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Abstract. Side-channel attacks have proven many hardware implemen-
tations of cryptographic algorithms to be vulnerable. A recently proposed
masking method, based on secret sharing and multi-party computation
methods, introduces a set of sufficient requirements for implementations
to be provably resistant against first-order DPA with minimal assump-
tions on the hardware. The original paper doesn’t describe how to con-
struct the Boolean functions that are to be used in the implementation.
In this paper, we derive the functions for all invertible 3×3, 4×4 S-boxes
and the 6 × 4 DES S-boxes. Our methods and observations can also be
used to accelerate the search for sharings of larger (e.g. 8 × 8) S-boxes.
Finally, we investigate the cost of such protection.
Keywords: DPA, masking, glitches, sharing, nonlinear functions, S-box,
decomposition

1 Introduction

Side-channel analysis exploits the information leaked during the compu-
tation of a cryptographic algorithm. The most common technique is to
analyze the power consumption of a cryptographic device using differen-
tial power analysis (DPA). This side-channel attack exploits the correla-
tion between the instantaneous power consumption of a device and the
intermediate results of a cryptographic algorithm.

Several countermeasures against side-channel attacks have been pro-
posed. Circuit design approaches try to balance the power consumption
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of different data values [31]. Another method is to randomize the inter-
mediate values of an algorithm by masking them. This can be done at
the algorithm level [1, 5, 12, 24], at the gate level [13, 27, 32] or even in
combination with circuit design approaches [25].

Many of these approaches result in very secure software implemen-
tations. However, it has been shown that hardware implementations are
much more difficult to protect against DPA [17]. The problem of most of
these masking approaches is that they underestimate the amount of infor-
mation that is leaked by hardware, for instance during glitches or other
transient effects. The security proofs are based on an idealized hardware
model, resulting in requirements on the hardware that are very expensive
to meet in practice. The main advantages of the threshold implementation
approach are that it provides provable security against first-order DPA
attacks with minimal assumptions on the hardware technology, in par-
ticular, it is also secure in the presence of glitches, and that the method
allows to construct realistic-size circuits [20,22,23].

1.1 Organization and contributions of this paper

The remainder of this paper is organized as follows. In Section 2 we in-
troduce the notation and provide some background material. Section 2.6
contains our first contribution: a classification of S-boxes which simpli-
fies the task to find implementations for all S-boxes. In Section 3 we
present our second contribution: a method to decompose permutations
as a composition of quadratic ones. We prove that all 4-bit S-boxes in the
alternating group can be decomposed in this way. We extend the sharing
method in Section 4 and show that all 3×3, 4×4 and DES 6×4 S-boxes
can be shared with minimum 3 and/or 4 shares. We investigate the cost
of an HW implementation of the shared S-boxes in Section 5. Some ideas
for further improvements will be provided in the full version of the paper
[2]. Finally, we conclude in Section 6.

2 Preliminaries

We consider n-bit permutations sometimes defined over a vector space Fn
2

or over a finite field GF (2n). The degree of such a permutation F is the
algebraic degree of the (n, n) vectorial Boolean function [6] or also called
n-bit S-box. Any such function F (x) can be considered as an n-tuple
of Boolean functions (f1(x), . . . , fn(x)) called the coordinate functions of
F (x).



2.1 Threshold implementations

Threshold implementations (TI), are a kind of side-channel attack coun-
termeasures, based on secret sharing schemes and techniques from mul-
tiparty computation. The approach can be summarized as follows. Split
a variable x into s additive shares xi with x =

∑
i xi and denote the

vector of the s shares xi by x = (x1, x2, . . . , xs). In order to implement
a function a = F (x, y, z, . . . ) from Fm

2 to Fn
2 , the TI method requires a

sharing, i.e. a set of s functions Fi which together compute the output(s)
of F . A sharing needs to satisfy three properties:

Correctness: a = F (x, y, z, . . . ) =
∑

i Fi(x,y, z, . . . ) for all x,y, z, . . .
satisfying

∑
i xi = x,

∑
i yi = y,

∑
i zi = z, . . .

Non-completeness: Every function is independent of at least one share
of the input variables x, y, z. This is often translated to “Fi should be
independent of xi, yi, zi, . . . .”

Uniformity (balancedness): For all (a1, a2, . . . , as) satisfying
∑

i ai =
a, the number of tuples (x,y, z, . . . ) ∈ Fms for which Fj(x,y, z, . . . ) =
aj , 1 ≤ j ≤ s, is equal to 2(s−1)(m−n) times the number of (x, y, z, . . . ) ∈
Fm for which a = F (x, y, z, . . . ). Hence, if F is a permutation on Fm,
then the functions Fi define together a permutation on Fms. In other
words, the sharing preserves the output distribution.

This approach results in combinational logic with the following proper-
ties. Firstly, since each Fi is completely independent of the unmasked
values, also the subcircuits implementing them are, even in the presence
of glitches. Because of the linearity of the expectation operator, the same
holds true for the average power consumption of the whole circuit, or any
linear combination of the power consumptions of the subcircuits. This
implies perfect resistance against all first-order side-channel attacks [23].
The approach was recently extended and applied to Noekeon [23], Kec-
cak [4], Present [26] and AES [19]. Whereas it is easy to construct for
any function a sharing satisfying the first two properties, the uniformity
property poses more problems. Hence reasonable questions to ask are:
which functions (S-boxes) can be shared with this approach, how many
shares are required and how can we construct such sharing?

A similar approach was followed in [28], where Shamir’s secret shar-
ing scheme is used to construct hardware secure against dth-order side-
channel attacks in the presence of glitches. Instead of constructing dedi-
cated functions Fi, they propose a general method which replaces every
field multiplication by 4d3 field multiplications and 4d3 additions, using



2d2 bytes of randomness. While the method is applicable everywhere, in
principle, there are cases where it may prove too costly.

2.2 Decomposition as a tool to facilitate sharing

In order to share a nonlinear function (S-box) with algebraic degree d, at
least d+1 shares are needed [20, Theorem 1]. Several examples of functions
shared with 3 shares, namely quadratic Boolean function of two and three
variables, multiplication on the extension field GF (22m)/GF (2m) (e.g.
multiplication in GF (4)), and the Noekeon S-box have been provided
[20, 22, 23]. A realization of the inversion in GF (16) with 5 shares was
given in [20]. Since the area requirements of an implementation increase
with the number of shares, it is desirable to keep the number of shares as
low as possible.

The block ciphers Noekeon and Present have been designed for com-
pact hardware implementations. They have S-boxes, which are not very
complex 4 × 4 cubic permutations. Realizations for these two block ci-
phers have been presented for Noekeon in [22,23] and in [26] for Present.
In order to decrease the algebraic degree of the functions for which shar-
ings need to be found, these three realizations decompose the S-box into
two parts. For the Present S-box, decompositions S(x) = F (G(x)) with
G(0) = 0 have been found where F (x) and G(x) are quadratic permu-
tations [26]. By varying the constant term G(0) the authors found all
possible decompositions of S(X) = F (G(X)). Both S-boxes F (x), G(x)
have been shared with three shares (F1, F2, F3) and (G1, G2, G3) that are
correct, non-complete and uniform.

When the AES S-box (with algebraic degree seven) is presented using
the tower field approach, the only nonlinear operation is the multiplication
in GF (4), which is a quadratic mapping [19]. This observation has lead
to a TI for AES with 3 shares. In order to guarantee the uniformity, re-
sharing (also called re-masking) has been used four times. Re-sharing is a
technique where fresh uniform and random masks/shares are added inside
a pipeline stage in order to make the shares follow an uniform distribution
again.

A novel fault attack technique against several AES cores including
one claimed to be protected with TI method has been proposed in [18].
But as the authors pointed out, contrary to the AES TI implementation
in [19], their targeted core has been made without satisfying the non-
completeness and uniformity properties by “sharing” the AND gates with
4 shares formula from [19,20]. Since the used method does not satisfy the
TI properties it should not be called a TI implementation of AES. In



addition, the TI method was never claimed to provide protection against
fault attacks.

2.3 Equivalence classes for n = 2, 3, 4

Definition 1 ([8]). Two S-boxes S1(x) and S2(x) are affine/linear equiv-
alent if there exists a pair of invertible affine/linear permutation A(x) and
B(x), such that S1 = B ◦ S2 ◦A.

Every invertible affine permutation A(x) can be written as A ·x+a with a
an n-bit constant and A an n× n matrix which is invertible over GF (2).
It follows that there are 2n ×

∏n−1
i=0 (2n − 2i) different invertible affine

permutations.
The relation “being affine equivalent” can be used to define equiva-

lence classes. We now investigate the number of classes of invertible n×n
S-boxes for n = 2, 3, 4. Note that the algebraic degree is affine invariant,
hence all S-boxes in a class have the same algebraic degree.

It is well known that all invertible 2×2 S-boxes are affine, hence there
is only one class. The set of invertible 3×3 S-boxes contains 4 equivalence
classes [8]: 3 classes containing quadratic functions, and one class contain-
ing the affine functions. We will provide a table with a representative of
each class in the full version of the paper [2].

The maximal algebraic degree of a balanced 4-variable Boolean func-
tion is 3 [7, 16]. De Cannière uses an algorithm to search for the affine
equivalent classes which guesses the affine permutation A for as few input
points as possible, and then uses the linearity of A and B to follow the
implications of these guesses as far as possible. This search is acceler-
ated by applying the next observation, which follows from linear algebra
arguments (change of basis):

Lemma 1 ([15]). Let S be an n×n bijection. Then S is affine equivalent
to an S-box S̃ with S̃(0) = 0, S̃(1) = 1, S̃(2) = 2, . . . , S̃(2n−1) = 2n−1.

In the case n = 4, this observation reduces the search space from 16! ≈ 244

to 11! ≈ 225.
De Cannière lists the 302 equivalence classes for the 4 × 4 bijections

[8]: the class of affine functions, 6 classes containing quadratic functions
and the remaining 295 classes containing cubic functions.1 We will list
the classes in the full version of the paper [2]. The numbering of the
classes is derived from the lexicographical ordering of the truth tables of

1 Independent of [8, 15], Saarinen classified the 4× 4 S-boxes using a different equiv-
alence relation [30].



the S-boxes. In order to increase readability, we introduce the following
notation An

i , Qn
j , Cnk to denote the Affine class number i, Quadratic class

number j and Cubic class number k of permutations of Fn
2 .

2.4 Order of a permutation

All bijections from a set X to itself (also called permutations) form the
symmetric group on X denoted by SX . A transposition is a permuta-
tion which exchanges two elements and keeps all others fixed. A classical
theorem states that every permutation can be written as a product of
transpositions [29], and although the representation of a permutation as
a product of transpositions is not unique, the number of transpositions
needed to represent a given permutation is either always even or always
odd. The set of all even permutations form a normal subgroup of SX ,
which is called the alternating group on X and denoted by AX . The al-
ternating group contains half of the elements of SX . Instead of AX and
SX , we will write here An and Sn, where n is the size of the set X.

2.5 Known S-boxes and their classes

There are only few cryptographically significant 3 × 3 S-boxes: the In-
version in GF (23), the PRINTcipher, the Threeway and the Baseking
S-boxes. They all belong to Class 3. There are many cryptographically
significant 4 × 4 S-boxes. To mention some of them: Twofish, Gost, Ser-
pent, Lucifer, Clefia, HB1, HB2, mCrypton, Klein, Khazad, Iceberg, Puf-
fin, Present, Luffa, Hamsi, JH, Noekeon, Piccolo.

2.6 The inverse S-box

Note that S−1, the inverse S-box, is not necessarily affine equivalent to
S and in this case may not have the same algebraic degree. We know
however, that the inverse of an affine permutation is always an affine
permutation. In the case of 3 × 3 S-boxes it follows that the inverse of
a quadratic permutation is again a quadratic permutation. Moreover, it
can be shown that the 3 quadratic classes in S8 are self-inverse, i.e. S−1

belongs to the same class as S. In the case n = 4, we can apply the
following lemma.

Lemma 2 ([6]). Let F be a permutation of GF (2n), then deg(F−1) =
n− 1 if and only if deg(F ) = n− 1.



Since the inverse of an affine S-box is affine, and, when n = 4, the inverse
of a cubic S-box is cubic, it follows that in this case the inverse of a
quadratic S-box is quadratic. The Keccak S-box (n = 5) is an example
where the algebraic degree of the inverse S-box (3) is different from the
algebraic degree of the S-box itself (2) [3].

We have observed that there are 172 self-inverse classes in S16. The
remaining 130 classes form 65 pairs, i.e., any S-box S of the first class has
an inverse S-box S−1 in the second class (and vice versa). We will provide
the list of the pairs of inverse classes in the full version of the paper [2].

3 Decomposition of 4 × 4 S-boxes

In this section we consider all 4 × 4 bijections, and investigate when a
cubic bijection from S16 can be decomposed as a composition of quadratic
bijections. We will refer to the minimum number of quadratic bijections
in such a decomposition as decomposition length. Recall that the Noekeon
S-box is cubic but defined as a composition of two quadratic S-boxes in
F4
2 : S(x) = S2(S1(x)). Similarly the Present S-box is cubic but has also

been shown to be decomposable in two quadratic S-boxes.

Lemma 3. If an S-box S can be decomposed into a sequence of t quadratic
S-boxes, then all S-boxes which are affine equivalent to S can be decom-
posed into a sequence of t quadratic S-boxes.

Lemma 4 ([33]). For all n, the n× n affine bijections are in the alter-
nating group.

Lemma 5. All 4 × 4 quadratic S-boxes belong to the alternating group
A16.

Proof. Since all invertible affine transformations are in the alternating
group (the previous Lemma), two S-boxes which are affine equivalent,
are either both even or both odd. We have taken one representative of
each of the 6 quadratic classes Q4

i for i ∈ {4, 12, 293, 294, 299, 300} [8] and
have verified that their parities are even. ut

Now we investigate which permutations we can generate by combining
the affine and the quadratic permutations. We start with the following
lemma.

Lemma 6. Let Qi be 6 arbitrarily selected representatives of the 6 quadratic
classes Q4

i . (Hence i ∈ {4, 12, 293, 294, 299, 300}.) Then all cubic permu-
tations S that have decomposition length 2, are affine equivalent to one



of the cubic permutation that can be written as

S̃i×j = Qi ◦A ◦Qj , (1)

where A is an invertible affine permutation and i, j ∈ {4, 12, 293, 294, 299,
300}.
It follows that we can construct all cubic classes of decomposition length
2 by running through the 36 possibilities of i×j and the 322560 invertible
affine transformations in (1). This approach produces 30 cubic classes. In
the remainder, we will denote the S-boxes S̃i×j by i× j and refer to them
as the simple solutions. In the full version of the paper [2] we provide the
list of the simple solutions for all 30 decompositions with length 2. Note
that if Qi ◦ A ◦Qj = S, i.e. S can be decomposed as a product of i × j,
then Q−1

j ◦ A−1 ◦ Q−1
i = S−1. Since for n = 4 all quadratics are affine

equivalent to their inverse, it follows that S−1 is decomposed as a product
of j × i. Thus any self-inverse class has decomposition i× j and j × i as
well. For the pairs of inverse classes we conclude that if i × j belongs to
the first class then j × i belongs to the second class.

To obtain all decompositions with length 3 we use similar approach as
for length 2 but the first permutation Qi is cubic (instead of quadratic)
and belongs to the already found list of cubic classes decomposable with
length 2. It turns out that we can generate in this way the 114 remaining
elements of A16.

Summarizing, we can prove the following Theorem and Lemma (stated
without proof in [9]).

Theorem 1. A 4× 4 bijection can be decomposed using quadratic bijec-
tions if and only if it belongs to the alternating group A16 (151 classes).

Proof. (⇒) Let S be a bijection which can be decomposed with quadratic
permutations say Q1 ◦ Q2 ◦ . . . ◦ Qt. Since all Qi ∈ A16 (Lemma 5) and
the alternating group is closed it follows that S ∈ A16.
(⇐) Lemma 3, Lemma 6 and the discussion following it imply that we
can generate all elements of the alternating group using quadratic per-
mutations. ut

The left-hand-side columns of Table 1 list the decompositions of all 4×4 S-
boxes. Theorem 1 implies that the classes which are not in the alternative
group i.e. in S16 \ A16, can’t be decomposed as a product of quadratic
classes. Now we make the following simple observation:

Lemma 7. Let S̃ be a fixed permutation in S16 \ A16 then any cubic
permutation from S16 \ A16 can be presented as a product of S̃ and a
permutation from A16.



4 Sharing with 3, 4 and 5 shares

In this section we focus first on the permutations which can be shared
with 3 shares, i.e. all S-boxes in F3

2 and half of the S-boxes in F4
2 . Next we

focus on those functions that can be shared with 4 shares, i.e. the other
half of the S-boxes in F4

2 . Then, we will show how to share all of these
S-boxes in F4

2 with 5 shares without need of a decomposition.

4.1 A basic result

Theorem 2. If we have a sharing for a representative of a class, then
we can derive a sharing for all S-boxes from the same class.

Proof. Let S be an n× n S-box which has a uniform, non-complete and
correct sharing S̄ using s shares Si. Denote the input vector of S by x,
and the shares by xi. Each Si contains n coordinate shared functions
depending on at most (s − 1) of the xi, such that the noncompleteness
property is satisfied. We denote by xi the vector containing the s − 1
inputs of Si.

We now construct a uniform, non-complete and correct sharing for
any S-box S̃ which is affine equivalent to S. By definition, there exist two
n× n invertible affine permutations A and B s.t. S̃ = B ◦ S ◦A. In order
to lighten notation, we give the proof for the case that A and B are linear
permutations. We define Ā, B̄ as the ns×ns permutations that apply A,
respectively B, to each of the shares separately:

Ā(x1, x2, . . . xs) = (A(x1), A(x2), . . . A(xs)),

B̄(x1, x2, . . . xs) = (B(x1), B(x2), . . . B(xs)).

Denote yi = A(xi), 1 ≤ i ≤ s and define yi as the vector containing the s−
1 shares yi that we need to compute Si. Consider S̄(Ā(x1, x2, . . . , xs)) =
(S1(y1), S2(y2), . . . Ss(ys)). By slight abuse of notation we can write yi =
Ā(xi) and see that the noncompleteness of the S̄i is preserved in S̄ ◦ Ā.
Since Ā is a permutation, it preserves the uniformity of the input and
since S̄ is uniform so will be the composition S̄ ◦ Ā. The correctness
follows from the fact that S̄ is a correct sharing and that

y1+y2+· · ·+ys = A(x1)+A(x2)+· · ·+A(xs) = A(x1+x2+. . . xs) = A(x).

Consider now B̄(S̄(A(x))) = (B(S1(y1)), B(S2(y2)), . . . , B(Ss(ys))). Since
B̄ is a permutation, it preserves uniformity of the output and since S̄



is uniform, the composition B̄ ◦ S̄ is uniform. The composition is non-
complete since the S̄i are non-complete and B̄ doesn’t combine different
shares. Correctness follows from the fact that S̄ is a correct sharing and
hence

B(S1(y1)) +B(S2(y2)) + · · ·+B(Ss(ys))

= B(S1(y1) +S2(y2) + · · ·+ Ss(ys)) = B(S(A(x))). ut

4.2 Direct sharing

The most difficult property to be satisfied when the function is shared
is the uniformity. Assume that we want to construct a sharing for the
function F (x, y, z) with 3 shares. Then it is easy to produce a sharing
which satisfies the correctness and the non-completeness requirements
and is rotation symmetric, by means of a method that we call the direct
sharing method, and that we now describe. First, we replace every input
variable by the sum of 3 shares. The correctness is satisfied if we ensure
that

F1 + F2 + F3 = F (x1 + x2 + x3, y1 + y2 + y3, z1 + z2 + z3).

In order to satisfy non-completeness, we have to divide the terms of the
right hand side over the three Fj in such a way that Fj doesn’t contain
a term in xj . We achieve this by assigning the linear terms containing
an index j to Fj−1, the quadratic terms containing indices j and j + 1
to Fj−1 and the quadratic terms containing indices j only to Fj−1. For
example,

F (x, y, z) = x+ yz, gives:

F1 = x2 + z2y2 + z2y3 + z3y2

F2 = x3 + z3y3 + z3y1 + z1y3

F3 = x1 + z1y1 + z1y2 + z2y1.

Note that the uniformity of sharing produced in this way is not guaran-
teed. It has to be verified separately. The method can easily be generalized
for larger number of shares.

Direct sharing has been used in [26] for the decomposition of the
quadratic permutations F and G of the Present S-box S and similarly for
Noekeon [23], Keccak [4].

With the direct sharing method we were able to find sharings respect-
ing the uniformity condition for all 1344 permutations of Q3

1, but none of



Q3
2 and Q3

3. We were also able to find sharings for all 322560 permutations
of Q4

4, Q4
294 and Q4

299, but none of Q4
12, Q4

293 and Q4
300. So, unfortunately

half of the quadratic S-boxes can’t be shared directly with length 1 but we
still can find a sharing with length 2 by decomposing them as a composi-
tion of the already shared quadratic S-boxes. Thus, if we use only direct
sharing we will be able to find sharings for all S-boxes in the alternating
group but at the cost of longer path.

4.3 Correction terms

Since direct sharing not always results in an uniform sharing the use of
correction terms (CT) has been proposed [20, 22]. Correction terms are
terms that can be added in pairs to more than one share such that they
satisfy the non-completeness rule. Since the terms in a pair cancel each
other, the sharing still satisfies the correctness.

By varying the CT one can obtain all possible sharings of a given
function. Consider a Boolean quadratic function with m variables (1 out-
put bit), which we want to share with 3 shares. Note that the only terms
which can be used as CT are xi or xiyi (or higher degree) for i = 1, 2, 3.
Indeed terms like xiyj for i 6= j can’t be used in the i-th and j-th share
of the function because of the non-completeness rule and therefore such
a term can be used in only 1 share, hence it can’t be used as a CT.

Thus counting only the linear and quadratic CT and ignoring the
constant terms, which will not influence the uniformity, for a quadratic
function with m variables we obtain that there are 3(m+

(
m
2

)
) CT. Taking

into account all possible positions for the CT we get 23(m+(m2 )) sharings.
For example, for a quadratic function of 3 variables there are 218 possible
CT and therefore for a 3 × 3 S-boxes the search space will be 254. This
makes the exhaustive search (to find a single good solution) over all CT
unpractical, even for small S-boxes. For sharing with 4 shares even more
terms can be used as CT.

4.4 A link between the 3 × 3 S-boxes and some quadratic
4 × 4 S-boxes

Lemma 8. There is a transformation which expands Q3
1, Q3

2 and Q3
3 into

Q4
4, Q4

12 and Q4
300 correspondingly.

Proof. Starting from a 3 × 3 S-box S and adding a new variable we can
obtain a 4× 4 S-box S̃. Namely, the transformation is defined as follows:
let S(w, v, u) = (y1, y2, y3) and define S̃(x,w, v, u) = (y1, y2, y3, x). It is



easy to check that this transformation maps the first 3 classes into the
other 3 classes. ut

The relation from Lemma 8 explains why if we have a sharing for a class
in F3

2 we also obtain a sharing for the corresponding class in F4
2 and vice

versa, i.e., if we can’t share a class the corresponding class also can’t be
shared. The results we have obtained with 3 shares are summarized in
Table 1 (middle columns).

Recall that if we use only direct sharing we will be able to share with
3 shares all S-boxes in the alternating group but at the cost of longer
path than the one obtained by decomposition. However using CT we
found sharing for classes: Q3

1, Q3
2, Q4

4, Q4
12, Q4

293, Q4
294 and Q4

299. So all
quadratic classes except Q3

3 and Q4
300 can be shared with 3 shares and

without decomposition. We want to pose an open question: find sharing
without decomposition to classes Q3

3 and Q4
300 or show why they can’t be

shared with 3 shares in that way.

4.5 Sharing using decomposition

As an alternative to the search through a set of correction terms, we can
also construct sharings after using decomposition: we try to decompose
S-boxes into S-boxes for which we already have sharings. This decom-
position problem is more restrained than the basic problem discussed in
Section 3 for sharing with 3 shares, since we can use only the quadratic
S-boxes for which we already have a sharing. It turns out that this extra
requirement sometimes increases the decomposition length by one. For
example, decomposition for Q3

3 is 1×2 and 2×1, i.e., we obtain a sharing
for Q3

3 at the cost of length 2 (instead of length 1). Similarly Q4
300 can be

decomposed as 4×12, 4×293, 12×4, 12×294, 293×4, 293×294, 294×12
and 294× 293 so, again we obtain a sharing with length 2. Table 1 (right
columns) gives the results.

Recall that one can’t find a sharing with 3 shares for cubic functions
outside the alternating group. Thus, 4 shares will be required in this case.
Using direct sharing with 4 shares we obtain slightly better results for
the quadratic S-boxes compared to 3 shares since we were able to share
also class Q4

300 (and therefore Q3
3 too). The sharing of class Q4

300 has
further improved the sharings of C4130, C4131 and C424 which have sharing
with shorter length for 4 shares than for 3 shares. We have also found
sharings with 4 shares for the cubic classes C41 , C43 , C413 and C4301 from
S16 \ A16 using direct sharing. By using Lemma 7 we obtain sharings
with 4 shares for all 4 × 4 S-boxes. Observe that the total length of the



sharing depends on the class we use (C41 , C43 , C413 and C4301) and also on
the class from the alternating group, which is used for the decomposition.
For example, class C47 can be decomposed using C41 with length 4 but with
classes C43 and C413 it can be decomposed with length 3. Note also that the
number of solutions differ. We have found 10, 31 and 49 solutions when
using C41 , C43 and C413 classes, correspondingly. Surprisingly for the classes
in the alternating group we have only slight improvement with 4 shares
compared to 3 shares and only a few classes in S16 \ A16 have direct
sharing with 4 shares. However with 5 shares all classes can be shared
directly without decomposition which is a big improvement compare to
the situation with 4 shares.

Table 1: Overview of the numbers of classes of 4 × 4 S-boxes that can
be decomposed and shared using 3 shares, 4 shares and 5 shares. The
numbers are split up according to the decomposition length of the S-
boxes (1, 2, 3, or 4), respectively their shares.

unshared 3 shares 4 shares 5 shares remark
1 2 3 1 2 3 4 1 2 3 1

6 5 1 6 6 quadratics
30 28 2 30 30 cubics in A16

114 113 1 114 114 cubics in A16

– – 4 22 125 151 cubics in S16\A16

An open question is why for all S-boxes the sharing with 4 shares does
not improve significantly the results compared to 3 shares and suddenly
with 5 shares we can share all classes with length 1.

Recall that for the Present S-box, decompositions S(x) = F (G(x))
have been found in [26]. The authors also made an observation that ex-
actly 3

7 sharings out of the decompositions automatically satisfy the uni-
formity condition (i.e. without any correction terms). Recall that with the
direct sharing method without CT we (as well as the authors of [26]) were
able to share only 3 quadratic classes: Q4

4, Q4
294 and Q4

299. The Present
S-box belongs to C4266 and has 7 simple solutions but only 3 of them can
be shared namely 294 × 299, 299 × 294, 299 × 299, which explains the
authors’ observation.

In the full version of the paper [2] we provide a complete list for
the sharings with 3 and with 4 shares with their lengths. Recall that all
classes can be shared with 5 shares with length 1 and that for the S-boxes



in S16 \ A16 no solution with 3 shares exist. Note that the DES 6× 4 S-
boxes can be considered as an affine 2× 2 selection S-box with four 4× 4
S-boxes attached. Since we have sharings for both 2×2 and 4×4 S-boxes
we conclude that we have sharings for the DES 6× 4 S-boxes as well.

5 HW implementation of the sharings

In this section, our aim is to provide a fair comparison and prediction
what the cost (ratio of area to a NAND gate referred to as GE) will be
for a protected S-box in a specified library. For our investigations we used
the TSMC 0.18µm standard cell library in the Synopsis development tool.

Quadratic classes and cubic classes with length 1 form the basis to
all our implementations. Therefore, we concentrated our efforts on these
classes. While considering 3× 3 S-boxes we synthesized 840 affine equiv-
alent S-boxes for each class. However the number of S-boxes in a class
increases to more than 322560 as we move to 4× 4 S-boxes. In that case,
we choose 1000 S-boxes per class to synthesize.

Table 2: S8: Quadratic S-boxes sharing

3×3 S-boxes Sharing Original Unshared Shared Shared Shared
Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S8 (L) L reg L reg 1 reg 1 reg

Q3
1

Min
1

27.66
-

98.66 138.00 148.00
Max 29.66 121.66 150.00 185.66

Q3
2

Min
1

29.00
-

116.66 174.00 180.00
Max 29.66 155.00 226.66 220.33

Q3
3

Min
2

30.00 50.00 194.33 140.00 167.00
Max 32.00 51.00 201.00 194.33 228.66

In tables 2, 3 and 4 we show the implementation results for each class
only the S-box with the minimum GE from the result of our original S-
box synthesis (over the class), as well as the S-box with the maximum
GE. However, note that the Min and Max values should only be taken
as indications.

The area results listed in the column original S-box for an n×n S-box
include one n-bit register. If a decomposition is necessary for a correct,
non-complete and uniform sharing, then we included registers in between
every pipelining operation as required [23] which increases the cost as
expected.



Table 3: A16: Quadratic S-boxes sharing

4×4 S-boxes Sharing Original Unshared Shared Shared Shared
Quadratic Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S16 (L) L reg L reg 1 reg 1 reg

Q4
4

Min
1

37.33
-

121.33 168.33 186.33
Max 44.00 223.33 258.00 309.00

Q4
12

Min
1

36.66
-

139.33 204.00 218.00
Max 48.00 253.33 290.33 340.66

Q4
293

Min
1

39.33
-

165.33 194.33 235.00
Max 48.66 297.33 313.00 358.33

Q4
294

Min
1

40.00
-

141.33 170.33 210.33
Max 49.66 261.00 240.00 255.00

Q4
299

Min
1

40.33
-

174.33 211.00 247.00
Max 48.00 298.00 295.33 294.66

Q4
300

Min
2

33.66 58.00 207.33 209.66 249.33
Max 52.66 70.00 346.00 295.00 342.33

For classes with decomposition length more than 1, we randomly
choose a class representative i.e. an S-box. Then we implement the small-
est amongst all possible decompositions of this S-box, namely the one
which gives minimum GE. We saw that, classes Q3

3, Q4
300, C4150, C4151, C4130,

C4131, C424, C4204, C4257 and C4210 give relatively small results when imple-
mented as 2 × 1, 12 × 4, 12 × 293, 293 × 12, 12 × 4 × 299, 299 × 12 × 4,
299 × 12 × 4 × 299, 3 × 294, 3 × 12 and 3 × 293 × 12 respectively. The
area figures for C4204 and C4257 differ significantly. Closer inspection reveals
that this is due to the fact that their decompositions use different S-boxes
from C43 ; the S-box used in the decomposition of C4204 is smaller than the
one in the decomposition of C4257.

6 Conclusions

In this paper we have considered the threshold implementation method,
which is a method to construct implementations of cryptographic func-
tions that are secure against a large class of side-channel attacks, even
when the hardware technology is not glitch-free.

We have analyzed which basic S-boxes can be securely implemented
using 3, 4 or 5 shares. We have constructed sharings for all 3 × 3, 4 × 4
S-boxes and 6 × 4 DES S-boxes. Thus we have extended the threshold
implementation method to secure implementations for any cryptographic
algorithm which uses these S-boxes. Note that the mixing layer in the



Table 4: S16: Cubic S-boxes sharing

4×4 S-boxes Sharing Original Unshared Shared Shared Shared
Cubic Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S16 (L,L′) L’ reg L reg L’ reg 1 reg

C41 ∈ S16 \A16 Min
1,1

39.66 – 213.66 273.66
Max 40.33 – 378.00 464.66

C43 ∈ S16 \A16 Min
1,1

40.33 – 230.33 286.33
Max 43.00 – 413.66 500.66

C413 ∈ S16 \A16 Min
1,1

40.33 – 260.00 319.00
Max 41.33 – 423.00 502.66

C4301 ∈ S16 \A16 Min
1,1

39.33 – 289.33 350.33
Max 59.33 – 526.33 605.66

C4150 ∈ A16 2,2 46.33 71.66 305.33 430.66 414.33

C4151 ∈ A16 2,2 47.33 69.66 286.00 410.00 390.00

C4130 ∈ A16 3,2 48.00 97.33 393.00 375.66 442.66

C4131 ∈ A16 3,2 50.00 99.00 386.00 363.33 435.66

C424 ∈ A16 4,3 48.33 151.33 674.00 616.66 734.66

C4204 ∈ S16 \A16 2,2 49.00 80.33 - 413.00 501.33

C4257 ∈ S16 \A16 2,2 47.66 73.66 - 486.00 594.00

C4210 ∈ S16 \A16 3,3 47.66 119.33 - 602.00 695.33

round function of a block cipher is a linear operation and thus it is trivially
shared even with 2 shares. Finally, we have implemented several of the
shared S-boxes in order to investigate the cost of the sharing as well as
the additional cost due to the pipelining stages separated by latches or
registers.

Table 5: Range for the ratio area of the Shared with length L S-box
area of the Original S-box

3 shares 4 shares 5 shares remark
1 2 3 4 1 2 3 1

3.6–5.2 6.3–6.5 – – 5.0–7.6 – – 5.4–7.4 quadratics in S8

3.3–6.2 6.2–6.6 – – 4.3–6.4 – – 5.1–7.4 quadratics in S16

– 6.0–6.6 7.7–8.2 13.9 – 7.3–9.3 12.8 8.2–15.2 cubics in A16

– – – – 5.4–10.2 8.4–10.2 12.6 10.2–14.6 cubics in S16\A16

Our results summarized in Table 5 show that such secure implementa-
tion can also be made efficient. Note that we consider the cost of sharing
with L registers which is the total price for the sharing (since it includes
the sharing logic plus registers). Observe that the increase of the cost for
sharing with 3 shares of a quadratic S-box is similar for n = 3 and n = 4.



As expected, the longer length a sharing has, the more costly it becomes
(for 3 and 4 shares). It can be seen that sharings with 4 and 5 shares cost
up to 50% more than sharings with 3 shares. However, there are several
cases when using 4 or 5 shares reduces the cost by up to 30%, respectively
10%, compared to 3 shares with longer sharing length. For certain S-boxes
using 5 shares may be even beneficial compared to 4 shares (up to 4%)
but in general 5 shares are up to 30% more expensive than 4 shares.

An obvious conclusion is that the cost of the TI method heavily de-
pends on the class the given S-box belongs to as well as the chosen number
of shares and the associated sharing length. Therefore, in order to mini-
mize the implementation cost the number of shares have to be carefully
chosen. For all tested S-boxes we were able to find a sharing with cost
ranging from 3.3 till 12.8 times the area of the original S-box. However,
note that the area numbers are based on a few implementations from each
class. The ratios may change significantly if the smallest/biggest S-boxes
are found for every class.

Acknowledgements: We would like to thank Christophe De Cannière
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equivalent classes.
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