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Abstract. This paper proposes a new fault-based attack called the Fault Sensitivity Analysis
(FSA) attack, which unlike most existing fault-based analyses including Differential Fault
Analysis (DFA) does not use values of faulty ciphertexts. Fault sensitivity means the critical
condition when a faulty output begins to exhibit some detectable characteristics, e.g., the
clock frequency when fault operation begins to occur. We explain that the fault sensitivity
exhibits sensitive-data dependency and can be used to retrieve the secret key. This paper
presents two practical FSA attacks against two AES hardware implementations on SASEBO-
R, PPRM1-AES and WDDL-AES. Different from previous work, we show that WDDL-AES is
not perfectly secure against setup-time violation attacks. We also discuss a masking technique
as a potential countermeasure against the proposed fault-based attack.
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1 Introduction

Nowadays, the security of cryptographic devices such as smart cards is threatened
by side-channel attacks that retrieve secret information from side-channel leakages
such as power consumption and electromagnetic radiation. The most studied fault-
based attack is Differential Fault Analysis (DFA) proposed by Biham and Shamir in
1997 [1]. The DFA attacks have been actively studied in [2,4,6–8,10,12–14] and [16].

Generally, DFA attacks retrieve the key based on information of the character-
istics of the injected fault and the values of the faulty ciphertexts. In this paper, a
faulty ciphertext represents the output after a transient fault is injected, i.e., the
output of the original cryptographic algorithm using a faulty intermediate value as
an intermediate input. On the other hand, when an action of fault injection is per-
formed, we generally call the output a faulty output. A faulty output could be a faulty
ciphertext, a fault-free ciphertext when the fault injection fails, or a nonsense value
for implementations with fault attack countermeasures.

This paper proposes a new fault-based attack called Fault Sensitivity Analysis
(FSA) attack. We notice that in the process of fault injection, there are other types
of information that are available to attackers, which we call fault sensitivity. The fault



sensitivity is a condition where the faulty output begins to exhibit some detectable
characteristics. For example, when gradually increasing the intensity of the fault in-
jection, attackers can discern the critical condition where a fault begins to occur or
the fault becomes stable. Similar to most side-channel attacks, if the relationship be-
tween the fault sensitivity and the processed sensitive data is known, the FSA attacks
can retrieve the secret information from a cryptographic device.

This paper explains the general attack procedures and attack requirements for
the FSA attacks. To prove the validity of the FSA attacks, this paper first presents
a detailed FSA attack example against PPRM1-AES [9] (1 stage Positive Polarity
Reed-Muller) implemented in ASIC mounted on the Side-channel Attack Standard
Evaluation Board (SASEBO-R) [5]. For the PPRM1 S-box, based on its structure and
a simulation, we explain that there is a correlation between the faulty sensitivity and
the Hamming weight of the input signals for the S-box. In the FSA attack against
PPRM1-AES herein, the 128-bit key can be retrieved with less than 50 plaintexts.

We note that the FSA attack has the potential to threaten many DFA-resistant
implementations, since it does not require the value of the faulty ciphertext. For exam-
ple, FSA can be applied to Wave Dynamic Differential Logic (WDDL) [15], which was
said to be naturally immune to the DFA attacks based on setup-time violation [11].
This paper also describes an FSA attack against WDDL-AES on SASESO-R. Based
on experimentation, we find that the fault sensitivity for a WDDL combinational logic
tree can be correlated with the values of one bit of the output signal. By retrieving 3
out of 16 key bytes, we show that a practical ASIC implementation of WDDL-AES
is not perfectly secure against the FSA attack based on setup-time violations.

Compared to DFA, FSA does not restrict the injected fault to a small subspace
by assuming that only a few bits or bytes are disturbed. On the other hand, the
masking technique, which is shown not to be effective against the DFA attacks [3], is
a potential countermeasure against FSA attacks.

This paper is organized as follows. In Section 2, we briefly review the previous
work on fault-based attacks. Section 3 describes the general principle and attack
procedures of FSA. We also describe a detailed FSA attack against PPRM1-AES.
Finally, we discuss the attack requirements and countermeasures against FSA. In
Section 4, we explain the FSA attack against WDDL-AES. Section 5 concludes this
paper.

2 Preliminaries

This section reviews several common fault injection techniques and presents the attack
assumptions and requirements for DFA.



2.1 Common Fault Injection Techniques

In [2], the common fault injection techniques are listed as spike attacks, glitch attacks,
optical attacks, and electromagnetic perturbations attacks. The spike and glitch at-
tacks are likely to be simpler to implement than others since they disturb the external
power supply or the external clock, respectively. An illegal power supply or illegal
clock will cause a setup-time violation since flip-flops are triggered before the output
signals are fixed to a correct value. Compared to spike attacks, it is easier to control
the exact time of a fault injection for the glitch attack. Therefore, we use the glitch
attack to perform fault injections in this paper.

2.2 DFA and Attack Requirements

In 1997, Biham and Sharmir first proposed the concept of the DFA attack and applied
it to DES [1]. Since then, the DFA attack has been the most discussed fault-based
attack. DFA assumes that attackers are in physical possession of the cryptographic
device, and can use it to obtain two ciphertexts for the same plaintext and secret
key3. One of the ciphertexts is a fault-free ciphertext denoted by C, and the other
denoted by C ′ is the result after some computational fault is injected. DFA further
assumes that the attackers know some characteristics of the injected fault, e.g., only
several bits or bytes are disturbed in a specific round operation.

In the DFA attacks, the attackers first make a key guess, Kg. Then fault-free
intermediate value I and faulty intermediate value I ′ are calculated based on (C,Kg)
and (C ′, Kg), respectively. Subsequently, the attackers check whether I ⊕ I ′ satisfies
the characteristics of the injected fault. Repeating these procedures for multiple pairs
of (C,C ′), the attackers can finally identify the secret key.

Generally, there are two major requirements for the DFA attacks.

– First, the DFA attack requires the value of faulty ciphertext C ′. A faulty ciphertext
is the output of the original cryptographic algorithm using the faulty intermediate
value as the intermediate input. In the case of WDDL circuits under the fault
injections caused by setup-time violations, this requirement cannot be satisfied
[11].

– Second, attackers need to know some characteristics of the injected fault; however,
the characteristics of the injected fault cannot be judged from the values of C and
C ′. Only when the actual injected fault is the expected one, can the DFA attackers
identify the secret key.

3 For simplicity, we consider only the encryption process.



3 FSA Proposal

In this section, we explain the general principle of the proposed FSA, and discuss
the attack scenarios, attack requirements, and countermeasures to it. In a general
discussion concerning the FSA attack, we present a detailed FSA procedure using
PPRM1-AES as a case study.

3.1 General Principle of FSA

In the same way as in the DFA case, we assume that the attackers are in physical
possession of the device. Starting from a condition where a correct ciphertext is ob-
tained, the attacker gradually increases the intensity to which he disturbs the power
supply or external clock. While doing so, there must be a moment where the success
rate of the fault injection is non zero and a moment where the success rate is 1.

We call these critical conditions where the faulty output exhibits some detectable
characteristics fault sensitivity. The fault sensitivity information can be observed and
recorded by attackers and can be utilized as new side-channel information if it exhibits
sensitive-data dependency. Consequently, we propose a new side-channel analysis FSA
that utilizes the leakage of the fault sensitivity to retrieve secret information.

3.2 Data-Dependency of Fault Sensitivity

Since the transitions of signals in a device are data-dependent, it is natural to be-
lieve that the fault sensitivity is data-dependent. For faults caused by the setup-time
violation, we explain the data-dependency for the timing delays of signals.

General Mechanism We use AND, OR and XOR gates as examples to explain the
general mechanism of the data-dependency of the signal timing delay. In the following
analysis, TX denotes the timing delay for a signal X.

A BC = A B(b) (c)
A BC = A B(c)
A BC = A BA BC = A B(a)

TATAND TB
Fig. 1. Examples for data-dependency for fault sensitivity.

For a two-input AND gate as shown in Fig. 1 (a), we assume TA < TB. If signal A
is logic 0, signal C is determined after signal A arrives at the AND gate. As a result,



TC = TA + TAND, where TAND is the timing delay caused by the AND gate. On the
other hand, if signal A is logic 1, signal C will be determined after signal B arrives,
so that TC = TB + TAND.

Similarly, for a two-input OR gate as shown in Fig. 1 (b), we still assume TA < TB.
If signal A is logic 1, TC = TA + TOR, otherwise TC = TB + TOR. In a word, for a
two-input AND/OR gate, the input signal with a shorter timing delay is the selector
for the timing delay of the output signal. However, for an XOR gate as shown in
Fig. 1 (c), the timing delay of the output signal is decided by the maximum timing
delay of its input signals without data-dependency.

We call the maximum timing delay among all the output signals for a combina-
tional logic tree the critical timing delay. The fault sensitivity for setup-time violation
is dependent on the critical timing delay. Since the timing delays of intermediate sig-
nals are data-dependent, the critical timing delay is also data-dependent. Once a
circuit is physically decided, the data-dependency of the fault sensitivity is also phys-
ically fixed. Attackers can analyze the data-dependency based on the structure of the
circuit, software simulation, or implementation of the circuit.

Data-dependency of Critical Timing Delay for PPRM1 S-box As a case
study, we analyze the data-dependency of the critical timing delay for the PPRM1
S-box based on its structure and a simulation.

PPRM1 S-box
AND array
XOR array……Data-independent delay.

Data-dependent delay.More 0s in inputs, smaller Delay. Critical delay depends on the Hamming weight of inputs
Fig. 2. Structure of PPRM1 S-box and data-dependency for the critical timing delay.

PPRM1 (AND-XOR logic) was proposed by Morioka and Satoh at CHES 2002 for
a low power AES design [9]. Although PPRM1 is not likely to be used in a practical
implementation, its straight-forward structure makes it a perfect attack target for the
case study. As shown in Fig. 2, for the S-box of PPRM1, the input signals go through
an AND gate array and an XOR gate array to become the output signals. For the
AND gate array, the timing delays of the output signals are dependent on the values
of the input signals. For the XOR gate array, the timing delays of the output signals



are not data-dependent. In general, the structure of the PPRM1 S-box indicates the
dependency between the critical timing delays and the values of the input signals.

For the AND gate array, each logic 0 input signal has a probability for decreasing
the critical timing delay. Consequently, the more 0s in the input signals, the bigger the
possibility that the critical timing delay of the S-box becomes shorter. In conclusion,
statistically the critical timing delay of the PPRM1 S-box should be correlated with
the Hamming weight of the input signals. Specifically, the input signals with a higher
Hamming weight make the PPRM1 S-box more sensitive to a fast clock.
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Fig. 3. Relationship between the critical timing delay and Hamming height of the input of PPRM1 S-box.

To confirm this, we simulate the transitions and timing delays of signals using the
Verilog-HDL codes for the PPRM1 S-box [5] by Xilinx. For each possible input of the
S-box, we obtain the corresponding critical timing delay where the initial values of all
wires are reset to logic 0. As shown in Fig. 3, the correlation coefficient between the
critical timing delay and the Hamming weight of the input signals is approximately
0.71. Later we show a similar correlation existing in the ASIC implementation of
PPRM1 that can lead us to a practical FSA attack.

3.3 General FSA Attacks Scenarios

Without loss of generality, this paper only shows the case in which the rounds near
the output are attacked.

Collection of Fault Sensitivity Information In a practical FSA attack, attackers
first need to collect the fault sensitivity information. For simplicity, we use an unspe-
cific parameter called the fault injection intensity denoted by F . When F = 0, no



Algorithm 1 Collection of Fault Sensitivity Information
Inputs: The number of different plaintexts: N
Outputs: Ciphertexts: CT [i], Critical fault injection intensity: FC [i]
for i = 1 to N do

Generate a random plaintext PT [i]
Reset fault injection intensity F ← 0
CT [i]← Enc(PT [i], F ) (No fault injection)
repeat

Increase F by a little
until Enc(PT [i], F ) ̸= CT [i]
FC [i]← F

end for

fault injection is performed. An increase in F represents an increase in the intensity
for the fault injection, e.g., a decrease in the power supply and a shortening of the
clock period. Then we denote the output of the encryption for plaintext PT with
fault injection intensity F as Enc(PT, F ). We use the intensity where a fault begins
to occur as critical fault injection intensity FC , then the fault sensitivity information
is collected according to the procedures in Alg. 1. In Alg. 1, the critical fault injection
intensity information is collected by gradually increasing the intensity and checking
whether the output is still the same as the fault-free ciphertext.

The Key Retrieval Procedure We assume that the attackers can use ciphertexts
CT [i] and a key guess, Kg, to predict critical fault injection intensity FC using a func-
tion denoted by fFC

g
. Algorithm 2 shows the basic procedures for the key retrieval

calculation where ρ(A,B) denotes the absolute value of the Pearson correlation co-
efficient between A and B. The correlation peak among all possible key guesses is
expected to be the same as the correct one.

Algorithm 2 Key Retrieval Procedure
Inputs: Bit length of (sub-)key: t, Ciphertexts: CT [i], Critical fault injection intensity: FC [i]
Outputs: Key
for Kg = 0 to 2t − 1 do

for i = 1 to N do
FC
g [i]← fFC

g
(CT [i],Kg)

end for
Cor[Kg]← ρ(FC , FC

g )
end for
Key ← Kg where Cor[Kg] is the maximum



3.4 FSA Attack Scenarios Against PPRM1-AES

In this section, we propose an FSA attack scenario against 128-bit PPRM1-AES. We
denote the calculation results of the i-th round of AES by H i and i ∈ [1, 10]. In the last
round of AES, the MixColumns operation is omitted. Each byte of H9 is substituted
by an S-box, and the 10th round key, K10, is added to become the corresponding
byte for ciphertext H10. Since the byte-wise calculations in the last round of AES are
independent from each other, there are 16 independent combinational logic trees. As
a result, each byte of the ciphertext is an independent indicator of whether a fault is
injected in its combinational logic tree. Therefore, even through all the S-boxes are
calculated in parallel for the PPRM1-AES on SASEBO-R, the 16 bytes of K10 can
be attacked independently in the FSA attack.

Based on the analysis in Section 3.2, when we inject the fault during the last round
of PPRM1-AES by shortening the corresponding clock period, the fault sensitivity is
correlated with H9. Attackers can set the basic attack target as a byte of K10, then
the FSA attacks can be applied as shown in Algs. 1 and 2, where fFC

g
is the Hamming

Weight of InvSbox(CT [i]⊕Kg).

FSA Attack Results Against PPRM1-AES This section shows the FSA attack
results against PPRM1-AES implemented in ASIC mounted on the SASEBO-R [5].
The detailed experimental setup and parameter settings are shown in Appendix A.

In Fig. 4, we show 16 sub-figures for the correlation coefficients against key guesses
for 16 bytes of K10 when 360 plaintexts are used. We note that in the practical attack,
all 16 key bytes of K10 are attacked in parallel, i.e., for each plaintext we collect
fault sensitivity data for every combinational logic tree. Figure 5 shows the number
of correct key bytes against the number of used plaintexts. We found that full key
recovery for the FSA attack against PPRM1-AES requires less than 50 plaintexts.

3.5 Attack Requirements and Countermeasures for FSA

There are two requirements for a practical FSA attack. First, attackers must under-
stand the data-dependency for the fault sensitivity. Even through the sensitive data
and the fault sensitivity may not have a clear correlation, as long as attackers have a
template for the data-dependency of the fault sensitivity, FSA can retrieve the secret
key. Second, the secret key must be able to be divided and attacked independently
so that Alg. 2 can be finished in a practical amount of time. All the software imple-
mentations where S-boxes are sequentially calculated satisfy the second requirement.
Furthermore, most of the parallel implementations without countermeasures satisfy
the second requirement as well.

Compared to the DFA attacks, the FSA attacks do not require that the injected
fault be restricted to a small subspace by assuming that only a few bits or bytes are
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Fig. 4. Attack results for PPRM1-AES using 360 plaintexts. Each sub-figure corresponds to a key byte. The
key guess is represented on the horizontal axis. The correlation coefficient between the critical fault injection
intensities and Hamming weight of the input is represented on the vertical axis. Each correct key byte is
marked by an ×.

disturbed. Even though the DFA attacks are likely to require fewer fault injections to
retrieve the secret key [8, 10, 12, 16], it requires that the attacker have the ability to
inject the expected fault in the first place. Since attackers have the device, there is no
limitation on how many times that the non-invasive fault injections are performed;
however, it requires much knowledge or investigation to inject the expected faults.

Furthermore, the FSA attacks do not require the values for faulty ciphertexts.
So for the conventional fault-based attack countermeasures that provide a nonsense
output or halt the calculation when a computational fault is detected, the FSA attack
is still a potential threat. The fault sensitivity information is still available to attackers
since they can distinguish whether or not a fault is injected. However, if the S-boxes
are calculated in parallel, the fault detection is no longer byte-wise independent. The
collected information only corresponds to the most sensitive part. Since the second
requirement for the FSA attacks is not satisfied, it is difficult to retrieve the full key
using the FSA attacks.

On the other hand, we note that the masking technique, which is shown not to
be effective against the DFA attacks [3], is likely to be an effective countermeasure
against the FSA attacks. Once all of the sensitive values are masked by uniformly
distributed random numbers, the data-dependency between the intermediate values
and the fault sensitivity can no longer be used in the key retrieval.
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Fig. 5. Number of correct key bytes vs. number of used plaintexts.

4 FSA Attacks Against WDDL-AES

Since the faulty output for WDDL circuit has no information regarding the key, it is
concluded that the WDDL circuit is naturally protected from the setup-time violation
attacks in FDTC 09 [11]. We note that WDDL-AES satisfies the attack requirements
for FSA, so that theoretically it is potentially vulnerable to the FSA attacks.

4.1 WDDL "Protected" Against Setup-Time Violation Attacks

WDDL was proposed by Tiri and Verbauwhede at DATE 2004 as a hiding counter-
measure for power analysis. As a representative of the Dual-Rail Precharge Logic,
each WDDL gate comprises two complementary operations. Every signal in WDDL
has two complementary wires (true, false) as well, where the true wire has the actual
value of the signal and the false wire has the complementary value. The logic values
of two wires for a signal are either (1, 0) or (0, 1). Each clock cycle is divided into
two phases, precharge and evaluation. In the precharge phase, all of the wires are set
to be the precharge value, which is assumed to be 0 in this paper. In the evaluation
phase, each pair of wires is set back to the logic values as either (1, 0) or (0, 1). As
a result, exactly half of the wires will transit from 0 to 1, and the other half remain
at 0 during each evaluation phase. Since the number of bit transitions is independent
from the processed data, a WDDL circuit is likely to consume a constant amount of
power for each clock cycle.

Under the fault injection caused by the setup-time violations, the two wires of a
faulty signal in WDDL can only be (0, 0). Furthermore, an input faulty signal, (0, 0),
is likely to spread to all of the output signals for a WDDL combinational logic tree.



In the case of the fault injection at the beginning of the 8th round used in [10,12,16],
attackers can only obtain a faulty output with all 0s. Since faulty ciphertext C ′ is
not available for DFA attackers, it is concluded that WDDL is naturally immune to
the setup-time violation attacks. However in this work, we show that in a practical
implementation of WDDL-AES it is vulnerable to the FSA attacks based on setup-
time violation.

4.2 Data-Dependency of Fault Sensitivity for WDDL-AES

For the WDDL-AES on SASEBO-R, we try to use the implementation itself to obtain
the data-dependency of the fault sensitivity. With full knowledge of the secret key,
we performed fault injections that shorten the evaluation period for the last round of
AES. Then we found that the critical fault injection intensity of each byte is correlated
with the value of one single bit of the ciphertext byte. Although the correlation
between fault sensitivity information and the ciphertexts cannot be used for key
retrieval, we understand the fault sensitivity for the WDDL circuits are dependent
on its output.

4.3 Practical FSA Attack Against WDDL-AES

As a practical attack, we performed another fault injection that shortens the evalu-
ation period for the 9th round of AES, since the data-dependency based on H9 can
be used in the key retrieval. A modified key retrieval algorithm shown in Alg. 3 is
applied. In Alg. 3, fgetbit(A, b) represents a vector comprising the b-th bit of each ele-
ment of A. The attack results after using 1200 plaintexts are shown in Fig. 6. The 6th
key byte and the 11th key byte of K10 can be identified clearly. Also the correlation
coefficient peak for the 4th key byte corresponds to the correct key as well.

Algorithm 3 Key Retrieval Procedure for WDDL-AES
Inputs: Bit length of (sub-)key: t, Ciphertexts: CT [i], Critical fault injection intensity: FC [i]
Outputs: Key
for Kg = 0 to 2t − 1 do

for i = 1 to N do
FC
g [i]← InvSbox(CT [i]⊕Kg)

end for
for bit = 0 to 7 do

BitCor[bit]← ρ(fgetbit(F
C
g , bit), FC)

end for
Cor[Kg]←Max(BitCor[bit])

end for
Key ← Kg where Cor[Kg] is the maximum
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Fig. 6. Attack results for WDDL-AES using 1200 plaintexts. Each sub-figure corresponds to a key byte.
The key guess is represented on the horizontal axis. The maximum 8-bit-based correlation coefficient is
represented on the vertical axis. Each correct key byte is marked by an ×.

We believe that there are two reasons for this correlation. First, since the S-
box of WDDL-AES is not based on S-boxes with clear gate arrays, even though
the fault sensitivity for WDDL-AES is dependent on the input signals there is no
clear correlation as in the case for PPRM1-AES. Second, assuming that the two
complementary wires for the critical path have different timing delays, then the fault
sensitivity will be correlated with this output signal since only 1 → 0 could occur for
WDDL circuits under setup-time violations. For example, we assume that the timing
delay of the true wire is longer than that for the false wire. As a result, the calculation
with output signal (1,0) is more sensitive to a fast clock than the one with output
signal (0,1), which leads to the correlation we observed in the experiments.

Compared to a single-rail circuit such as PPRM1, it is harder to apply the FSA
attack to WDDL. Each path in the WDDL combinational logic tree has two wires that
are supposed to have the same timing delay. However, practically the timing delays
for two complementary wires cannot be exactly the same, so that the vulnerability to
FSA attacks for practical WDDL implementations still exists. The unexploited key
bytes may become exploitable by using a more precise experimental setup.

Another difficulty in attacking WDDL is that, since the fault injection is performed
in the 9th round, there is influence from the key schedule and the MixColumns. In
the proposed attack, we find that several bytes have the same fault sensitivity when
we inject the fault in the 9th round, which indicates that the fault signal affects these
bytes at the same time. This kind of fault is difficult to use in the FSA attacks.



As future work, we plan to investigate in more detail the fault sensitivity of WDDL
circuits.

5 Conclusions

This paper proposed a new fault-based attack called Fault Sensitivity Analysis, which
has lower attack requirements than those for Differential Fault Analysis. The FSA
attacks are based on the dependency between the sensitivity data and the critical
conditions where faulty outputs begin to exhibit detectable characteristics. Two prac-
tical FSA attacks against ASIC implementations of AES were shown in the paper.
For PPRM1-AES, less than 50 plaintexts were needed to retrieve the full key. For
WDDL-AES, which was shown to be immune to DFA attacks based on setup-time
violation, the proposed FSA attack successfully retrieved 3 out of 16 key bytes with
1200 plaintexts.
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A Experimental Setup for Fault Sensitivity Analysis using
Clock Glitch
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Fig. 7. Experimental setup for fault sensitivity analysis.

The experimental setup for FSA is shown in Fig. 7. The fault injection technique
used in the proposed attack is the clock glitch. We use two clock supplies in the
experiment system. The first clock supply, clk1, is generated by a 24 MHz oscillator
and provided to the control FPGA and the I/F of the LSI to ensure that they work
appropriately. The second clock supply, clk2, is generated from a function generator
that is controlled by a PC through GBIP. By multiplying clk2, higher frequency clock
clkhf is generated using the Digital Clock Manager (DCM) inside the control FPGA.
Then, based on clk2, clkhf , and the start signal from the LSI core, we use the control
FPGA to generate a special clock, clkcore, which is provided to the LSI core. Most



PPRM1-AES power
normal clock

Fig. 8. Power trace of PPRM1-AES without fault injection (above) and clock supply without glitch (bottom).
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Fig. 9. Power trace of PPRM1-AES with fault injection (above) and clock supply with a glitch (bottom).

cycles of clkcore are the same as those for clk2, except one cycle is the same as the
clkhf , which triggers the computational fault at the time we want. Figures 8 and 9
show the power traces of PPRM1-AES and clocks clkcore without fault injection and
with fault injection, respectively.

In order to reduce the total number of fault injections for a successful FSA attack,
we first employ a binary search to determine a relatively high frequency for clkhf that
does not trigger any fault. Then we increase the frequency of clkhf step-by-step and
record the critical frequency for each byte of ciphertext. In the experiments, the period
of clkhf is decreased by approximately 35 picoseconds in each step. Furthermore, every
plaintext is repeatedly used, until all of the bytes of ciphertext have been disturbed
into a faulty value. In the worst case in the proposed attacks, a plaintext must be
repeatedly used 120 times. In the experiment, we choose these parameters to make
sure that 1) the recorded fault sensitivity has informative variations and 2) the level of
efficiency in collecting the fault sensitivity information is tolerable. These parameters
can be optimized to lead a more efficient FSA attack.


