
Small Public Keys and Fast Verification for
Multivariate Quadratic Public Key Systems

Albrecht Petzoldt1, Enrico Thomae2, Stanislav Bulygin3, and Christopher
Wolf4

1,3Technische Universität Darmstadt and
Center for Advanced Security Research Darmstadt (CASED)

1apetzoldt@cdc.informatik.tu-darmstadt.de, 3Stanislav.Bulygin@cased.de
2,4Horst Görtz Institute for IT-security

Faculty of Mathematics
Ruhr-University of Bochum, 44780 Bochum, Germany
2Enrico.Thomae.rub.de, 4Christopher.Wolf@rub.de,

4chris@Christopher-Wolf.de

Abstract. Security of public key schemes in a post-quantum world is a
challenging task—as both RSA and ECC will be broken then. In this pa-
per, we show how post-quantum signature systems based onMultivariate
Quadratic (MQ) polynomials can be improved up by about 9/10, and
3/5, respectively, in terms of public key size and verification time. The
exact figures are 88% and 59%. This is particularly important for small-
scale devices with restricted energy, memory, or computational power. In
addition, we provide evidence that this reduction does not affect security
and that it is also optimal in terms of possible attacks. We do so by com-
bining the previously unrelated concepts of reduced and equivalent keys.
Our new scheme is based on the so-called Unbalanced Oil and Vinegar
class of MQ-schemes. We have derived our results mathematically and
verified the speed-ups through a C++ implementation.

Keywords: Multivariate Quadratic Cryptography, Post-Quantum Cryptogra-
phy, Implementation, Unbalanced Oil and Vinegar Signature Scheme

1 Introduction

When finding an old sonnet of Shakespeare, we can usually determine its valid-
ity accurately by checking the wording, the ink, the paper, and so on. Similar
techniques apply in disputes over last wills - or other documents of historical or
financial interest. Even if they are several decades old, we can fairly certainly
determine if they have been written by the person in question and sometimes
even date them accurately.
For digital documents, this is a much more difficult task. They are electronically
signed with the help of so-called digital signature schemes. The ones widely used
today are Digital Signature Algorithms (DSAs) based on RSA and elliptic curve
cryptography (ECDSA). Unfortunately, all these schemes are broken if large

2 A. Petzoldt, E. Thomae, S. Bulygin, C. Wolf

enough quantum computers will be built. The reason is the algorithm of Shor
which breaks all cryptographic algorithms based on the difficulty of factoring and
the discrete logarithm (DL) problem [16]. This covers DL over numbers, RSA,
and ECDSA. Even if unlikely now, quantum computers may be available in the
medium future and are hence a concern for long-term-validity of authentication
data. We must be sure that a document signed today is not repudiated 50 years
later. Likewise, we do not want a signature that is generated today to be forged
in the future. So to guard security even in the presence of quantum computers,
post-quantum cryptography is needed and has hence become a vital research area
[1]. One possible solution in this context is the so-calledMultivariate Quadratic
cryptography. It is widely believed that it is secure against attacks with quantum
computers.
In addition, Multivariate Quadratic (or MQ for short) signature schemes have
nice properties in terms of speed of signature generation and verification which
make them superior to DL, RSA and ECDSA. Note that ECDSA is the most
efficient of the three. However, even when comparing to signature generation
in MQ and ECC, the former are a factor of 2 - 50 faster on FPGA than the
latter [3]. Similar results have been demonstrated for comparison with RSA and
ECC in software [21], [4], [5]. One of the main reasons for this higher efficiency
is the comparably small finite fields, e.g. F28 which allows for efficient hardware
and software implementations. The other operations usually boil down to vector-
matrix functions, which can be implemented efficiently, too. As an immediate
consequence, we can useMQ schemes in restricted devices, i.e. with low energy
or computational power.
Another point is the high flexibility of MQ-schemes. This allows for the use of
sparse polynomials in the private key as done in the TTS schemes of Yang, Chen,
and Chen [21]. This leads both to a significant reduction of the time needed for
signature generation, as well as for the size of the private key. Another way to
reduce the private key is by choosing the coefficients of the private maps from
smaller fields (e.g. F16 instead of F256), [4]. In addition, we want to mention
the so-called similar keys which exploit linear relations between public and pri-
vate key [9]. However, they are not applicable to schemes like UOV. Finally,
one research direction deals with reducing the public key directly. In [13,14] it is
shown how to reduce the public key size of the UOV scheme by choosing public
coefficients in a structured way, cf. Section 3.

1.1 Achievement

Combining two previously unrelated ideas, we deal with reducing the size of the
public key. For MQ schemes like Unbalanced Oil and Vinegar (UOV - see be-
low), typical choices of parameters lead to around 80 kByte for the public key.
We use the approach of [14] to bring this size down to about 9 kB. We show that
we can use this idea to reduce the verification time, too. By choosing them par-
tially to be 0 or 1 only, verification time is reduced by up to 59%. This way,MQ
verification can be performed in low-power, low-energy devices. For example for
mobile devices, we can easily imagine a scenario where a server signs data which

Small Public Keys and Fast Verification for UOV 3

needs to be verified by a (comparably restricted) phone. As further contribution,
we give arguments that this reduction in size does not affect security. This is
due to an observation regarding equivalent keys of [19,20].
In addition, our modification also works for restricting the choice of the coeffi-
cients. Using Turán graphs we demonstrate that this further reduction in size
and verification time resists all know attacks.

1.2 Organization

The structure of this paper is as follows: After giving some introduction in Sec-
tion 1, we continue with the background on MQ-schemes and in particular the
UOV in Section 2. In Section 3, we review the cyclic construction from [13].
This is followed by security considerations regarding cyclic keys in UOV in Sec-
tion 4. Using these results, we outline our new constructions, its implementation,
efficiency, and security implications in Section 5. The paper concludes with Sec-
tion 6. Some background on Turán graphs and how this relates to our monomial
ordering in Subsection 5.3 can be found in the full version of this paper [15].

2 Multivariate Quadratic Cryptography

The main idea behind Multivariate Quadratic cryptography is to choose a sys-
tem F of m quadratic polynomials in n variables which can be easily inverted.
Here F is called the central map. In addition, we need invertible affine maps S
and T to hide the structure of the central map F . The public key of the cryp-
tosystem is now composed as P = T ◦ F ◦ S. For a secure MQ-system, P must
be difficult to invert. The private key consists of (F , T, S) and therefore allows
efficient inversion of P. More information on Multivariate Quadratic schemes
can be found in [6,18].

2.1 Notation

Solving non-linear systems of m equations in n variables over a finite field is a
difficult problem in general. Restricting it to the seemingly easy case of quadratic
equations is still difficult. Actually this problem is also known as MQ-problem
which is proven to be NP-hard in the worst-case [8], even over F2.
Let P be an MQ system of the form

p(1)(x1, . . . , xn) = 0
p(2)(x1, . . . , xn) = 0

... (1)
p(m)(x1, . . . , xn) = 0,

with

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

p
(k)
ij xixj +

∑
1≤i≤n

p
(k)
i xi + p

(k)
0 (k = 1, . . . ,m). (2)

4 A. Petzoldt, E. Thomae, S. Bulygin, C. Wolf

Let π(k) be the coefficient vector of p(k)(x1, . . . , xn) w.r.t. graded lexicographic
ordering of monomials, i.e.

π(k) = (p(k)
11 , p

(k)
12 , . . . , p

(k)
1n , p

(k)
22 , p

(k)
23 , . . . , p

(k)
nn , p

(k)
1 , . . . , p(k)

n , p
(k)
0). (3)

Let MP be the corresponding coefficient matrix

MP :=

π(1)

...
π(m)

 . (4)

Note that the ordering of monomials (and thus coefficients) in the matrix MP

does not necessarily have to be graded lexicographic ordering. We may want to
order monomials of the public key in a certain way. Therewith, the ordering of
coefficients (columns of MP) is then changed accordingly.

2.2 Unbalanced Oil and Vinegar

In this subsection we introduce the Oil and Vinegar Signature Scheme, which
was proposed by J. Patarin in [12]. Let Fq be a finite field. Denote the number
of oil variables by o ∈ N, the number of vinegar variables by v ∈ N and set
n := o+v. Let V := {1, . . . , v} and O := {v+1, . . . , n} denote the sets of indices
of vinegar and oil variables. The private key F := (f (1), . . . , f (o)) is defined by

f (k)(u1, . . . , un) :=
∑

i∈V,j∈O

f
(k)
ij uiuj +

∑
i,j∈V,i≤j

f
(k)
ij uiuj (k = 1, . . . , o) . (5)

Remark: We omit the linear part of F and the constant part of S, because it
was shown in [11,10] that it does not contribute to the security of UOV.

For the inversion of the map F it is important that the variables in f (k) are
not completely mixed, i.e. oil variables are only multiplied by vinegar variables
and never by oil variables. This construction leads to an efficient way to invert
F . If we assign arbitrary values to the vinegar variables we obtain a system of o
linear equations in o variables. With high probability this system has a solution.
If not we try again with a different choice for the vinegar variables x1, . . . , xv.
In the public key P, the central map F is hidden by composing it with a linear
map S : Fn

q → Fn
q , i.e. P := F ◦ S.

Note that, in opposite to other multivariate schemes, the second linear map
T is not needed for the security of UOV. So it can be dropped.
Figure 1 shows the signature generation and verification process for UOV.

Signature generation: To sign a document d, one uses a hash function H :
F?

q → Fm
q to compute the hash value h = H(d) ∈ Fm

q . After that one computes
first u := F−1(h) and then x := S−1(u). The signature of the document d is

Small Public Keys and Fast Verification for UOV 5

Generation
x ∈ Fn

6
private: S−1

u ∈ Fn

6
private: F−1

h ∈ Fm�

Verification

public:

P

Fig. 1. Signature generation and verification for UOV

x ∈ Fn
q . In a slight abuse of notation we write F−1(h) for finding one (of possibly

many) pre-image of h under F .

Signature verification: To verify the authenticity of a signature, one computes
the hash value h of the corresponding document and the value h′ = P(x). If
h = h′ holds, the signature is accepted, otherwise rejected.

In his original paper [12], Patarin suggested to use o = v (Balanced Oil and
Vinegar - OV). After this scheme was broken by Kipnis and Shamir in [11], it
was proposed in [10] to use v ≥ 2o (Unbalanced Oil and Vinegar (UOV)). UOV
parameters q = 28, (o, v) = (26, 52) give 80-bit security against the most efficient
attacks currently known [2].

3 Reviewing Cyclic Keys

In this section we review the approach of [13] to create a UOV-based scheme with
a partially cyclic public key. Remember that, in the case of the Unbalanced Oil
and Vinegar signature scheme [10], the public key P is given as the concatenation
of the central UOV-map F and a linear invertible map S, i.e. P = F ◦ S.
In [13] it is observed, that this equation (after fixing the linear map S), leads to
a linear relation between the coefficients of the quadratic monomials of P and
F of the form

p
(k)
ij =

n∑
r=1

n∑
s=r

αrs
ij · f (k)

rs , (6)

where p(k)
ij and f

(k)
ij are the coefficients of xixj in the k-th component of P and

F respectively and the αrs
ij are given as

αrs
ij =

{
sri · ssi (i = j)
sri · ssj + srj · ssi otherwise . (7)

Here sij ∈ Fq denote the coefficients of the linear map S. Let D := v·(v+1)
2 +

ov be the number of non-zero quadratic terms in any component of F and
D′ := n·(n+1)

2 be the number of quadratic terms in the public polynomials. Let

6 A. Petzoldt, E. Thomae, S. Bulygin, C. Wolf

MP and MF be the coefficient matrices of P and F respectively (w.r.t. graded
lexicographic ordering of monomials). The matrices MP and MF are divided
into submatrices as shown in Figure 2. Note that, due to the absence of oil ×
oil terms in the central polynomials, we have a block of zeros on the right side
of MF .

Q

B

0

C

D D′

MP

MF

Fig. 2. Layout of the matrices MP and MF

Furthermore, the authors of [13] defined the so called transformation matrix
AUOV ∈ FD×D

q containing the coefficients αrs
ij of equation (6), i.e. AUOV =

(
αrs

ij

)
for 1 ≤ r ≤ v, r ≤ s ≤ n for the rows and 1 ≤ i ≤ v, i ≤ j ≤ n for the columns.

AUOV =


α11

11 α
11
12 . . . α

11
vn

α12
11 α

12
12 . . . α

12
vn

...
...

αvn
11 α

vn
12 . . . α

vn
vn

 . (8)

With this notation, equation (6) yields

B = Q ·AUOV . (9)

If matrix AUOV is invertible, this equation has a solution for Q. Experiments
indicate that this condition is fulfilled with high probability. By solving equation
(9) for Q, the authors of [13] were able to insert a partially circulant matrix B
into the UOV public key. By doing so, they reduced the public key size of the
scheme by a factor of 6. After choosing matrix B, we can use Algorithm 1 to
compute the corresponding key.

4 Security of UOV

Due to equivalent keys [19,20] UOV contains a lot of redundancy. We show which
part of the public key is important for security and which part can be chosen
such that the public key gets as small as possible.
It is rather intuitive that the linear and constant part of the public key do not
provide extra security because we can easily separate them from the quadratic
part. This was previously exploited by Kipnis and Shamir in their cryptanalysis

Small Public Keys and Fast Verification for UOV 7

Algorithm 1 Alternative Key Generation for UOV schemes
1: Choose an o×D matrix B (e.g. partially circulant or generated by an LRS).
2: Choose randomly a linear map S (represented by an n × n-matrix S). If S is not

invertible, choose again.
3: Compute for S the corresponding transformation matrix AUOV (using equations

(7) and (8)). If AUOV is not invertible, go back to step 2.
4: Solve the linear system given by equation (9) to get the matrix Q and there with

the coefficients of the central polynomials.
5: Compute the public key as P = F ◦ S.

of (balanced) Oil and Vinegar [11]. But it is quite surprising that also a fraction of
the quadratic part is not essential for security. This is implied by the observation
of equivalent keys by Wolf and Preneel [19,20].

Definition 1. Let (F , S) and (F ′, S′) be two UOV private keys. They are called
equivalent if they result in the same UOV public key, i.e. F ◦ S = F ′ ◦ S′ =: P.
The set of all private keys resulting in a given public key P is denoted by EQP .

In order to produce equivalent keys we use the following transformation Ω on
the variables u that preserves the structure of F .

Ω =

(
Ω

(1)
v×v 0

Ω
(2)
o×v Ω

(3)
o×o

)
resp. Ω = (ωij)n

i,j=1 (10)

Let F(u) := (f (1)(u), . . . , f (o)(u)) be a UOV central map (i.e. no quadratic
cross terms in oil variables). Let u = Ω · u′. The vinegar variables u1, . . . uv

are computed as sums of vinegar variables u′1, . . . , u
′
v. Therefore we get (for

k = 1, . . . , o):

f (k)(u) =
∑

i,j∈V

f
(k)
ij uiuj +

∑
i∈V,j∈O

f
(k)
ij uiuj

=
∑

i,j∈V

f
(k)
ij

(∑
l∈V

ωilu
′
l

)
·

(∑
m∈V

ωjmu
′
m

)

+
∑

i∈V,j∈O

f
(k)
ij

(∑
l∈V

ωilu
′
l

)
·

(∑
m∈V

ωjmu
′
m +

∑
m∈O

ωjmu
′
m

)

=
∑

i,j∈V

f̃
(k)
ij u′iu

′
j +

∑
i∈V,j∈O

f̃
(k)
ij u′iu

′
j for some f̃ (k)

ij (fij , ωlm).

Due to F ◦ S = F ◦Ω−1 ◦Ω ◦S both (F , S) and (F ◦Ω−1, Ω ·S) are equivalent
private keys for the public key P.

Lemma 1. For every UOV public key P there exists a UOV private key (F , S) ∈
EQP such that S has the form

S =
(
I S̃
0 I

)
(11)

8 A. Petzoldt, E. Thomae, S. Bulygin, C. Wolf

for some (v × o) matrix S̃ (except for permutations of rows and columns).

Proof. Let Ω be of form (10) and F and

S =

(
S

(1)
v×v S

(2)
v×o

S
(3)
o×v S

(4)
o×o

)
an arbitrary private key. There exists a permutation of rows and columns such
that S(1), S(4) and I − S(3)S(1)−1

S(2)S(4)−1
are invertible1. Now we choose Ω

such that Ω(1)S(1) = I, Ω(2)S(2) + Ω(3)S(4) = I and Ω(2)S(1) + Ω(3)S(3) = 0,
i.e. Ω(1) = S(1)−1

, Ω(3) = S(4)−1 · (I − S(3)S(1)−1
S(2)S(4)−1

)−1 and Ω(2) =
−Ω(3)S(3)S(1)−1

. ut

For the following, we assume w.l.o.g. that the linear map S has the form (11),
since the further analysis is not changed by row and column permutations.
The next lemma shows that the vinegar × vinegar coefficients in the public key
do not hide any information about the secret map.

Lemma 2. In the case of S having the form (11) we get f (k)
ij = p

(k)
ij for i, j ∈

{1, . . . , v} and k ∈ {1, . . . , o}.

Proof. We consider for k ∈ {1, . . . o} the quadric forms of p(k) and f (k), i.e.
MP (k) = ST ·MF (k) ·S. For S having the form (11) this yields MP

(k)
1 = MF

(k)
1

(k = 1, . . . , o). ut

For a key recovery attack it is sufficient to find any of the equivalent keys. Thus
an attacker can search for a private key, with S of the form (11). This means we
can assume that the attacker actually knows all coefficients of squared vinegar
variables in the private map. This does not effect the overall knowledge of the
attacker. So the p(k)

ij with i, j ∈ V in the public map do not hide any secret and
thus we can choose them in an arbitrary way.

Proposition 1. The first v(v+1)
2 coefficients of each public polynomial do not

provide any security in the sense of key recovery attacks. Arbitrarily fixing these
coefficients does not give advantage to an attacker who wants to recover the whole
private key.

By equation (9) we are even able to choose the first v(v+1)
2 + ov coefficients of

each public polynomial of a special form and thus save memory. Proving the
security of this construction is not as obvious as in the latter construction. We
have to show that additionally fixing ov coefficients does not give advantage to
an attacker in the sense of key recovery attacks
Usually, we fix the coefficients of the central polynomials F and the linear map
S and then compute the public polynomials P. However, for our construction
we turn things around by first fixing parts of the public polynomials and then
computing the central polynomials. Intuitively, this should be equally secure.
We capture this in the following proposition.
1 Our experiments showed, that these three conditions are fulfilled for 99.2 % of all

UOV private keys without changing rows and columns.

Small Public Keys and Fast Verification for UOV 9

Proposition 2. Let the o × D matrix B be an MDS matrix (i.e. every choice
of o columns leads to an invertible submatrix). Then, fixing the first v(v+1)

2 + ov
coefficients of each public polynomial to the elements of B does not give the
attacker any advantage in the sense of key recovery attacks.

Proof. We start our proof with equation (9)

B = Q ·AUOV .

For S having the form (11) we can write this as

(B1|B2) = (F1|F2) ·
(
I Σ
0 1

)
(12)

with a o × o · v matrix F2 containing the coefficients fij , (i ∈ {1, . . . , v}, j ∈
{v + 1, . . . , n}) and a v·(v+1)

2 × o · v matrix Σ linear in the elements of S.
This leads to F1 = B1 and

B2 = F1 ·Σ + F2 = B1 ·Σ + F2. (13)

Equation (13) yields o · o · v linear equations in the (o + 1) · o · v unknowns sij

and f (k)
ij . We can use the last o · v of these equations to eliminate the sij and get

(o− 1) · o · v linear relations between the coefficients f (k)
ij . If the map

S 7→ B2 −B1 ·Σ(S) := F2

is injective, there remain exactly o · v coefficients f (k)
ij , which have to be guessed

correctly to obtain a valid private key. The injectivity follows from the fact that
all square submatrices of B1 are invertible, which is the property we obtain by
using an MDS matrix 2.
This is exactly the same situation we obtain for the standard UOV scheme.
Therefore, fixing the matrix B to an MDS-matrix does not make key recovery
attacks easier. ut
We use this observation by proposing a variant of the UOV, which is provably
as secure as the original scheme, but reduces the public key size by a huge factor.

In comparison to the case of Algorithm 1 the (o × D) matrix B is now fixed
to an MDS matrix and system parameter of the algorithm. In the remainder of
this paper, we refer to this scheme as Compressed UOV (see Algorithm 2).

5 The New Construction

We are now investigating, how much additional structure we can hide in B
to speed up the verification process. We do this by choosing the elements of
the matrix B from the ground field F2. In order to make sure that message
recovery attacks are still difficult, we have to choose the ordering of monomials
appropriately, as explained in Subsection 5.3.
2 For large enough q, e.g. q = 28, the matrix B with coefficients chosen uniformly at

random is MDS with high probability.

10 A. Petzoldt, E. Thomae, S. Bulygin, C. Wolf

Algorithm 2 Key Generation for Compressed UOV
1: Choose randomly a linear map S (represented by an n × n-matrix S). If S is not

invertible, choose again.
2: Compute for S the corresponding transformation matrix AUOV (using equations

(7) and (8)). If AUOV is not invertible, go back to step 1.
3: Solve the linear system given by equation (9) to get the matrix Q and therewith

the quadratic coefficients of the central polynomials.
4: Compute the public key as P = F ◦ S.

5.1 Message Recovery Attacks

Let MP = (B|C) with B an (o × D) matrix. After we claimed that fixing B
does not give to an attacker advantage in the sense of key recovery attacks, we
have to clarify how B ∈ Fo×D

2 can be chosen without decreasing security against
message recovery attacks. Obviously B = 0 is a bad choice, as this would imply
C = 0. We also have to assure that B has full rank, as otherwise C would also
not have full rank. In general our goal is that solving our structured system using
Gröbner bases is as difficult as solving a random instance over Fq.
We now first introduce our choice of B. Afterwards we explain, why message
recovery remains hard.

5.2 Choice of B

The first (o×o) block in B can be chosen to be the identity matrix Io×o as every
attacker is able to reach this situation by Gaussian Elimination. Furthermore
this ensures B to have full rank. The remaining part B1 of B has to be chosen
in such a way that there are no systematic dependencies between the elements
of B, i.e. every m columns with m ≥ o have a big chance to have full rank. Oth-
erwise we could produce large zero-blocks which would decrease the complexity
of Gröbner bases algorithms.

We suggest to choose every element of the matrix B1 uniformly at random from
F2. Note that for such a B1 the rank property above is fulfilled with overwhelm-
ing probability. Note that B is no longer part of the public key. Once B is
constructed, it is fixed, and thus it is a part of the key generation algorithm.

5.3 Ordering of monomials

In contrast to the method described in [13,14], we need to choose a special mono-
mial ordering for our construction. In order to understand why this monomial
ordering is constructed, let us recall how direct (Gröbner) attacks on multivariate
signature schemes work. In the message recovery attack, the attacker is facing
the problem of solving the public UOV system P(x) = h directly. This system
is defined over Fq and has o equations in n = o+ v variables. Such a system has

Small Public Keys and Fast Verification for UOV 11

on average qn−o = qv solutions. Considering the values of v usually used (e.g.
v = 52), such a system has a huge amount of solutions (for q = 28 and v = 52 it
is 2416). Gröbner bases methods have a great difficulty in solving such a system,
since they have to describe a huge variety. Since the attacker is interested in
only one solution for the signature forgery, recovering all solutions is unneces-
sary. By fixing values of any v variables in the public system, an attacker obtains
a quadratic system in o variables and o equations. On average such a system has
a unique solution. Solving this new system with Gröbner bases methods is much
easier.
Going back to the matrix MP we see that C (as defined in Section 3) contains
coefficients of monomials xixj with i, j ∈ {v + 1, . . . , n}, since there we used
the graded lexicographic ordering of monomials. Now if the attacker fixes values
for the variables xv+1, . . . , xn, the monomials represented by C will become
constants. Therewith, the resulting quadratic system will have only quadratic
terms over F2 coming from the matrix B. Clearly, Gröbner bases computations
will be much easier then, since the attacker does not have to deal with F28

arithmetics that much. Thus we have to ensure that an attacker is not able to
remove too many monomials with coefficients in F28 by assigning v variables to
some values.
Note that we do not consider monomials of the form x2

i . If such monomials re-
main after fixing v variables they do not force us to calculate in F28 as they are
linear due to the Frobenius homomorphism. Note that for UOV schemes over
fields with odd characteristic, it makes sense to consider such monomials.

Denote by C the set of monomials whose coefficients are contained in the matrix
C. We can represent this set as a graph G(V,E) with V := {x1, . . . , xn} being
the vertices and E := {e(xi, xj) |xixj ∈ C} being the edges. By construction we
have |E| = o(o+1)

2 . In the following our goal is to construct the graph G in such
a way that the induced monomial ordering precludes an attacker from removing
too many F28 -terms (independent of the choice of variables he fixes). Note also
that by “monomial ordering” we do not mean a monomial well-ordering as in
the theory of Gröbner bases, but just some ordering of monomials w.r.t. which
the columns of the coefficient matrix MP are ordered. For the following we need
two definitions.

Definition 2. Let G(V,E) be a graph. A subset V ′ ⊆ V is called a k-independent
set, if |V ′| = k and {e(vi, vj) : vi, vj ∈ V ′} ∩ E = ∅.

Definition 3. For a graph G(V,E) the set V ′ ⊆ V is called a k-clique, if |V ′| =
k and all the vertices vi ∈ V ′ are pairwise connected, i.e. {e(vi, vj) : vi, vj ∈
V ′} ⊆ E.

We observe the following. If G contains an o-independent set, an attacker is able
to fix v variables in such a way that all the monomials in C become constants.
So our task is to choose the edges of G in such a way, that G does not con-
tain a k-independent set (for minimal k). For fixed k, the problem of finding a

12 A. Petzoldt, E. Thomae, S. Bulygin, C. Wolf

graph without k-independent set and minimal number of edges is solved by the
complementary Turán graph [17].
So we start with k = 1 and construct the complementary Turán graph CT(n, 1).
We then increase k until the number of edges in CT(n, k) will be less or equal to
o·(o+1)

2 . If the number of edges in CT(n, k) is less than o·(o+1)
2 , we add arbitrarily

edges until we reach the number of monomials in C. By doing so we get a graph
G with CT(n, k) ≤ G.

Example 1. In our case (o = 26, v = 52) we find a solution for k = 8 and thus
it is assured that at least 30 monomials over F28 remain after fixing v variables.
The best attack on this parameter set is called HybridF5 [2] and uses fixing v
and then guessing two variables before applying Faugères F5 algorithm [7] to
compute a Gröbner basis. But even if we fix/guess v + 2 variables, there will
remain at least 24 monomials over F28 . So an attacker can not hope to transfer
the system into a smaller field. More details to these experiments can be found
in the full version of this paper [15].

Once we have constructed our graph G as above, it defines which monomials
are in the set C. Therefore, we can now define an induced ordering on quadratic
monomials, such that monomials from C are smaller than those that are not
from this set. For the monomials not being in C we define real squares (i.e. x2

i

for i = 1, . . . , n) to be bigger than other monomials. Once we defined an ordering
of monomials, it is fixed and is a system parameter.
Let us investigate the effect of the new ordering on the construction of matrix
AUOV . In Section 3 the columns of the matrix AUOV corresponded to the first
D monomials w.r.t. graded lexicographic ordering. Now we have to choose the
columns of the transformation matrix in such a way that its columns correspond
to the first D monomials in the monomial ordering defined above. With respect
to the graph G, if the i-th edge of the complementary graph G (which is actually
a subgraph of the Turán graph T(n, k)) connects the vertices vi1 and vi2 , we have

ÃUOV =


α11

11 α
12
22 . . . α

11
nn α̃11

1 α̃11
2 . . . α̃11

D−n

α12
11 α

12
22 . . . α

12
nn α̃12

1 α̃12
2 . . . α̃12

D−n
...

...
αvn

11 α
vn
22 . . . α

vn
nn α̃

vn
1 α̃vn

2 . . . α̃vn
D−n

 . (14)

Here, the coefficients αrs
ii are given by equation (7) and the α̃rs

i are given by

α̃rs
i = srvi1 · ssvi2 + srvi2 · ssvi1 . (15)

With this notation we get (as in Section 3)

B = Q · ÃUOV . (16)

In the case of ÃUOV being invertible we can use equation (16) to compute the
matrix Q and therewith the non zero coefficients of the central map F .

In Algorithm 3 the matrix B chosen as shown in Subsection 5.2 with a fixed
matrix B1 ∈R Fo×(D−o)

2 .

Small Public Keys and Fast Verification for UOV 13

Algorithm 3 Key Generation for 0/1 UOV
1: Choose randomly a linear map S (represented by an n × n-matrix S). If S is not

invertible, choose again.

2: Compute for S the corresponding transformation matrix ÃUOV (using equations

(7), (15) and ((14)). If ÃUOV is not invertible, go back to step 1.
3: Solve the linear system given by equation (16) to get the matrix Q and therewith

the quadratic coefficients of the central polynomials.
4: Compute the public key as P = F ◦ S.

5.4 Efficiency of the Verification Process

During the verification process one has to evaluate for each public polynomial
the equations

Pi(z) = (z1, . . . , zn) · Pi · (z1, . . . , zn)T , 1 ≤ i ≤ o,

with z = (z1, . . . , zn) being the signature of the message and Pi being the (upper
triangular) matrix representing the i-th public polynomial.
To evaluate this equation for a randomly chosen Pi one needs n·(n+1)

2 +n multi-
plications in F28 for each of the o polynomials, or o · n·(n+3)

2 F28 -multiplications
and the same number of additions for the whole key.
For our reduced version we can do better. We first compute z ·Pi (i = 1, . . . , o).
For this we divide each of the matrices Pi into two parts P (1)

i and P
(2)
i , which

we cover by for loops. For an element a ∈ P
(1)
i we test if a = 0 or a = 1. In

the first case, we don’t have to do anything, if a = 1 we have to carry out one
addition. Only for the elements from P2 we have to perform one multiplication.
By doing so, we can reduce the number of multiplications needed during the
verification process to o·(o+1)

2 + n. For the parameters (o, v) = (26, 52), we get
therefore a reduction of 85 %.
However, since we have to perform a number of other operations, for practical
implementations we don’t get such a hugh reduction in time.

5.5 Security of 0/1 UOV

Since we do not have MDS matrices over F2, we can not use Proposition 2
to prove the security of our scheme. Therefore we checked the security of our
schemes against known attacks, including

1. Direct attacks
2. Rank attacks
3. UOV-Reconciliation attack
4. UOV attack

and found that these attacks cannot use the special structure of our public keys.
The results of our experiments can be found in the full version of this paper [15].

14 A. Petzoldt, E. Thomae, S. Bulygin, C. Wolf

5.6 Parameters and Implementation

In this section, we give our choice of parameters and show how they transfer to
a practical C++ implementation. More concrete, based on our security consid-
erations, we propose for our scheme the same parameters as for the standard
UOV scheme, namely field size q = 28, (o, v) = (26, 52). Additionally, Table 1
gives one more conservative parameter set, namely (q, o, v) = (28, 28, 56).
We implemented our scheme and the standard UOV in C++.

Key generation: For the key generation we follow closely Algorithm 3. The
linear system in step 3 of the algorithm is solved by inverting the matrix ÃUOV

and then computing the matrix product B · ÃUOV . For both we use the M4RIE
library for efficient linear algebra over finite fields and Travolta tables. By doing
so, we can compute a key pair for 0/1 UOV(28,26,52) in roughly 27 sec on an
Intel Dual Core 2 with 2.53 MHz.

Signature generation: The signature generation process works as for the stan-
dard UOV Scheme. The running time of the signature generation process is about
0.69 ms.

Signature verification: The signature verification process works as desribed in
Subsection 5.4. For each parameter set listed in Table 2 we carried out 1,000,000
verification processes on the Intel machine as well as on an AMD Athlon XP
2400+ with 2.00 GHz. Table 2 shows the results.

6 Conclusion

In this paper, we have shown that Multivariate Quadratic public key schemes
can benefit from much smaller public key sizes (cf. Table 1) without any degen-
eration of security. The overall idea requires some flexibility in the private key.
To our knowledge, only the two MQ-schemes UOV and Rainbow have these.
UOV was covered in this article. Rainbow has a more difficult internal structure,
so we have to leave a concrete application of our improvement to Rainbow as an
open question, which we plan to address.
The security arguments made use of the idea of equivalent keys. Hereby, each
public key can be assigned many private keys. We have turned this idea around
by considering transformations of the public key P instead and showed that an
attacker does not gain from this specific structure.
As we can enforce a specific form on the public key P, we can also use it to
speed up public key operations, namely verification of signatures. As we see in
Table 2, this reduces the overall time by about 59% or a markable factor of 2.4.
As the construction is very general, it can be used on other platforms (e.g. GPU,
FPGA) as well. We actually expect similar gains in area reduction or speed there,
too.
From a theoretical perspective, forcing a specific structure on the central poly-
nomials F or the public polynomials P are equivalent: We can do either. Hence,

Small Public Keys and Fast Verification for UOV 15

Table 1. Proposed parameters for UOV schemes

system public key private key reduction of
Scheme(q, o, v) parameter (kB) size (kB) size (kB) public key size (%)

UOV(28,26,52) - 78.2 75.3 -

Compr.UOV(28,26,52) 69.3 8.9 75.3 88.6

0/1 UOV(28,26,52) 8.7 8.9 75.3 88.6

UOV(28,28,56) - 97.6 93.4 -

Compr.UOV(28,28,56) 86.5 11.1 93.4 88.6

0/1 UOV(28,28,56) 10.8 11.1 93.4 88.6

Table 2. Running time of the verification process

Intel Dual Core 2 2.53 GHz AMD Athlon XP 2400+ 2.00 GHz

(o, v) UOV 0/1 UOV reduction factor UOV 0/1 UOV reduction factor

(26,52) 0.49 ms 0.21 ms 57 % 0.68 ms 0.29 ms 57 %

(28,56) 0.54 ms 0.22 ms 58 % 0.74 ms 0.32 ms 58 %

(32,64) 0.75 ms 0.30 ms 59 % 1.03 ms 0.43 ms 58 %

for specific application domains it might be useful to find a certain trade-off. For
example, we could reduce the computational workload on a server based on the
maximal available memory on a smart card.

Acknowledgements

We thank Ishtiaq Shah for doing the implementation of our scheme. Furthermore
we want to thank our financial supporters. The first author is supported by the
Horst Görtz Foundation (HGS) within the project where the third author is
the principal investigator. The third author is supported by the DFG grant BU
630/22-1. The second author was supported by the German Science Foundation
(DFG) through an Emmy Noether grant where the forth author is principal
investigator.

References

[1] D. J. Bernstein, J. Buchmann, and E. Dahmen (eds.). Post-Quantum Cryptography.
Springer, 2009

[2] L. Bettale, J.-C. Faugère, and L. Perret. Hybrid approach for solving multivariate
systems over finite fields. In Journal of Mathematical Cryptology, 3:177-197, 2009.

[3] A. Bogdanov, T. Eisenbarth, A. Rupp, and C. Wolf. Time-area optimized public-
key engines: -cryptosystems as replacement for elliptic curves? CHES, LNCS vol.
5154, pp. 45 - 61. Springer, 2008.

[4] A. I.-T. Chen, C.-H. O. Chen, M.-S. Chen, C.-M. Cheng, and B.-Y. Yang. Practical-
sized instances of multivariate PKCS: Rainbow, tts, and licderivatives. PQC 2008,
LNCS vol. 5299, pp. 95 - 108. Springer, 2008.

16 A. Petzoldt, E. Thomae, S. Bulygin, C. Wolf

[5] A. I.-T. Chen, M.-S. Chen, T.-R. Chen, C.-M. Cheng, J. Ding, E. L.-H. Kuo, F.
Y.-S. Lee, and B.-Y. Yang. SSE implementation of multivariate pkcs on modern
x86 cpus. CHES 2009, LNCS vol. 5747, pp. 33–48. Springer, 2009.

[6] J. Ding, J. E. Gower, D. Schmidt: Multivariate Public Key Cryptography. Cam-
bridge University Press, 2006

[7] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). ISSAC 2002, pp. 75 - 83. ACM Press, 2002.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[9] Y. Hu, L.Wang, C. Chou, and F. Lai. Similar keys of multivariate quadratic public
key cryptosystems. CANS, LNCS vol. 3810, pp. 211 - 222. Springer, 2005.

[10] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced Oil and Vinegar signature
schemes. EUROCRYPT 1999, LNCS vol. 1592, pp. 206 - 222. Springer, 1999.

[11] A. Kipnis and A. Shamir. Cryptanalysis of the oil and vinegar signature scheme.
CRYPTO 1998, LNCS vol. 1462, pp. 257 266. Springer, 1998.

[12] J. Patarin. The oil and vinegar signature scheme. Presented at the Dagstuhl Work-
shop on Cryptography, Sept. 1997. transparencies.

[13] A. Petzoldt, S. Bulygin, and J. Buchmann. A multivariate signature scheme with
a partially cyclic public key. SCC 10, pages 229 - 235, 2010.

[14] A. Petzoldt, S. Bulygin, and J. Buchmann. Linear recurring sequences for the
UOV key generation. PKC 11, LNCS vol. 6571, pp. 335 - 350. Springer, 2011.

[15] A. Petzoldt, E. Thomae, S. Bulygin, and C. Wolf. Small Public Keys and
Fast Verification for Multivariate Quadratic Public Key Systems (full version).
http://eprint.iacr.org/2011/294

[16] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484-1509,
Oct. 1997.

[17] P. Turán: On an extremal problem in Graph Theory. Matematiko Fizicki Lapok
48:436-452, 1941

[18] C. Wolf and B. Preneel. Taxonomy of public key schemes based on the problem
of multivariate quadratic equations. http://eprint.iacr.org/2005/077

[19] C. Wolf and B. Preneel: Superfluous keys in Multivariate Quadratic asymmetric
systems. PKC 2005, LNCS vol. 3386, pp. 275 - 287. Springer, 2005.

[20] C. Wolf and B. Preneel. Equivalent keys in multivariate quadratic public key
systems. Journal of Mathematical Cryptology, 2011. to appear.

[21] B.-Y. Yang, J.-M. Chen, and Y.-H. Chen. TTS: High-speed signatures on a low-
cost smart card. CHES 2004, LNCS vol. 3156, pp. 371 - 385. Springer, 2004.

