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Abstract. We present a novel combined attack against ECC implemen-
tations that exploits specially crafted, but valid input points. The core
idea is that after fault injection, these points turn into points of very low
order. Using side channel information we deduce when the point at infin-
ity occurs during the scalar multiplication, which leaks information about
the secret key. In the best case, our attack breaks a simple and differ-
ential side channel analysis resistant implementation with input/output
point validity and curve parameter checks using a single query.

Keywords: fault attack, side channel attack, elliptic curve cryptography

1 Introduction

Elliptic curve cryptography (ECC) is a public-key cryptosystem that was inde-
pendently proposed by Miller [33] and Koblitz [29]. In the context of embedded
implementations, ECC is an interesting alternative to systems like RSA [37]
because it allows for more compact and more efficient implementations.

The ubiquity of embedded cryptography in applications such as smart cards,
RFID tags, access control, etc. leads to a new security threat that does not tar-
get the mathematical strength of the cryptographic algorithms but the physical
strength of concrete implementations using side channel and fault attacks. Side
channel attacks (SCAs) were first described by Kocher in [30] and use the fact
that physical devices leak information through measurable quantities such as
power consumption [31], timing behavior [30], electromagnetic radiation [24, 36],
etc. Fault attacks (FAs) were introduced by Boneh et al. [10], and rely on the
fact that an adversary can actively inject faults into a device which typically
leads the device to compute an incorrect result. Ways to inject faults include
clock and power glitches [4, 6], lasers [38], etc.
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Straightforward implementations of ECC can be easily broken by a range
of well known attacks, including simple and differential side channel analysis
(SSCA, DSCA) as shown by Coron [20] and differential fault analysis as demon-
strated by Biehl et al. [9] and later generalized by Ciet and Joye [16]. We refer
to Fan et al. [23] for a comprehensive overview of the existing countermeasures
to thwart these attacks and simply focus on the main ideas.

Resistance against SSCA can be achieved by regular scalar multiplication
algorithms [20, 28], unified addition and doubling formulae [12, 19] or side chan-
nel atomicity [14]. Basically any solution that ensures a constant sequence of
operations in the scalar multiplication algorithm, identical or indistinguishable
point operations, is viable.

DSCA can be thwarted by ensuring that the scalar multiplication algo-
rithm processes strictly unpredictable, e.g. randomized, data. Typical random-
ization techniques include base point blinding [20], randomized projective coor-
dinates [20], curve isomorphisms [27] and field isomorphisms [27]. Alternative
approaches include key randomization [20] and random key splitting [15] before
each scalar multiplication, but they require that an adversary cannot extract
any information from a single trace [18]. However, as shown by Goubin [25]
most of these countermeasures can be broken in the chosen message scenario
when the curve admits “special points”, i.e. where one of the coordinates is zero.
Smart [40] provides several easy countermeasures preventing Goubin’s attack:
for special points of low order, cofactor multiplication is proposed and to avoid
special points of large order, all points are first mapped to an isogenous curve,
before scalar multiplication is executed. Note that all NIST curves over large
prime fields have cofactor equal to one.

Due to ECC’s group structure, an elegant and efficient way to detect faults
is to check if the input to and the output of the scalar multiplication algorithm
are valid points on the curve as explained by Biehl et al. [9]. Ciet and Joye point
out that one must additionally check the curve parameters for faults [16], which
in the remainder of the paper we consider to be part of the initial validity check.

In this paper we present a novel attack that combines fault injection with
SSCA (cf. combined attack [3]) and specially crafted, but valid input points P.
The core idea is that, after a single fault injection, P turns into a point P’ of very
low order ¢ (e.g. £ =2,3,...,200) with practical probability. Since the point P’
has low order, the point at infinity will appear during the computation of k - P’.
This event can be detected via side channels and leaks information about the
key k. Our attack cannot be prevented by most of the countermeasures men-
tioned above such as input and output validity checks, cofactor multiplication
and isogeny defence (which foil Goubin’s attack), SSCA countermeasures and it
bypasses many DSCA countermeasures.

The paper is organized as follows. In Section 2, we recall the necessary back-
ground on elliptic curves and in Section 3, we describe an effective algorithm
to compute valid points on an elliptic curve that, after a bit-flip in one of their
coordinates turn into points of a given small order. In Section 4, we exploit these
points to derive our new attack and illustrate it on a very basic implementation.



In Section 5, we discuss the assumptions underlying our attack and analyze its
applicability when the basic implementation is enhanced with common counter-
measures. Finally, Section 6 concludes the paper.

2 Background on elliptic curves

In this section we briefly review the necessary background on elliptic curves over
F,. An elliptic curve E over F, with p > 3 can always be given by a short
Weierstrass equation y? = 2% + az + b, with a,b € F,, and 4a® + 27b* # 0. For
every finite field K containing F, one now considers the set of K-rational points

B(K):={(v,y) € K x K | y* = 2° + ax + b} U {O}

where O denotes the point at infinity.

2.1 Group law

The use of elliptic curves in cryptography stems from the fact that F(K) natu-
rally possesses the structure of an abelian group. It is common practice to denote
the group operations in an additive way (i.e. using 4+ and — symbols), as opposed
to the multiplicative notation when dealing with groups like F;. The group law
is defined by the following general rules: O is the zero element, and any three
points that lie on a line add up to zero.

Group law formulae Working this out yields the following explicit rules for
adding two points P = (zp,yp) and Q = (zg,yg). If Q = —P, ie. if xp = zg
and yp = —yg, then P+ Q = O. If P # +Q), we obtain the following addition
formula: R = (zg,yr) = P+ Q with

2
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If P = Q, we obtain the doubling formula: R = (zg,yr) = 2 - P with
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Note that the above formula for addition does not depend on the curve
equation at all and that the formula for doubling only involves the parameter a.
This simple fact has been exploited in several attacks before [9] and will also be
crucial in our attack.

Since inversions are typically much more expensive than multiplications, sev-
eral types of projective coordinate systems have been developed. Standard pro-
jective coordinates [5] represent an elliptic curve point P = (z,y) by (X,Y, Z)
where v = X/Z and y = Y/Z, whereas Jacobian projective coordinates [5] use
v = X/Z? and y = Y/Z3. The above addition/doubling formulae can easily be
reformulated using projective coordinates, but the resulting formulae will also
depend on a only.



Group law implementation An implementer of an elliptic curve system is
not only faced with the choice of the elliptic curve model to use, such as short
Weierstrass, Montgomery [34], Edwards [7, 8], Hessian [39], etc., and the choice
of an appropriate coordinate system like projective [5] or Jacobian [5], but also
with the handling of borderline cases. Indeed, the above addition formula (1)
can only handle the cases where P # £Q, P # O and Q # O. Similarly, the
doubling formula (2) will fail when P is a point of order two or P = O.

The way in which the implementation handles these borderline cases leads
to the following classification: full and partial domain correctness. In the full
domain correctness case, the implementation computes P+ @ and 2- P correctly
for all P,@Q. In the partial domain correctness case the implementation either
stops working (e.g. division by zero occurs), computes on invalid points or ends
in a fixed point (both cases occur when using the above formulae in projective
or Jacobian coordinates, see Table 3 in the appendix).

2.2 Scalar multiplication

The basic operation in classical cryptosystems such as RSA and ECC is expo-
nentiation in the underlying group. For elliptic curves, this exponentiation is
called scalar multiplication since given a point P and a scalar k, it computes
k - P by repeatedly using the double/add operations.

The most basic scalar multiplication algorithm is the binary double-and-
add algorithm, which computes k - P according to the binary expansion of k =
S k2%, Depending on the direction in which the bits of k are scanned, we
obtain a left-to-right or right-to-left variant.

The left-to-right variant is described in Algorithm 1 and will be used to
illustrate our attack. The applicability of our attack to SSCA and DSCA resistant
scalar multiplication algorithms will be discussed in Section 5.

Algorithm 1: Double and Add Left-to-Right
Input: F’7 k= (kn_1, kn_g, I k)o)z
Output: Q =k - P

R—P;
for i <— n — 2 down to 0 do
R—2-R;
if (k; =1)thenR— R+ P ;
end
return R

3 Elliptic curve points with low order neighbours

In this section, we consider the following problem, the solution of which is crucial
for our attack: given an elliptic curve E : y? = 2% + az + b over F,,, two integers



¢ and A, is it possible to construct a point P := (zp,yp) in E(F,) with the
following properties:

— there exists a curve E' : y? = 23 + ax + V' over F,

— with a point P’ = (zp/,yp') € E'(F,) of order ¢

— such that the Hamming distance of the bit-representations z p||yp and zp/||yps
equals A.

When A = 1, i.e. the coordinates differ in a single bit, we call the points P
and P’ neighbours. We will describe an effective construction of points P with
neighbours P’ of a given order ¢ and with xp = xp-, i.e. the bit-flip occurred
in the y-coordinate only. The construction can be easily extended to encompass
bit-flips in zp, and indirect neighbours, i.e. A > 1.

In Section 3.1 we first show how to construct points of given order and in
Section 3.2 we adapt this method to find points with low order neighbours.

3.1 Constructing points of given order

Given an elliptic curve E over F,, we can consider the points on E of order
dividing n, i.e. points P € E(F,) with n- P = O, where the coordinates of P can
lie in any extension field of IF,,. These points can be characterized explicitly using
the so called division polynomials [5]. For n € N define polynomials ¢, (z,y)

recursively as follows:
Yo =0, 1 = 1,1 = 2y, b3 = 3z* + 6az? + 12bx — a2,
Yy = 4dy(z® + bax* 4 20b2® — 5ax? — 4abx — 8b* — a?),
Voms1 = Umgaths, — Y1003, m > 2,
Do = Um (¢m+2¢72n_21y— Vm—2¥2, 1) m>3.
For any point P € E(F,) with P # O, we then have that n- P = O if and only if
Yn(xp,yp) = 0. Furthermore, one can show by induction on n that 1, for n odd

and 9, /2y for n even, are polynomials in 2 only. We denote these polynomials
by ¢n(z). It is easy to see that n- P = O and 2- P # O if and only if ¢, (zp) = 0.

3.2 Constructing points with low order neighbours

Given an elliptic curve E over F, and an integer ¢, we want to construct a
point P = (zp,yp) in E(F,) with neighbour P’ = (zp,yp @ €) with ¢ = 2* for
some k < logy(p) and £ - P’ = O. For £ > 2, the points P and P’ therefore have
to satisfy the following non-linear system of equations:

yp2—$p3—a'$P—b:O PEE(FP)
(yp@€)2—$p3—a'xp—b/=0 P’ EE’(FP)
o¢% (@p) =0 (-P=0,



where the unknown variables are printed in bold face. Since the @-operation is
not very algebraic, we will consider the following two cases that lead to equivalent
results, namely we replace y, ® ¢ by y, * € and then verify afterwards if an actual
bit-flip occurred, i.e. that there was no carry.

Subtracting the first two equations expresses b’ as a function of yp, namely,
b = +2eyp + €2 + b. Substituting this expression in the last equation leads to a
bivariate polynomial in xp and yp, which we call Ty(xp,yp). The points P for
the given ¢ and e therefore are solutions of E(zp,yp) = 0 and Yy(xp,yp) = 0.
These solutions can be easily found by a Groebner basis [13] computation or by
taking the resultant

R(xp) = Resultant, . (E(zp,yp), Ye(xzp,yp)),

finding all possibilities for zp as roots of R over F, and the corresponding yp
from E(xp,yp) = 0. A final check is then necessary to only retain those (xp,yp)
where the + operation actually caused a bit-flip, in particular, in the +e-case
(resp. —e-case) we only retain those results where the k-th bit is zero (resp. one).

To analyze the complexity of solving the above system, we simply need to

figure out the degree of q&Z’b/ in zp and b'. The degree in xp is easily seen to
be (£? —1)/2 since the full /-torsion contains £2 points. The degree in b’ can be
seen to be upperbounded by (¢£2 — 1)/6 since the same recursion holds and the
degree in ' is three times smaller than for zp in the initializations. This leads
to a resultant of degree /2 — 1 and an overall complexity of O(¢*) to solve the
non-linear system of equations.

The probability that a given curve admits a point with neighbour of order
£ and bit-flip in position k (note that both ¢ and k are fixed) can be roughly
approximated as follows. Denote by P(n,p) the probability that a random poly-
nomial of degree n has at least one root in F,. Assuming we can consider the
resultant R as a random polynomial, then the probability is roughly the product
of:

— the probability P(¢* — 1,p) that R has at least one root zp in Fp,

— the probability 1/2 that the corresponding yp is in F,, (and when it does,
there are two roots yp),

— the probability 3/4 that of these two roots, at least one has a bit-flip in
position k.

Note that we only analyze the case of +¢ and not also —e, since the solvability
of both systems of equations is not really independent. The overall probability
therefore is roughly 3/8 - P(£? — 1,p). A closed expression for P(n,p) exists [32]
and this can easily be shown to satisfy P(n,p) > 1/2, which leads to a lower
bound of 3/16. Note that this high probability stands in stark contrast with the
probability that a given fixed point has a neighbour of order ¢, which we expect
to be in O(1/p).

The above algorithm can be easily extended to any given fixed error pattern,
such as multiple bit-flips, or setting certain bits to zero/one. Furthermore, errors
in the z-coordinate can also be dealt with.



To illustrate the effectiveness of the above procedure, in Table 1 we pro-
vide several example points with low order neighbours for the NIST P-192
curve [35], i.e. the curve over F, with p = 2192 — 264 — 1 ¢ = —3 and b =
0x64210519E59C80E70FATE9AB72243049FEBSDEECC146B9B1. For each small in-
teger £, the table gives a P with neighbour of order ¢ when a specific bit of the
y-coordinate is flipped (bit 0 is the LSB). Each of these examples was generated
in less than a second using Magma [11] on a standard laptop.

Table 1. Points with neighbours of low order on NIST P-192 curve.

Order P bit-flip
9 xP = 0x6D9D789820A2C19237CI6AD4B8D86B87TFB49D4D6C728 B84F 0
yP = 0x1
3 xP = 0x8E1AEBDD6009F 114490C7BC2C02509F8E432ED15F10C2D33 9

yP = 0x7A568946EFA602B3624A61E513E57869CAF2AES54E1A17B

xP = 0xB317D7BBD023E6293F 1506221 F5BC4A23D4BE2E05328 C5F 7
yP = 0xC70D48794F409831097620C0865B7D567329728 C634CAGAE

xP = 0xCC9BCCO0061F64371E3C3BDE165DAD5380A7TDC1919765940
yP = 0xCC8B36B37928334B8AFD7AIFCCFB4B0773E94A4178093458

xP = 0xC3F76445E6A52138E283E485092F005BE0821C3FIE96B0OSE
yP = 0x535DBCCB593D72E7885B66E57TFD13ASFFIC57A8F8BI1CE4S

xP = 0x5C003567728 CCBCIF4C06620B9973193837TBAEC67A29E43A
yP = 0x408D0C3135006B0O3EFF80961394D890FO0ES86DIFD1BA4EEC6

xP = 0x74FD6A1AD39479C75A85305FA786 E1IDBDC845E03754E723E
yP = 0x6EF58ABFC0B71047BA4F425652B3EC1746EBESFE16FEA1F5

4 Combined attack using low order neighbours

In this section we introduce a new combined attack using points with low order
neighbours. The system under attack is the following: we have access to a target
implementation that on input an elliptic curve point P computes k - P for some
unknown secret k. The goal is to recover the secret k.

The basic version of our attack requires the following two assumptions. The
realistic nature of these assumptions and the applicability of our attack will be
analyzed in Section 5.

1. It is possible, e.g. using side channel information, to determine when an
intermediate result in the computation becomes O.

2. It is possible to inject a fault immediately after initial validity checks, re-
sulting in a bit-flip in a predetermined position.

The attack then proceeds as follows: we input a point P with low order
neighbour P’ and, after the initial validity checks have passed, inject a fault



that turns P into P’. The implementation then tries to compute k - P’. Since
P’ has low order, it is highly likely that an intermediate computation will result
in O. This corresponds to the fact that the part of the secret scalar k that has
been processed up to that point is divisible by the order of P’.

If and how the implementation continues to run depends solely on how the
elliptic curve group operations are implemented, i.e. whether the implementation
is full or partial domain correct.

4.1 Full domain correctness

The implementation will compute the scalar multiplication k - P’ until the final
validity checks, at which point it will abort since k - P’ is not on the curve E.
During the computation however, we will obtain a huge amount of information of
the following form: assume the order of P’ is £, then every time an elliptic curve
addition/doubling results in O, we know that the part of the scalar processed
up to that point is divisible by ¢. Note that we also obtain extra information
when O does not appear, since then the corresponding part of the scalar is not
divisible by 4.

This attack is extremely powerful since in most cases one trace will suffice to
recover (almost all of) k. In Section 5.3 we will show that the attack can recover
ephemeral keys, blinded keys and randomly split keys.

Example To illustrate the effectiveness of this attack in the full domain cor-
rectness case, we apply it to an implementation using Algorithm 1. If we choose
to input a point P with neighbour P’ of order 2, all occurring computations
(2-P',2-O,0+ P’) are borderline cases, which may not be desirable. Therefore,
we choose a point P with neighbour P’ of order 4.

The computation of R < 2- R then either consists of 2- P’, 2-(2P’), 2- (3P’)
or 2-O. Note that the cases 2 - (2P’) and 2 - O are borderline cases, and thus
distinguishable from the cases 2- P" and 2- (3P’), which are ordinary doublings.
The crucial point to note is that point addition always generates odd multiples
of P’ and thus will never result in O. Furthermore, since P’ has order 4, the
point O will only occur after two consecutive doublings. Therefore, if O occurs
during the processing of bit k;, we know that bit k;;11 must have been zero. This
uniquely identifies the zero key bits (except for possibly the LSB), which implies
that the other key bits have to be one. As such, we easily obtain all of k£ with
one trace only.

Table 2 shows the intermediate results for the computation of k- P’ where
k = 5405 and ¢ = 4. Note that we assume that distinguishing point addition from
point doubling is not possible. As such, the adversary sees a sequence of normal
operations (additions or ordinary doublings), denoted by Op, and occurrences of
O as shown in the fourth row of Table 2. To recover the secret key, the adversary
proceeds as follows: in step one, he puts a 0 in each cell to the left of an O. Then
in step two, he groups the empty cells in pairs of two, from left to right, merges
them and writes a 1 in the resulting cell. If there is a single cell left in the end,
he writes a zero in it.



Table 2. Intermediate results in the computation of 5405 - P’ with £ = 4 and view of
the adversary when attacking the scalar multiplication.

i 11 10 9 8 7

ki 0 1 0 1 0

R |2P'| O,P" |2P'| O,P" |2P'
view |Op | O | Op |Op | O | Op | Op
step 1| 0 0 0
step 2| 0 1 0 1 0

O,P" |2P'3P"|2P' 3P"|2P'| O,P'
Op|Op|Op|0Op|0Op|0Op|O|O0Op

o|lo|Ql| Qoo
o|o| Q|| Q| o o
a

4.2 Partial domain correctness

Partial domain correctness implies that we can only gather information up to the
first occurrence of the point O. Indeed, either the implementation simply crashes
during the computation of O or it performs some nonsensical computations
thereafter. The result is that for each point submitted, we can only obtain partial
information about k. When £ is fixed over several invocations, this is not a real
problem since we can submit many points with neighbours of different order and
then deduce all bits of k from this information. Note that due to the behavior of
the implementation, i.e. no further information after occurrence of O, the orders
of the neighbouring points submitted do not have to be coprime.

The type of information gathered will be of the following form: let & =
Z;:Ol k;2!, then for each small integer ¢ we will obtain the index I(£) such that
the leftmost (or rightmost) I(¢) bits of k form an integer divisible by ¢. By
definition we set I(£) = 0 when no part of & is divisible by £. As such we obtain
a list of positive information PosInfo, consisting of pairs [¢,1(¢)], and a list of
negative information NegInfo containing those ¢ for which each I(¢) = 0. The
list PosInfo will be sorted according to I(¥).

A very simple incremental search algorithm is given in Algorithm 2. The algo-
rithm keeps a list PartialKeys containing all possibilities for the BitsScanned
leftmost bits of k. The procedure ExpandPartialKeys expands all partial keys
in the list by appending (on the right) all possible bit sequences of length
PosInfo[j][2] - BitsScanned and then only keeps those candidates divisi-
ble by PosInfo[j] [1]. It furthermore updates BitsScanned to PosInfo[j] [2].
The function PrunePartialKeys simply removes all elements from PartialKeys
that violate one of the non-divisibility conditions for any of the integers in
NegInfo. We implemented this algorithm in Magma and ran several tests to
evaluate its behaviour for the NIST P-192 curve. Given a fixed secret random £,
we computed for each integer ¢ smaller than an upper bound B the value I(¥)
and then tried to recover k from PosInfo and NegInfo. The tests show that
even for B ~ 100 we can typically recover a large part of the secret k (much
more than 100 bits on average) and that for larger values of B like 192 or 384
we recover most of k bar a few least significant bits.



Algorithm 2: Recovering private key from PosInfo and NegInfo.

PartialKeys < (), BitsScanned « 0

for j from 1 upto # PosInfo do
ExpandPartialKeys (& PartialKeys, PosInfo[j], & BitsScanned)
PrunePartialKeys (& PartialKeys, NegInfo)

end

return PartialKeys, BitsScanned.

5 Analysis of the attack

In this section we discuss the assumptions made in the previous section and
analyze the attack for a wide range of implementation choices, such as coordinate
systems and curves used, scalar multiplication algorithms and finally, common
countermeasures against SSCA and DSCA attacks and validity checks against
fault attacks.

5.1 Analysis of assumptions

Chosen input point The target implementation is assumed to compute k - P
for any given input point P, where k is supposed to be secret. This setting arises
for instance in ElGamal decryption [22], ECIES [1] and in static Diffie-Hellman
key agreement [21]. In the latter case, one of the ephemeral keys is simply the
long term public key. We note that the attack does not apply to ECDSA [41],
where the ephemeral key is computed on a fixed base point P (unless P has
neighbours of low order).

Recognizing O via side channels In the case of partial domain correctness,
the implementation either crashes during the computation of O or it ends up
in O and remains there. We assume that either event can be detected through
side channels. Indeed, if the implementation crashes it can for example stall or
exit the scalar multiplication routine early, which should be clearly visible e.g.
in power traces. If the implementation continues to run it will get stuck in O,
which should be visible as a repetitive pattern.

In the case of full domain correctness, the implementation does not crash
because it correctly deals with all borderline cases. Most textbooks on ECC, e.g.
Hankerson et al. [26], use checks and conditional branches in their code examples
to ensure full domain correctness. It is well known that conditional branches can
leak through side channels [31,17] and so it is clear that the occurrence of any
borderline case can be easily detected. Even if we assume that these checks and
branches are implemented with side channel resistance in mind (which is highly
unlikely) the actual occurrence of O (a point with at least one coordinate equal
to zero) in a point operation should be visible [2].



Fault injection The assumption that an adversary can flip a single chosen bit
in an implementation is certainly strong. We can relax this assumption greatly
using a trivial approach: by repeatedly faulting a specified byte (resulting in a
random byte), after an average of 256 trials, the fault will be precisely the fault
required. With overwhelming probability only the required fault will lead to a
point of low order, thus the good case is easily distinguished from undesired
faults. However, we still have to assume that an adversary can inject a fault
with sufficiently precise timing, in this case after initial validity checks.

The construction of points with low order neighbours is also flexible enough
to accommodate a more accurate fault model for the target implementation.
Assume we have extra information on the most likely state of a byte after fault
injection, then we can compute points specially crafted for this fault pattern.

Group law formulae An implicit assumption, which is automatically satisfied
when using the formulae given in Egs. (1) and (2), is that the group law formulae
do not depend on all coefficients of the curve equation. More formally, assume the
elliptic curve equation F(ay,...,a;) depends on k coefficients, but that only the
first m < k appear in the group law formulae. Then the implementation can also
be used to compute correctly on all elliptic curves with the same ay, ..., a,, but
differing a1, - .., ar. Note that for all elliptic curve forms, it is always possible
to write down group law formulae with m < k. However, for the most efficient
formulae used in practice, our assumption seems only valid for Weierstrass forms,
which are most widely used, and Hessian forms. In fact, using group law formulae
involving all coefficients of the curve combined with initial and final validity
checks, is a possible combination of countermeasures to our attack.

5.2 Scalar multiplication

Many scalar multiplication algorithms have been proposed, either to speed up
the computation or to aid resistance against simple side channel analysis. In this
section we focus on scalar recoding [5], the Montgomery powering ladder [28§],
unified formulae [12,19] and side channel atomicity [14].

Scalar representation Apart from the usual binary representation of the
scalar k = Z?:_()l k;2¢, several other representations are frequently used. The
non-adjacent form (NAF) represents k = 37" k;27, where k; € {0,+1}. More
generally, a width w-NAF of an integer k is an expression k = Z?:_Ol ;2% with
each nonzero k; odd, |k;| < 2*~%, k,_1 # 0 and at most one of any w consec-
utive digits nonzero. In all cases, we still obtain a similar type of information
as in the basic attack: when O is encountered, we know that the part of the
scalar processed up to that point is divisible by ¢. However, since the number
of intermediate points computed during the scalar multiplication is no longer n
but n/w, the probability of hitting O is lower.



Montgomery powering ladder The Montgomery powering ladder given in
Algorithm 3 is a popular choice because it provides speed and a highly regular
structure.

Algorithm 3: Montgomery powering ladder
Input: f’7 k’ = (k’nfl, knfz, ey ko)z
Output: Q =k - P
Ry—P,R —2-P;
for i < n — 2 down to 0 do
R_y, — Ri, + R—k;, Ry, — 2 Ry, ;
end

return R,

Attacking the Montgomery ladder is a bit more tricky because the sequence of
operations is fixed and independent of the key. Nevertheless, the attack applies
since it does not exploit the sequence of operations but the evolution of the
intermediate values. Assume we input a point P with neighbour P’ of order 4
and inject a fault after initial validity checks. The implementation will then try
to compute k- P’. Note that if two consecutive bits of k are equal, then the same
point (either Ry or Ry) will be doubled twice by the operation Ry, «— 2 - Ry,
resulting in O. On the other hand, if two consecutive bits differ, an ordinary
doubling 2 - P’ or 2 - (3P’) will be computed. Finally, note that O can never
be the result of the addition operation Ry, + R-y,, since this is always an odd
multiple of P’. As such, we obtain (almost all of) k with one trace only in the
full domain correctness case.

Unified formulae and side channel atomicity These countermeasures ren-
der point additions and doublings indistinguishable to prevent SSCA, and they
can be implemented together with a possibly faster, irregular scalar multiplica-
tion algorithm like double-and-add (at the cost of leaking the Hamming weight
of the exponent). It is clear that our attack is not affected by countermeasures
of this kind because it does not require point operations to be distinguishable.

5.3 Common DSCA and FA countermeasures

Random scalar splitting [15] With this countermeasure, the scalar k is ran-
domly split into two parts: kK = k1 + k2. As such, @Q = k- P can be computed
as k1 - P+ ko - P by two consecutive scalar multiplications and addition of their
results. In the case of full domain correctness, (almost all of) k; and ko can
be revealed (assuming that only the final output point is checked for validity),
which immediately results in (a small number of candidates for) k. Otherwise the
situation is similar to that of partial domain correctness. In the partial domain
correctness case, the attack will no longer work, since we will only be able to



recover a part of ky or ko, but not both at the same time. Indeed, typically the
implementation will stop working the first time it hits O.

Scalar randomization [20] In this case, the scalar is blinded using a multiple
of the curve order, i.e. k is replaced by k' = k+r-#E. It is easy to see that this
countermeasure is useless in the full domain correctness case, where only a single
trace is needed. For partial domain correctness, we do get partial information on
k', but currently have no method to exploit this. Note that the same conclusion
applies for ephemeral keys.

Coordinate randomization [20] This countermeasure assumes that some
form of projective coordinates are being used and that the coordinates of the
input point P are randomized before the scalar multiplication is started. For
instance, when using projective coordinates, P = (rXp,rYp,rZp) with r ran-
domly chosen is used. It is easy to see that our attack remains valid if initial
checks are performed before point randomization.

Random elliptic curve isomorphisms [27] This method first applies a ran-
dom isomorphism of the form  : (z,y) — (r?z,r3y) and then proceeds by
computing @ = k - ¥ (P) and outputting ¢»~!(Q). Since an isomorphism does
not change the order of a point, it is clear that the attack still applies if initial
checks are performed before 1) is applied.

Isogeny defence [40] To prevent Goubin’s attack using special points of large
order, Smart proposed to use an isogeny Z to map the input points to an isoge-
nous curve without special points. Furthermore, for each curve in the main stan-
dards Smart provides a fixed isogeny that works for that curve. It is clear that
our attack still applies if we look for points P with low order neighbours on the
isogenous curve instead of on the original curve. The input to the target device
will then be the points Z~!(P) and the fault will be injected after initial checks
and isogeny have been applied.

Point blinding [20] With this countermeasure, the implementation contains a
random point R and the corresponding multiple k- R. The scalar multiplication
k- P is computed by first computing k - (P + R) and then subtracting k- R from
the result. Since we have no control over the point R, we cannot compute an
appropriate point P such that we can fault the point P + R into a point of low
order. As such, this countermeasure does thwart our attack, both in the full and
partial domain correctness case. Point blinding can be seen as an instance of
infective computation [42].

Cofactor multiplication [40] To prevent small subgroup attacks, most proto-
cols can be reformulated using cofactor multiplication. For instance, the Diffie-
Hellman protocol can be adapted as follows: a user first computes Q «— h - P



and then R «— k- Q if Q # O. It is easy to see that our attack still applies when
we input a point with neighbour of order different from h.

Validity checks [9,15] To prevent fault attacks, Biehl et al. [9] and Ciet and
Joye [15] recommend input/output point validity checks and curve parameter
checks. These recommendations were part of the original motivation for our
work and do not prevent the attack.

5.4 Curves over finite fields of characteristic two

Although the attack has mainly been described for elliptic curves in Weierstrass
form over fields of large characteristic, we briefly touch on the characteristic two
case. The short Weierstrass form is given by E : 4% + 2y = 2% + az? + b. The
applicability of our attack then depends on the coordinate system being used.
For affine and standard projective coordinates, the attack applies since only the
a-coefficient is used in the group law formulae. For Jacobian coordinates the
attack does not apply since both a and b are used in the group law formulae. For
Lopez-Dahab formulae, only b is used in the group law formulae, but changing a
only results in an isomorphic curve or its quadratic twist. As such it is impossible
to find a point of given low order, since both the curve and its twist should not
have many small subgroups.

6 Conclusions

We have described a novel attack that combines three ideas: fault injection, sim-
ple side channel analysis, and specially crafted, but valid input points that after
a single fault injection have very low order. Our attack breaks ECC implemen-
tations that are protected by many of the known countermeasures such as initial
and final point validity checks, curve parameter checks, cofactor multiplication
check, SSCA countermeasures and bypasses many DSCA countermeasures. A
secondary yet irritating result of our analysis is that proper, i.e. full domain
correct implementations are more vulnerable to the attack and can be broken
using one successful fault injection.

The attack does not apply to protocols that use a fixed point P (with no near
neighbours of low order). For other applications, the attack can be prevented by
physical fault injection sensors, concurrent point validity checks, using group
law formulae that involve all curve coeflicients, using randomized coordinates
or randomized curve isomorphisms with randomization before the initial point
validity check and by point blinding.
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Appendix

Table 3. Borderline cases for projective and Jacobian coordinates.

EF,): v =2+ ax +0

Coordinate System| Operation |Using a|Using b Input Output
P=P; (0,0,0)

PA(Py, P2) - - P=P, (0,*,0)

Projective P;=(0,%,0) |(0,0,0)
Order(Py)=2| (0,*,0)

PD(R) |+ ~ | A=(0,%0) | (0,0,0)

P=P; (0,0,0)

P=P, (*,*,0)

PA(PlaP2) - - Plz(*,*,o) (*’*70)

Jacobian P;=(0,0,0) |(0,0,0)
Order(Py)=2| (*,*,0)

PD(P) + - Py =(**0) | (*,*0)

P;=(0,0,0) |(0,0,0)




