assumptions. Namely, we assume that the adversary has a
perfect knowledge of the leakage function and can average his measurements in
order to obtain noiseless leakages. As discussed in Appendix B, producing such
noiseless traces may require significant amounts of measurement data. These
conditions are motivated by the goal of investigating worst-case security. In this
setting, we first describe an iterative type of DPA attack that significantly im-
proves over the one in Appendix A. Next, we analyze the impact of advanced
attacks using lattice reduction. In both cases, the results underline that the PRF
construction does not offer much more security than what is bounded by the time
needed to enumerate the permutation, if perfect measurements are available.

5.1 An iterative DPA-like attack

The aim of the iterative DPA attack is to recover the correct set of key bytes in
the PRF implementation, exploiting the fact that one correct key byte is ranked
at position one with high probability (see Appendix A). It works by iteratively
removing the algorithmic noise corresponding to the best rated key bytes.

In the beginning of the attack, the adversary has an empty set of recovered
key bytes and mounts a first DPA. As a result, he adds a first key byte to the
set of recovered key bytes, corresponding to the highest rank in his (single) score
vector. Next, he mounts a second DPA, this time adding the algorithmic noise
corresponding to the already recovered key byte to his predictions. As a result,
he adds a second key byte to the set of recovered key bytes. This procedure



is repeated until a set of Ns key bytes is recovered. Simulated DPA attacks
in a noise free scenario and assuming that the adversary exactly knows the
leakage model (i.e. in the same worst-case conditions as in Section 4) show that
this simple strategy succeeds for Ns = 16 and Np = 256 with a probability of
≈ 59%. However, as soon as we either increase Ns or decrease Np, the success
rate drops, as exhibited in Table 1. Additionally, there is no obvious way to
(1) tell immediately if a wrong key byte was picked and (2) efficiently recover
the master key from an incorrect set of key bytes. In the next section, we show
that advanced attacks based on lattice reduction provide a more robust and
systematic way to exploit the side-channel leakage of our PRF implementation.

Table 1. Success rates for the iterative DPA attack.

Np = 4 8 16 32 64 128 256

Ns = 2 0.0 30.3 81.4 98.6 99.7 99.7 99.5
4 0.0 0.0 13.0 78.3 96.8 97.3 97.8
8 0.0 0.0 0.0 10.1 69.8 89.2 91.1

16 0.0 0.0 0.0 0.0 3.8 36.7 58.8
32 0.0 0.0 0.0 0.0 0.0 0.2 2.9

5.2 Advanced attacks using lattice reduction

Let us first recall Equation (1) that describes our noiseless leakages:

lj =

Ns∑
i=1

L(S(pj [i]⊕ k[i])).

Similarly to the previous section, the goal of a lattice-reduction attack is to
recover the vector of key bytes k = {k[1], k[2], . . . , k[Ns]} up to a permutation,
from a vector of noiseless leakages L = {l1, l2, . . . , lNp}. To simplify the analysis,
we first assume that all key bytes in the vector k are distinct1. In this context,
we denote byte-wise hypothetical leakage values as lba = L(S(b ⊕ a)), where b
(resp. a) represents an hypothetical plaintext byte (resp. key byte). Next, we

define a Np-dimension vector la = {l1a, l2a, . . . , l
Np
a }. Our problem can now be

restated as finding a subset K of [0, 1, . . . , 255] containing Ns elements such that
L =

∑
a∈K la. This turns the initial problem into a vectorial knapsack problem.

To solve this knapsack problem, we can either try generic algorithms as in [5,
20, 37], or a lattice-based approach [24]. It is well-known that the lattice-based
approach is very efficient for some knapsack problems and fails to work for other
parameters. Since our context is quite specific, the parameters we are concerned
with are not covered in standard textbooks. Moreover, our parameters are fixed
and an asymptotic analysis does not make sense in this case. As a consequence,

1 With this assumption, an exhaustive search on k can be achieved by trying all choices
of Ns key values among 256. Under this exhaustive search attack, the security for
Ns = 16 is 83 bits, for Ns = 24 it is 111 bits and for Ns = 32 it is 135 bits.



we decided to investigate the practical performance of a lattice reduction attack.
As will be clear next, this lattice reduction approach is surprisingly efficient and
the security estimates obtained by analyzing exhaustive search (in footnote 2)
are overoptimistic. We note that the lattice based approach also outperforms the
results obtained with generic algorithms. Hence, we only focus on this solution
in the rest of the section. Taking the wost-case example of Np = 256, we can
construct the lattice spanned by the columns of the following matrix:

κ l0 κ l1 · · · κ l255 κL
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

... 0
0 0 · · · 1 0

 ,

where κ is a large enough constant to guarantee that any short vector in this
lattice has its 256 first rows equal to 0. There exists a short vector of squared-
norm Ns in the lattice which contains 0 in the first 256 rows and such that the
next 256 rows are the characteristic vector of the set K, i.e. there is a 1 in row
257 + i iff i is in K (all other rows contain zeros). Hence, if we find a short
vector containing exactly Ns 1s, it can be converted into a set of keys which
is compatible with the observed leakages. Note that for large values of Np (e.g.
256), we expect only one solution for K, which is experimentally verified next.

Note finally that if there are collisions in the vector of keys, we can still apply
the same method with a minor change: the expected short vector becomes an
encoding of a multiset. In particular, a key byte which appears twice is encoded
by a 2. As a consequence, the principle of the attack is left unchanged. However,
due to the presence of squares in the computation of the norm, the expected
short vector has a larger norm which lowers the probability of success.

Experimenting the attack. As in the previous sections, we decided to con-
sider a Hamming weight leakage function in our evaluations. In addition to the
previously described case with Np = 256, we again experimented with truncated
versions of the vector L, i.e. with smaller Np’s. For each pair of parameters Ns,
Np, we performed 100 independent experiments (except for the case Np = 256
where we performed 1000 experiments) and extracted the success rate and aver-
age execution time of the LLL algorithm using the FPLLL library [1] of Cadé,
Pujol and Stehlé on an Intel Core i7-2820QM processor clocked at 2.30GHz.
These results are given in Table 2. Note that a TBD entry means that we have

Table 2. Measured success rates and average timing for the lattice-based attack.

Np = 256 254 252 251 250 249 248 247 246 245

Ns = 16 100 100 100 100 100 100 100 100 100 100
1.3s 1.4s 1.4s 1.4s 1.5s 1.5s 3.1s 34.8s 73.0s 131.4s

24 99.9 100 100 100 100 100 100 100 TBD TBD
1.4s 1.4s 1.4s 1.4s 1.5s 1.5s 3.1s 35.5s ≈ 88s ≈ 143s

32 79.6 79 79 83 80 79 76 TBD TBD TBD
1.4s 1.5s 1.5s 1.5s 1.6s 1.6s 3.3s ≈ 33s ≈ 81s ≈ 140s



only performed a single test in order to determine an approximate running time
but no meaningful probability of success. These results clearly exhibit that the
LLL-based approach outperforms the heuristic iterative DPA in the previous
section. Yet, one can observe that decreasing the number of leakages in large
implementations (e.g. for Ns = 32) leads to significant increases of the execution
times. More detailed results for the Np = 256 case are presented in Table 3, also
reflecting the fraction of key vectors containing collisions in our experiments.

Table 3. Additional data for Np = 256.

Ns
Key vectors Successes Key vectors Successes

Overall fraction Timing
w/o collisions w/ collisions

16 610 610 390 390 100 % 1.3s
24 328 328 672 671 99.9 % 1.4s
32 141 137 859 659 79.6 % 1.4s
40 40 23 960 479 50.2 % 1.6s

Improving the success rate. In order to improve the probability of success when
Ns grows, we can also combine the lattice reduction approach with a partial
exhaustive search. The idea is to guess the contribution of some fixed vector,
to subtract this guessed contribution from the target vector and to re-run the
attack without the guessed vector and with a smaller short vector.

6 Practical instantiation issues

The previous sections of this paper suggest that a leakage-resilient PRF of-
fers interesting security arguments compared to state-of-the-art countermeasures
against side-channel attacks. Motivated by the need to understand the impact
of different parameters in a PRF implementation, our analysis was mostly based
on idealized leakage functions. In this section, we complement this view with a
first discussion of some important practical instantiation issues.

Performance evaluation. We evaluated the hardware performance of our con-
struction based on AES-128 (LRPRF-128) and Rijndael-192 (LRPRF-192). For
this purpose, we opted for a fully parallel, encryption-only implementation of
the algorithms. In addition to these block ciphers, the PRF designs also contain
a register to store the x value and some control logic to operate the blocks. Using
Synopsis Design Compiler 2010 and the STM 65nm CMOS standard cell library,
this resulted in an area of 9.97 kGE (resp. 14.43 kGE) for LRPRF-128 (resp.
LRPRF-192). An encryption takes 10 (resp. 12) cycles plus 2 cycles to load the
key and the plaintext. Thus, the complete PRF evaluation with a 16 (resp. 24)
byte value for x takes 17× 12 + 2 = 206 (resp. 25× 14 + 2 = 352) cycles, where
the additional two are again for loading the key and the x value. This is in fact
in line with state-of-the-art protected implementations like the one by Moradi et
al. from Eurocrypt 2011 [30]. Their threshold implementation of AES-128 takes
266 cycles at an area of 11.12 kGE. In addition, we mention that given some



memory overheads, the PRF construction gains particular interest when used
for encryption in counter mode. It enables starting the PRF evaluation from
intermediate results of previous evaluations. For instance, producing a 512-bit
keystream can be done in only (17 + 2 + 2 + 2)× 12 + 2 = 278 cycles (given that
there is no overflow of the least significant byte in the IV).

Investigation of leakage models. In order to analyze the practicality of the
requirement that the S-box leakage models must be identical, we performed a
case study on the SASEBO evaluation platform [2] and measured the power
consumption of two circuits. The first one consisted of two block-RAM based
S-boxes and the second one implemented two S-boxes following Canright’s ap-
proach [8]. For both circuits, we acquired one million traces and built templates
from them. That is, for each S-box within a circuit, we characterized 256 Gaus-
sian distributions corresponding to the 256 possible inputs. We then used the
mean values of these distributions as the leakage model for an S-box. The ex-
tracted leakage models can be seen in Figure 4. For block-RAM based S-boxes,
they show a Pearson correlation of 0.996. This means that for carefully designed
implementations, the requirement of identical leakage models can indeed be ful-
filled. By contrast for the Canright implementation, there was a visible layout
difference between the two instances on the FPGA. Therefore, also the models
differed and the correlation of the mean values decreased to 0.686. From this
case study, we can conclude that for some implementations, there are leakage
differences which can be extracted by an adversary with profiling capabilities.
In the next paragraph, we discuss whether these differences can be exploited.

Fig. 4. Leakage models: block-RAM based S-box (left) and Canright S-box (right).

Impact of algorithmic noise. In traditional DPA attacks, the algorithmic
noise is considered to be Gaussian and, due to uniformly distributed inputs,
averages out for a sufficient number of inputs. In our case on the other hand, all
inputs are determined by a single byte and a fixed key. Therefore the algorithmic
noise cannot be averaged out and in addition, is fully determined by the unknown
part of the key. Clearly, directly profiling such kind of noise is computationally



hard (it corresponds to performing a DPA directly on the full master key).
Therefore, and in order to analyze the effect of this key-dependent algorithmic
noise, we performed the following simulated experiment. First, we implemented
Ns = {2, 4, 8} Canright S-boxes on the FPGA (i.e. we considered the most
different leakage models). For each S-box Si with i ∈ [1;Ns], we measured 400
traces for each input, while keeping the inputs to the other S-boxes at zero. This
way we could build precise leakage models Li without acquiring any algorithmic
noise. To simulate real traces where all S-boxes operate in parallel, we then built
the overall leakage function as: L′(p) =

∑Ns

i=1 Li(Si(p[i])) + n, where p is the
Ns-byte input, p[i] is the ith byte of the input, and n an Gaussian distributed
measurement noise estimated from our data set. This leakage description was
then used to simulate our Ns S-box device from which we could sample traces for
arbitrary inputs. From this point, we proceeded as usual. That is, we built Ns

templates (now including algorithmic noise) by sampling 100 million traces from
L′(·). Next, we launched template attacks by sampling 300 times 256 000 traces
(for 300 different keys). The results of these attacks can be seen in Figure 5.

Fig. 5. Impact of algorithmic noise reflected by the success rate and guessing entropy.

For the uniformly distributed (UD) plaintexts, all subkeys are recovered cor-
rectly after 3 000 and 13 000 traces respectively, indicated by a guessing entropy
of one and a first-order success rate of one. Both metrics are averaged over the
Ns S-boxes. By contrast, for the carefully chosen (CC) plaintexts, it can be ob-
served that the success rates stagnate at the same time as when they reach one
for the uniformly distributed plaintexts. This is because for some subkeys the
models will fit. Hence, those subkeys can be recovered with good probability. But
for the remaining subkeys it is not possible to carry out a successful recovery. In
the case of a template attack (represented with plain curves in the figure), this
means that the probability of the correct key will diminish at some point, which
is the reason why the guessing entropy increases again after 26 000 traces. In the
case of a correlation attack using the templates’ mean value as model (instead
of the usual Hamming weight model [7]), this effect vanishes, as represented by
the dotted lines. That is, the “hard to recover” subkeys then stagnate at fixed



ranks in the lists (corresponding to a fixed correlation coefficient value), rather
than decreasing towards a probability zero, due to an incorrect model. Thus, we
can conclude that even if there are actual differences in the leakage models of
the different S-boxes of a PRF implementation, and strong profiling is possible
for the adversary, the key-dependent algorithmic noise prevents the building of
a sound leakage model. For example, already for 8 parallel S-boxes, each subkey
remains with a guessing entropy of ≈ 35 in our case study. It would further
increase with more parallel S-boxes (the previously described PRF implementa-
tions would have at least 16 and 24 ones, respectively). Hence, the only way to
perform successful key recoveries in these cases would be to build templates for
the full key, which is unrealistic for computational reasons.

Preventing DPA attacks against MixColumns. The central result of our
security analyses is that performing a side-channel attack against our parallel
PRF implementation should at least require to enumerate a permutation over
Ns S-boxes. However, this implicitly assumes that the only path for perform-
ing a DPA is this operation, which neglects the possibility to mount attacks
against MixColumns. In general, such attacks are more computationally inten-
sive, as they require guessing 232 key candidates. Yet, this remains achievable
with modern computers. Given that such attacks succeed, it would only remain
to enumerate a permutation of the MixColumns operations (i.e. 4! × 4 for the
AES-128, where the factor 4 relates to the fact that the adversary would recover
the 32-bit subkeys up to a byte-wise rotation). However, this attack may not al-
ways be applicable in practice, and can be made more computationally intensive,
as we now discuss. First note that in a hardware implementation, the adversary
may have to target the Hamming distance between the state register values be-
fore and after the first round. But one byte of this value depends on five key bytes
and four bytes of this value depend on eight key bytes, which is harder to guess.
In addition, there is a simple and general trick to increase the amount of bytes to
guess after the MixColumns transform. Namely, one just has to switch the order
of MixColumns and AddRoundKey. This requires that the key schedule applies
the inverse MixColumns operation to the round keys before outputting them.
Since the only non-linear operation in the key schedule is SubWord, the key
schedule can operate on accordingly recoded round keys and, instead of apply-
ing SubWord, apply the sequence MixColumns, SubWord, InvMixColumns. The
costs of this accounts for one InvMixColumns and one MixColumns unit. Finally,
any attack against larger subkeys would still have a bounded data complexity
of 256 with key-dependent algorithmic noise. Summarizing, the protection of
MixColumns against DPA can be enhanced by different architectural means.
Besides, and quite interestingly, this discussion highlights that the AES is not
the best suited algorithm for integration in our leakage-resilient PRF. Hence,
it suggests the design of block ciphers with more convenient diffusion layers for
this purpose as another interesting scope for further research.

Security against fault attacks. Finally, there is an additional advantage to
our construction. Usually, the resources for side-channel attacks and fault pro-
tections cannot be shared. For leakage-resilient PRFs, on the other hand, we can



provide a first-order fault protection based on temporal redundancy, by just re-
peating the last step of the construction. Taking the LRPRF-128 as an example,
we would perform 18 instead of 17 encryptions. This accounts for an overhead
of only 5.8%, rather than the usual 100% for block ciphers.

7 Conclusions & consequences for block cipher design

This paper describes tweaks to improve both the practical security and the effi-
ciency of leakage-resilient PRFs. They allow quantifying physical security with
a parameter that has super-exponential impact on the time complexity of a
successful attack. They also open the paths towards real world applications,
as their performance overheads are in line with other countermeasures against
side-channel attacks. In particular, the only known countermeasure with an ex-
ponential security parameter is masking. But increasing the number of masks in
a block cipher implementation is generally (much) more expensive than increas-
ing its parallelism. Next, our results suggest interesting challenges for the design
of new block ciphers, as the AES Rijndael appears not to be an ideal candidate
for integration in leakage-resilient constructions. Possible tracks for investigation
include modifying the number and size of S-boxes (that directly affect the se-
curity vs. efficiency tradeoff of the PRF), reducing the number of rounds in the
inner steps of the construction, and improving diffusion layers in order to avoid
the possible attacks after the diffusion layer described in Section 6.
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A Security against standard DPA attacks

The result of a standard (template-based) DPA attack against our scheme is a
single vector, in which all possible subkeys are ranked according to their proba-
bility. From this, a full key consisting of Ns bytes has to be reconstructed. Ideally,
the set of the Ns correct subkeys would be ranked first and all other subkeys
would have a low probability. However, looking at the distribution of the sub-
keys within such a vector after a noise-free attack shows that this is not the case
(mainly because of the algorithmic noise). Figure 7 illustrates where the correct



Fig. 6. Distribution of the correct key bytes within a probability vector.

Fig. 7. Estimated and extrapolated guessing entropy of the full key.

subkeys can be found within the vector on average. Whereas the best-ranked
correct key byte can be almost with certainty found at position one, some of the
correct subkeys are ranked much lower. Starting from such a vector, the opti-
mal adversarial strategy is to enumerate full keys according to their probability,
where all up-to-permutation-identical keys have the same probability. Following
this strategy, we estimated and extrapolated the guessing entropy. This was done
by generating a probability vector for Ns values between one and seven with a
constant noise variance which would correspond to an algorithmic noise of 16
or 32 parallel S-boxes. From each vector we sampled 230 random full keys and
checked the position of the correct full key within this set. Afterwards, we scaled
this position to 256Ns and added the complexity for the permutation. Finally,
since we could observe a power-law for the guessing entropy, we extrapolated
these values up to 16 and 32 S-boxes using the slope in log-scale. The very fact
that the end points of these extrapolations suggest a security of 284 and 2185

show that standard DPA cannot be the optimal strategy.



B Averaging effort to obtain noiseless traces

As the security evaluations in Section 5 both consider noiseless traces, an in-
teresting question is to determine the averaging effort that would be needed to
obtain such high quality information from an actual implementation. For this
purpose, we measured a fully parallel AES-128 FPGA implementation on the
SASEBO evaluation platform [2]. We considered traces close to noise-free if we
can correctly identify the 128-bit Hamming distance value for 256 measurements,
with a probability of 0.90. Thus, each of the 256 measurements must be classi-
fied correctly with a probability of (0.9)1/256 = 0.9996. This in turn corresponds
to a confidence interval of 3.54σ, assuming a normal distribution of the noise.
Thus, to allow error-free decoding, we need the mean values for the Hamming
weights to be twice that value apart, meaning 7.08σ. Given the distance between
the mean values ∆µ and the standard deviation of our measurements, we can
calculate the number of traces to average as:

n =

(
7.08σ

∆µ

)2

.

As we get only sample means from our measurements, we calculated n for the
average and the minimum value of ∆µ. The latter one is also motivated by the
fact that, if due to the power model the ∆µ values are not equidistant, then the
smallest distance determines n. For the average ∆µ we found n = 6.9 ∗ 103 and
for the minimum value we found n = 8.8 ∗ 106. To get a close to noise-free mean
trace for every plaintext, we additionally need to multiply this number by 256,
thus we need to acquire a total number of 1.78 ∗ 106 and 2.27 ∗ 109 traces for the
minimum and average ∆µ, respectively. The actual number of traces to acquire
most likely lies somewhere between these two extreme values. Hence, it suggests
that the averaging effort can be expected to be non-negligible.

C Additional figure

Fig. 8. Experimental attacks against the AES with bounded data complexity.


