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Abstract. New countermeasures aiming at protecting against power
analysis attacks are often proposed proving the security of the scheme
given a specific leakage assumption. Besides the classical power models
like Hamming weight or Hamming distance, newer schemes also focus
on other dynamic power consumption like the one caused by glitches
in the combinational circuits. The question arises if with the increasing
downscale in process technology and the larger role of static leakage or
other harder to model leakages, the pure theoretical proof of a coun-
termeasure’s security is still good practice. As a case study we take a
new large ROM-based masking countermeasure recently presented at
CT-RSA 2012. We evaluate the security of the scheme both under the
leakage assumptions given in the original article and using a more real-
world approach utilizing collision attacks. We can demonstrate that while
the new construction methods of the schemes provide a higher security
given the assumed leakage model, the security gain in practice is only
marginal compared to the conventional large ROM scheme. This high-
lights the needs for a closer collaboration of the different disciplines when
proposing new countermeasures to provide better security statements
covering both the theoretical reasoning and the practical evaluations.

1 Introduction

Security-enabled devices like smartcards play a larger and larger role in our ev-
eryday lives. From a mathematical point of view these can easily be protected by
modern ciphers which are secure in a black-box scenario where only the inputs
and outputs can be observed. Unfortunately, with the discovery of side-channel
attacks in the late 90s the security of a device no longer relies only on the use of
a secure cryptographic algorithm, but especially on how this algorithm is imple-
mented. In unprotected implementations sensitive information like encryption
keys can be recovered by observing so called side channels.

Many different kinds of countermeasures have since been proposed either for
protection of software and/or hardware platforms (see [11] for instance). While
the masking countermeasures for software are relatively limited mainly to the
algorithmic level, dedicated hardware circuits further allow the use of special
logic styles and gate-level countermeasures. Preventing side-channel leakage in
hardware is especially intricate since glitches in the circuit can cause otherwise



theoretically secure schemes to leak [12]. Because of their wide versatility the
community has shown a huge interest to different aspects of masking counter-
measures, e.g., [5, 6, 16, 17, 19, 20]. More recent schemes trying to take the afore-
mentioned problem of glitches into account are schemes relying on multi-party
computation, e.g., [17, 19]. Most articles dealing with side-channel countermea-
sures either propose a new scheme and try proving its security in theory under a
given leakage model [19] or evaluating the scheme in practice [15]. Because these
tasks normally require different backgrounds – math vs. engineering – there have
only been few attempts at a joint approach providing theoretically proven secu-
rity in addition to practical investigations.

In this work we focus on the practical evaluation of a masking scheme re-
cently presented at CT-RSA 2012 [10]. It is based on boolean masking and large
Look-Up-Tables (LUTs), and tries to avoid some known shortcomings caused
by updating the mask and masked data at the same time. The idea behind the
scheme is to store and update the masks in a way that the leakage caused by
updating the mask and masked data are not directly related. According to the
given proofs the scheme should prevent any kind of univariate leakage if the
leakage characteristics of the target device fits to a Hamming distance (HD)
model. Taking AES Rijndael in hardware as our case study, we compare the effi-
ciency and side-channel leakage of this scheme with the conventional way of using
global look-up-tables (GLUT) [18]. Following the guidelines in [10], we have im-
plemented the SubBytes transformation using the target masking scheme while
facing difficulties when dealing with the linear parts especially MixColumns.

Using an FPGA-based platform we practically examine and compare the
side-channel leakage of an exemplary design made considering different masking
schemes including the conventional one and those proposed in [10]. We show
that the proposed constructions indeed increase the resistance against power
analysis attacks, but only when restricting the attack to the model assumed in
the original article. Analyzing the resistance of the scheme under more realistic
assumptions about the leakage model shows that the new constructions are as
vulnerable as the conventional one.

We should stress that our practical results do not show any shortcomings
of the scheme considering the assumed leakage model. However, we show that
the model taken into account when designing and proving the security of the
proposed scheme does not comprehensively consider all the possible leakages
which are available in practice.

In Section 2 we define the notations and explain the basics of the target
masking schemes. Our design architectures and adaptions to fit to the schemes’
assumptions are described in Section 3, and the corresponding evaluation results
are provided in Section 4. Finally, Section 5 concludes our research.

2 Preliminaries

When using boolean masking as a side-channel countermeasure, a secret value x,
which contributes to the computations of a cryptographic device, is represented



by a randomized variable z as x ⊕
⊕d

i=1 ri, where each ri is an independent
random variable with a uniform distribution. Each of z, r1, . . . ,rd is considered
as a separate share in this secret sharing scheme, which is called dth-order boolean
masking. Since each share contributes to the computations separately, the scheme
is supposed to provide security at most against dth-order power analysis attacks.
In the literature there exist two distinct definitions for what is the order of an
attack. Some previous work define the order via the number of different leakage
points considered simultaneously mainly because of the sequential processing in
software. Others define the order via the statistical moment applied. In this work
we use the following definition:

– An attack which combines v different time instances – usually in v different
clock cycles – of each power trace is called v-variate attack.

– The order of an attack – regardless of v – is defined by the order of the
statistical moments which are considered in the attack.

For instance, a CPA [4] which combines two points of each power trace by sum-
ming them up is a bivariate 1st-order attack, and a CPA which applies the
squared values of each point of each trace is a univariate 2nd-order attack. Those
attacks where no specific statistical moment is applied, e.g., mutual informa-
tion analysis (MIA) [2], are distinguished only by v like univariate or bivariate
MIA [7].

The focus of this article is 1st-order boolean masking by considering one ran-
dom value for each secret. The main goal of different hardware implementations
of these schemes is to counteract univariate attacks of any order. Therefore, we
consider only these attacks in our evaluations.

While the linear operations of a cryptographic algorithm are easy to adjust
to the underlying boolean masking, providing solutions to adjust the non-linear
parts of different algorithms suitable either for software or hardware platforms
still is not trivial. This has indeed taken huge interest by the community and
several schemes and techniques have been proposed. One which is the focus of
this article is Global Look-up Table (GLUT) introduced in [18]. In the following
we briefly explain the scheme w.r.t to the specific case considered in [10].

Suppose that the desired non-linear part of the target algorithm is a bijection
and denoted by an n× n S-box S : Fn

2 7→ Fn
2 . The secret value x represented by

two shares z = x ⊕ r and r is mapped to a shared representation of S(x), i.e.,
z′ = S(x) ⊕ r′ and r′. This mapping is done by a pre-computed look-up table
T as (z, r) 7→ (z′, r′), where output mask r′ is made by a deterministic function
U over input mask r. Therefore, the look-up table T maps a 2n-bit input to
a 2n-bit output and is of a size of 2n · 22n bits. This scheme, which is a usual
way of realizing a masked S-box if the table fits into the memory space, is called
“conventional” scheme in the rest of this article.

The problem which is observed in [10], is a univariate leakage caused when
the registers containing the look-up table input (z, r) are updated by its output
(z′, r′). The bit flips in the registers are represented by (∆z,∆r) = (x⊕ S(x)⊕
r ⊕ r′, r ⊕ r′). Therefore, a univariate MIA or a univariate 2nd-order CPA can



reveal the relation between the bit flips and x. In order to overcome this problem
a new scheme, which is shortly restated below, has been introduced in [10].

In the new scheme, x is represented by two shares z = x⊕F (r) and r, where
the bit length of r (denoted by p < 2n) is no longer equal to n, and F is a
deterministic function from Fp

2 to Fn
2 . The look-up table T ∗ maps a (n + p)-

bit input (z, r) to an n-bit output z′ = S(x) ⊕ F (r′), and the output mask is
computed easily as r′ = r ⊕ α, where α is a non-zero p-bit constant. The table
T ∗ needs n · 2n+p storage bits and still is comparable to the size of T for values
p close to n. In this case the register update – same scenario as before – leads to
(∆z,∆r) = (x⊕S(x)⊕F (r)⊕F (r′), r⊕r′). The mask difference is constant, i.e.,
∆r = α, but in order to appropriately choose the function F two constructions
have been proposed in [10] (we simplified the conditions for clarity):

– p = n+1, α = ({1}, {0}n), and F (r) = G(r) if r ∈ {0}×Fn
2 and F (r) = {0}n

otherwise. G is an arbitrary bijective function from {0} × Fn
2 to Fn

2 .
– p = n + n′, and for r = (rh, rl) ∈ F2n′ × F2n , F (rh, rl) = G(rh) • rl, where
• denotes multiplication over the finite field F2n . G is an arbitrary injective
function from Fn′

2 to Fn
2 − {0}. The constant α is also made by an arbitrary

non-zero constant α′ ∈ Fn′

2 as (α′, {0}n).

Both constructions satisfy the required conditions, i.e., ∆r to be constant and
distribution of F (r) ⊕ F (r′) to be uniform. However, in the first construction
F (r) is zero for half of its input space. In other words, in half of the cases the
secret x is represented by z = x leading to a very high bias in the distribution
of z for a given x and uniformly distributed random r. This issue is not seen in
the second construction, and the function F is uniformly distributed over Fn

2 .
We refer to these two constructions as “first CT-RSA” and “second CT-RSA”
schemes in the rest of this article.

3 Case Study: AES

Hereafter we consider AES Rijndael as the target algorithm, and try to realize
the encryption function using the aforementioned masking scheme. The first
step toward our goal is to make the masked S-box. Because of the byte-wise
computations (n = 8) 16 · 216 = 1M bits storage space is required to realize
the table T of the conventional scheme. For the first CT-RSA scheme, the same
amount of space i.e., 8 · 217 = 1M bits, is required to make the T ∗1 table. The
second CT-RSA scheme also leads to an 8 · 216+n′

-bit table T ∗2 , which is still
possible in practice for some small n′.

Therefore, the SubBytes transformation can be easily realized. However, a
question arises when trying to rewrite the linear parts of the algorithm under
either the first or the second CT-RSA scheme. If the key is not masked, as is
assumed in [10], the implementation of AddRoundkey is straightforward. On
the other hand, if the key should also be masked this would push the space
requirements to (8 ·226) = 512M-bit for the look-up table to map the xored data
and key and both their masks to a masked result. This problem becomes worse
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Fig. 2. CT-RSA masking architecture [10]

when trying to maintain the masking schemes while implementing mixcolums
e.g., by a T-table approach.

In order to follow the scheme presented in [10] we suppose that only the
SubBytes transformation is performed using the CT-RSA masking schemes, and
for instance – by applying the F function – the masks are transformed to the
conventional scheme to perform the rest of the encryption operations. In the
following we discuss on issues arising when designing a circuit to solely perform
the SubBytes transformation.

3.1 Our Design

When e.g., because of area constraint, there is only one instance of a circuit,
e.g., S-box, in a design, the hardware designers usually take advantage of the
serialized design methodology. In this technique, as shown in Fig. 1, a rotate
shift register with an S-box circuit as the feedback function is employed. As a
reference we can mention [3, 8, 9, 21] where this design methodology is used.

In either conventional or CT-RSA masking schemes the look-up tables, i.e.,
T or T ∗, are quite large that integrating more than one table does not seem to be
practical. However, the CT-RSA scheme has been designed and its security has
been analyzed according to an assumption depicted in Fig. 2. It is assumed that
both shares of a state byte are simultaneously replaced by the corresponding
shares of the substitution value. This means that if a serialized architecture is
considered for implementation, our target masking scheme does not provide the
desired proven security. One solution is to use several multiplexers to select each
state byte as the S-box input and save its output in the same register. This is
usually not a designers’ preferred choice because of its higher area overhead and
slightly bigger control unit compared to the serialized one. The solution that
we have applied to realize the serialized architecture and satisfy the assumption
of the CT-RSA masking scheme is shown in Fig. 3. The rotate byte-wise shift
register is active between each two table lookups (S-box). Therefore, the S-box
output is saved at the same register which contains its input. Compared to both
aforementioned architectures this design leads to time overhead since we have
separated the shift and the save operations. While there are ways to improve
the throughput in this scenario, we deliberately chose to keep it in this simple
way since we are mainly interested in evaluating the side-channel leakage of
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Fig. 3. Our exemplary design to examine conventional and CT-RSA masking schemes

the register updates and there is no need to risk introducing unwanted leakage
sources for throughput reasons.

The target platform we selected to implement the schemes is a Virtex-5
FPGA (XC5VLX50) embedded in a SASEBO-GII board [1]. We selected three
cases of masking schemes in our experiments to make the corresponding look-up
tables:

– Conventional, look-up table T needs – as stated before – 1M bits space.
The deterministic mask-update function U (see Section 2) is selected as
r′ = U(r) = r4 ⊕ 56h in F28 and using the Rijndael irreducible polynomial.

– First CT-RSA, look-up table T ∗1 also needs a 1M-bit space. α = 100h and
the G function is randomly selected (see Appendix for a table representa-
tion).

– Second CT-RSA, where n′ = 1, i.e., look-up table T ∗2 also needs 1M bits
space. α = 100h, G(0) = b2h, and G(1) = 5fh.

There are a couple of different ways to implement a large look-up table in FPGAs.
We selected two versions:

– LUT, a combination of 6-input 1-output small look-up tables (LUT6 [22])
which allows realizing a large ROM, and

– BRAM, a combination of 18k-bit block RAMs (RAMB18 [22]) and a few
number of LUT6 which allows implementing a large RAM.

In order to make the T table in the LUT version, we required 1365 LUT6
instances in six depth levels for each output bit, i.e., in sum 21 840 LUT6 in-
stances which perfectly fits to the number of available LUT6 instances in our
target FPGA, i.e., 28 800. Making each the T ∗1 and T ∗2 tables similarly we needed
2731 LUT6 instances in seven depth levels for each output bit and in sum 21 848.

The BRAM version of table T needs four BRAM18 and one LUT6 for each
output bit, i.e., 64 BRAM18 and 16 LUT6 for whole of the T table. Each of tables
T ∗1 and T ∗2 also needs eight BRAM18 and three LUT6 and in sum 64 BRAM18
and 24 LUT6. We should note that 96 BRAM18 instances are available in our
target FPGA, and n′ = 1 for the second CT-RSA scheme is the only option which
could fit into the available resources either in the LUT or BRAM version.

We should emphasize that we omitted using the Architecture Wizard IP tool
of Xilinx to make the aforementioned look-up tables. Instead, we hard-instanced



the BRAM18 and LUT6 instances with our desired contents preventing any
optimizations by the synthesizer. Also important to mention is the architectural
difference between the LUT and BRAM versions. The tables made by LUT6
can be seen as a combinational circuit (clockless) which provides output for any
value that appears at its input. However, the block RAMs need one clock cycle
to provide the desired output of the given input. Therefore, our design (Fig. 3)
in LUT version needs one clock cycle to save the table output before each shift.
It means 32 clock cycles for whole of the SubBytes transformation. But one more
clock cycle per state byte is required in the BRAM version leading to 48 clock
cycles in total.

4 Practical Results

As stated before, we used a SASEBO-GII board as the evaluation platform,
and implemented all our experimental designs on its target FPGA (XC5VLX50)
running at a frequency of 3MHz. We also measured power consumption traces of
the target FPGA using a LeCroy WP715Zi 1.5GHz oscilloscope at the sampling
rate of 1GS/s. A 1Ω resistor in the VDD path, a DC blocker, a passive probe,
an amplifier, and restricting the bandwidth of the oscilloscope to 20MHz helped
to obtain clear and low-noise measurements.

We provided 6 design profiles made as Conventional, First CT-RSA, and
Second CT-RSA each in both LUT and BRAM versions. Each design profile
gets 16 plaintext bytes pi∈{1,...,16} and according to the target masking scheme
makes a masked plaintext byte p′i of each by means of 16 independent random
values ri∈{1,...,16} (each 8-bit for the Conventional and 9-bit for the CT-RSA
profiles). 16 secret key bytes ki∈{1,...,16}, which are fix inside the design, are each
XORed with the corresponding masked plaintext byte as zi∈{1,...,16} = p′i⊕ki. In
16 clock cycles zi and ri are serially given to the design (see Fig. 3) to completely
fill the shift registers. Depending on the profile after 32 or 48 clock cycles the
SubBytes transformation is completed.

We provided a clear trigger signal for the oscilloscope which indicates the
start and end of the SubBytes transformation, thereby perfectly aligning the
measured power traces. We also restricted the measurements to cover only the
S-box computations. We fixed the number of measurements for all profiles to
1 000 000. In the experiments shown below we kept the secret key bytes fix and
randomly selected the input plaintext bytes. Moreover, we made sure of the
uniform distribution of internal random values ri.

The technique we used to evaluate the side-channel leakage of these profiles is
the correlation-collision attack [14]. This attack examines the leakage of one cir-
cuit instance that is used in different time instances. It originally considers only
the first-order leakage, but according to [13] it can be adapted to use higher-order
moments. Since our design profiles realize different 1st-order masking schemes,
we restrict our evaluations to consider only the first- and second-order univariate
leakage of the profiles. We should again emphasize the goal of the CT-RSA pro-
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Fig. 4. LUT version, (a) sample power trace, collision attack results by register update
model, (left) first-order (right) second-order: (b) and (c) Conventional, (d) and (e)
First CT-RSA, (f) and (g) Second CT-RSA profiles, each using 1 000 000 traces

files which is preventing the univariate side-channel leakage of any order given
the register update leakage model.

We start our evaluations with the LUT version of the Conventional profile.
An exemplary power trace, which shows the S-box table lookup of the first few
bytes, is depicted in Fig. 4(a). We consider the leakage caused by register updates
when the S-box input is overwritten by its output, i.e., vi = (pi ⊕ ki) ⊕ S(pi ⊕
ki) (not considering the masks in the formula). It is indeed the same model
which the security of CT-RSA schemes are based on. In order to perform the
aforementioned collision attack we need to compare the corresponding leakages
of register updates of two different state bytes. We consider the second and the
third state bytes, i.e., v2 and v3, and search for the correct (k2, k3) in a 216 space
by comparing each of the first- and second-order univariate leakages (means and
variances) of corresponding parts of the measured power traces. The result of
these attacks, which are not unexpected, are shown by Fig. 4(b) and Fig. 4(c).
The same scenario is considered for the First CT-RSA profile, and performing
the same attack with the same settings led to the results shown in Fig. 4(d) and
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Fig. 5. LUT version, collision attack results by S-box input model, (left) first-order
(right) second-order: (a) and (b) Conventional, (c) and (d) First CT-RSA, (e) and
(f) Second CT-RSA profiles, each using 1 000 000 traces

Fig. 4(e). Comparing those attack results which are based on the second-order
moments (Fig. 4(c) vs. Fig. 4(e)) shows the efficiency of the first CT-RSA scheme
to counteract those attacks which use the register update model. The same holds
for the Second CT-RSA profile, and the attack results depicted in Fig. 4(f)
and Fig. 4(g) confirm the efficiency of the second CT-RSA scheme as well.

However, the register update (usually simplified by the HD model) is not
the unique source of leakage in hardware. The value of e.g., S-box input or its
output also affects the power consumption of the device and hence contributes in
information leakage. In our designs the masked S-box input (pi∈{1,...,16} ⊕ ki)⊕
F (ri) and the mask ri at the same time appear at the look-up table input, and
the distribution of leakages which depend on the masked input and the mask is
not independent of the unmasked input pi ⊕ ki. Therefore, considering e.g., the
S-box input a univariate attack is expected to be successful.

In order to consider such model in our attacks we take the second and the
third S-box inputs, p2⊕k2 and p3⊕k3, and search for correct key difference k2⊕k3
amongst 28 candidates by comparing each first- and second-order moments of
the corresponding parts of the power traces. The result of all six attacks are
depicted in Fig. 5, where for each of the profiles exists a successful first- and/or
second-order attack. It in fact confirms our claim that the register update is
not the sole source of leakage, and in contrast to what is argued in Section 3.2
of [10] the leakage of the combinational logic – including look-up tables – can-
not be separated from the leakage of the register update. Indeed, the leakage
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Fig. 6. BRAM version, (a) sample power trace, collision attack results by register
update model, (left) first-order (right) second-order: (b) and (c) Conventional, (d)
and (e) First CT-RSA, (f) and (g) Second CT-RSA profiles, each using 1 000 000
traces

which can be observed by currently available measurement setups is a mixture
of both leakages caused by inherent low-pass filters of the device internals, PCBs,
measurement tools, etc [11].

We also should stress the difference between the first-order leakage of the
First CT-RSA and the Second CT-RSA profiles (Fig. 5(c) vs. Fig. 5(e)).
The First CT-RSA profile has clear first-order leakage in contrast to the other
profile. The reason behind this – as stated in Section 2 – is the F function of
the first CT-RSA scheme, where the actual mask used to mask the secret, i.e.,
F (r), is zero for half of the space of r. This results in having the S-box input –
and consequently its output – unmask in the computations with the probability
of 50%.

Repeating the same scenario of considering the register update as well as S-
box input on profiles in the BRAM version led to the same results as depicted
in Fig. 6 and Fig. 7. Although it needs much less power compared to the LUT
version (Fig. 6(a) vs. Fig. 4(a)), the First CT-RSA and Second CT-RSA pro-
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Fig. 7. BRAM version, collision attack results by S-box input model, (left) first-order
(right) second-order: (a) and (b) Conventional, (c) and (d) First CT-RSA, (e) and
(f) Second CT-RSA profiles, each using 1 000 000 traces

files also provide robustness against the attack using the register update model.
However, they both – similar to the Conventional profile – show vulnerability
against a collision attack utilizing a straightforward S-box input model.

4.1 Discussions

As mentioned before, the profiles of the LUT version can be seen as a huge
combinational circuit which sees a masked value and the corresponding mask
at its input signals. Therefore, the glitches happening inside the combinational
circuit – similar to the results reported in [12] and [14] – are the main source
of leakage. Their dependency to the unmasked values cause the designs to be
vulnerable.

We should explain an architectural difference between the profiles of the
LUT and the BRAM versions. As stated before, the profiles of the BRAM
version need one more clock cycle per state byte compared to the LUT version.
However, according to the results of the BRAM version (Fig. 7) the leakage,
which depends on one S-box table lookup, appears at more than one clock cycle.
Figure 7(a) shows that the input-output of a table lookup affects the power
consumption not only at the clock cycle in which the block RAM is active but also
at the next time when the block RAM is activated for the next table lookup (a
distance of 3 clock cycles in our design profiles). Moreover, the biased distribution
of the masks in the First CT-RSA profile becomes more problematic in the
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Fig. 8. Success rate of collision attacks by S-box input model in presence of noise using
1 000 000 traces, (a) LUT version and (b) BRAM version of all profiles

BRAM version, where the leakage related to a table lookup appears in five
consecutive clock cycles (see Fig. 7(c)).

The internal architecture of block RAMs of our target FPGA is not publicly
available, and in contrast to LUT6 it cannot be simply guessed. Therefore, we
can only speculate on the actual reasons behind the strange leakage appearing in
the profiles of the BRAM version. For instance, there exist additional input and
output registers in the block RAMs which can be activated or bypassed. Also,
each block RAM contains some cascading registers to be used when combining
several small block RAMs to a bigger one. It is ambiguous whether all these
registers still get triggered when they are bypassed in the settings. Additionally,
the data and address bitwidth of each block RAM can be arbitrarily selected
by the settings. This means that there exist several multiplexers and additional
logics to provide all possible options. All these unclear issues prevent us from
providing a certain reason for the observed leakage in the block RAMs.

At the end we compare the vulnerability of all profiles in presence of noise.
Since only the attacks using the S-box input model are successful, we omitted the
register update model in this evaluation. With a certain standard deviation we
artificially added Gaussian random noise to the specific points of all the 1 000 000
measured power traces, and performed the same attacks as before. We repeated
the noise addition and the attack 200 times for each step of the noise standard
deviation, and reported the average of the attack success rate in Fig. 8. According
to curves shown in Fig. 8(a), the CT-RSA profiles of the LUT version make the
attacks harder compared to theConventional profile. The threshold of the noise
standard deviation for a successful attack on CT-RSA profiles is considerably
lower than that of the Conventional one. However, a similar experiment on the
profiles of the BRAM version shows different results (see Fig. 8(b)). The attack
on the Conventional profile can be unsuccessful while with the same amount
of noise the CT-RSA profiles of the BRAM version are still vulnerable to the
aforementioned attack. The reason is most likely related to the obscure internal
architecture of the block RAMs.



5 Conclusions

In this work we have implemented the scheme recently proposed in CT-RSA
2012 [10], and have evaluated its security under the given leakage assumption in
the original paper as well as using an approach more close to a real-world sce-
nario. We pointed out the practical issues when realizing this masking schemes
for linear functions. Moreover, we addressed the difficulties of the GLUT tech-
nique caused by their extremely large resource consumption on FPGAs. For
instance, two thirds of the available BRAMs or three quarters of all available
LUTs in a Xilinx Virtex-5 LX50 are required for a single masked S-box look-up
table.

Nevertheless, we could show that the newly proposed constructions indeed
provide a higher level of security when only considering the register update model
as the leakage source. On the other hand, our results show that this leakage
assumption is still not close enough to practice even when using large ROM-
style tables instead of pure combinational circuits to implement the masked
S-boxes. By pointing out exploitable univariate leakages of all the design profiles
we showed that just stating the security of the scheme under a register update
assumption (simplified by HD) is not a valid choice in any kind of masking
realization, being it in combinational logic or large ROMs.

A closer collaboration of the different fields of countermeasure creation and
practical evaluations would help to increase the impact of new proposals. It
indeed allows a better adaption of new schemes in real-world applications. This
way the industry sector would benefit not only of a theoretical proof but would
appreciate the demonstration of the consistency of the theoretical claims with
practice.
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Appendix

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

x

00 a8 f8 f0 00 d9 62 fd 39 4a bd af 06 a9 35 e1 df
01 14 5b 82 0d 9b d4 29 17 b9 02 f7 95 3e 65 79 d7
02 7d e4 ba 8b cc dc 1d b5 87 71 07 fa ef d5 48 2f
03 a7 e3 b2 6f aa ed 4d a0 81 c0 8c 15 e0 19 9e f1
04 84 6b 4c da 93 eb 58 2b d3 27 33 76 b8 51 96 a3
05 f4 c5 75 ae d2 30 85 fb 64 38 3f 5c 9c 66 98 c1
06 bb 63 a4 73 52 fc 9d 8d 24 25 31 cf e2 57 9f c3
07 8f f3 20 7f 3b bc bf 1a 54 03 91 0a 67 a5 16 10
08 c7 e8 b3 21 13 72 0f 7a 01 88 e5 d1 f5 7c 40 ee
09 97 4e 83 94 ad 5d 04 c4 32 a1 e7 92 43 b7 1e e9
0a 12 70 50 1f a6 36 05 77 f6 ea 46 28 56 7b 55 db
0b 61 34 b4 2e 9a a2 6d 86 4f cb ab ce 8a 6c 99 42
0c 6a 5a 3d ca 59 11 53 3c ac 74 b6 c8 3a 89 2d 47
0d 2a cd de 0c 5f 26 23 4b c6 b0 7e 6e f2 c2 b1 fe
0e 18 37 0b d6 e6 d0 49 8e 41 c9 69 44 d8 90 be 5e
0f 0e f9 60 ff 1b ec 09 78 80 1c dd 08 45 68 22 2c

Fig. 9. The G function selected in our experiments in the First CT-RSA profiles,
values for the input as (x, y) ∈ F5

2 × F4
2 (in hexadecimal format)


