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Abstract. In this paper we study six 2nd round SHA-3 candidates from a side-channel crypt-
analysis point of view. For each of them, we give the exact procedure and appropriate choice of
selection functions to perform the attack. Depending on their inherent structure and the internal
primitives used (Sbox, addition or XOR), some schemes are more prone to side channel analysis
than others, as shown by our simulations.
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1 Introduction

Hash functions are one of the most important and useful tools in cryptography. A n-bit cryp-
tographic hash function H is a function taking an arbitrarily long message as input and out-
putting a fixed-length hash value of size n bits. Those primitives are used in many applications
such as digital signatures or key generation. In practice, hash functions are also very useful
for building Message Authentication Codes (MAC), especially in a HMAC [5, 33] construction.
HMAC offers a good efficiency considering that hash functions are among the fastest bricks in
cryptography, while its security can be proven if the underlying function is secure as well [4].

In recent years, we saw the apparition of devastating attacks [38, 37] that broke many
standardized hash functions [36, 30]. The NIST launched the SHA-3 competition [32] in response
to these attacks and in order to maintain an appropriate security margin considering the
increase of the computation power or further cryptanalysis improvements. The outcome of
this competition will be a new hash function security standard to be determined in 2012
and 14 candidates have been selected to enter the 2nd round of the competition (among 64
submissions).

Differential and Simple Power Analysis (DPA and SPA) were introduced in 1998 by Kocher et
al. [25] and led to a powerful class of attacks called side-channel analysis. They consist in two
main steps. First, the power consumption, the electro-magnetic signal [1] or any others rele-
vant physical leakage from an integrated circuit is measured during multiples execution of a
cryptographic algorithm. Then, one performs a hypothesis test on subkeys given the algorithm
specification, the algorithm input and/or output values and the traces obtained during the first
step. This second step requires to compute an intermediary results of the algorithm for a given
key guess and all the input/output and analyze correlation [13] with the actual experimen-
tal traces. The intermediary result is the output of what we will call hereafter the “selection
function”.

Because of the widely developed utilization of HMAC (or any MAC built upon a hash func-
tion) in security applications, it makes sense to consider physical security of hash functions [27,
17, 28, 19, 34]. Indeed, those functions usually manipulate no secret and have been at little bit
left apart from side-channel analysis for the moment. In practice, the ability to retrieve the
secret key that generates the MACs with physical attacks is a real threat that needs to be
studied and such a criteria is taken in account by the NIST for the candidates selections [23].



Our contributions. We present a side-channel analysis of six hash functions selected to
the 2nd round of the SHA-3 competition: ECHO [7], Grøstl [18], SHAvite-3 [11] (three AES-
based hash functions), BLAKE [3], CubeHash [9] and HAMSI [35]. This paper aims at finding the
appropriate selection function for each SHA-3 candidates in a MAC setting and evaluating the
relative efficiency through simulations of the corresponding attacks. Then, we draw conclusions
concerning the relative complexity for protecting each candidate against first order side-channel
cryptanalysis.

Of course, the intend of this paper is not to show that some particular hash functions can be
broken with side-channel analysis, which should be easy in general when the implementation is
not protected. However, we believe there are constructions that are naturally harder to attack
or easier to implement in a secure and relatively efficient way.

2 How to perform side-channel attacks on hash functions

2.1 Message Authentication Codes with hash functions

A Message Authentication Code (MAC) is an algorithm that takes as input a arbitrary long
message M and a secret key K and outputs a fixed-length value V = MAC(M,K). One
requires that it should be computationally impossible for an attacker to forge a valid MAC
without knowing the secret key K, or to retrieve any information about K. This primitive
allows the authentication of messages between two parties sharing the same secret key. MACs
can be built upon block ciphers (i.e. CBC-MAC [6]) or hash functions in the case of HMAC [5,
33]. HMAC instantiated with the hash function H is defined as follows:

HMAC(K, M) =

H((K ⊕ opad)||H((K ⊕ ipad)||M))
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where || denotes the concatenation of bit strings and ⊕ represents the bitwise exclusive or
(XOR) boolean function. The two words opad and ipad are two constants of the size of a message
block in the iterative hash function. This point is important: HMAC implicitly considers that
H is an iterative hash function. Thus, for each iteration i we have an internal state (so-called
chaining variable) CVi that is updated thanks to a compression function h and a message block
Mi : CVi+1 = h(CVi,Mi). The first chaining variable CV0 is initialized with an initial vector
IV and the hash output is the very last chaining variable or a truncated version of it.

It is easy to see that when computing the first hash function call of HMAC (H in = H((K⊕
ipad)||M))), the first iteration is CV1 = h(IV,K ⊕ ipad) and one only needs to guess CV1 to
complete the rest of this hash function computation, whatever the message M . Then, for the
second hash function call (Hout = H((K ⊕ opad)||H in)), the same remark applies: one only
needs to guess CV1 to complete the MAC computation whatever H in. We denote by CV in

i the
chaining variables for the first hash call and CV out

i the chaining variables for the second one.
In practice, one can speed up the implementation by precomputing the CV in

1 and CV out
1 and

starting the two hash processes with those two new initial chaining variables.
Therefore, when attacking HMAC with a side-channel technique, it is very interesting to

recover CV in
1 and CV out

1 . We are now left with the problem of being able to retrieve a fixed



unknown chaining variable with random message instances. This will have to be done two
times, first for CV in

1 and then for CV out
1 . The attack process will be identical for each call,

so in this article we only describe how to recover the unknown chaining variable with several
known random message instances. However, note that attacking CV in

1 should be easier than
attacking CV out

1 because in the former the attacker has full control over the message M , which
is not the case in the latter (the incoming message for the second hash call is H in, over which
the attacker has no control). For some SHA-3 candidates, the ability to control the incoming
message may reduce the number of power traces needed to recover CV in

1 . However, the maximal
total improvement factor is at most 2 since the leading complexity phase remains the recovering
of CV out

1 .
In the case of the so-called stream-based hash functions (for example Grindahl [24] or

RadioGatún [10]), for which the message block size is rather small (smaller than the MAC
key and hash output lengths), the HMAC construction is far less attractive and one uses
in general the prefix-MAC construction: MAC(K,M) = H(K||M). In order to avoid trivial
length-extension attacks (which makes classical Merkle-Damg̊ard [29, 14] based hash functions
unsuitable for the prefix-MAC construction), the stream-based hash functions are usually com-
posed of a big internal state (much bigger than the hash output length) and define an output
function composed of blank rounds (iterations without message blocks incorporation) and a
final truncation phase. However, the corresponding side-channel attack for breaking the prefix-
MAC construction will not change here and our goal remains to recover the full internal state.

In this paper, we will study the 256-bit versions of the hash functions considered, but in most
of the case the analysis is identical for the 512-bit versions. Moreover, when available, the salt
input is considered as null. For all candidates reviewed, the message to hash is first padded and
since we only give a short description of the schemes, we refer to the corresponding specification
documents for all the details. Finally, since our goal is to recover the internal state before the
message digesting phase, there is no need to consider potential output functions performed
after all the message words have been processed.

2.2 Side-channel attacks

Regardless of the compression function h(CV,M) considered, at some point in the algorithm
(usually in the very first stage), the incoming chaining variable CV will be combined with the
incoming message block M . The selection functions will be of the form:

w = f(cv,m)

where cv is a subset of CV and m is a subset from M . Usually w, cv and m have the same size
(8 bits in the case of AES), but strongly compressing bricks (such as the DES Sbox) may impose
a smaller w. Ideally the selection function must be non-linear and a modification of 1-bit in one
of the input should potentially lead to multiple-bit modifications in the output. For example,
the output of a substitution table (Sbox) is a good selection function: block cipher encryption
algorithms such as DES [16] or AES [15] are very sensitive to side-channel analysis because they
both use an Sbox in their construction (a 6 7→ 4-bit Sbox for DES and a 8 7→ 8-bit Sbox for
AES).

Some algorithms or SHA-3 candidates (i.e. BLAKE or CubeHash) do not use such substitution
table, while they rely exclusively on modular addition �, rotation ≪ and XOR ⊕ operations
(so-called ARX constructions). In this case, side-channel analysis is still possible but the XOR
or modular addition selection functions are less efficient than for the Sbox case. Moreover, it



has been theoretically proven that the XOR selection function is less efficient that the modular
addition operations [27]. Indeed, the propagation of the carry in the modular addition leads
to some non-linearity whereas the XOR operation if completely linear. More precisely, we can
quantify the efficiency difference between the AES Sbox, the HAMSI Sbox, the XOR and the
modular addition selection functions by looking at the theoretical correlation results in the
so-called hamming-weight model. The rest of this paper exclusively deals with the Hamming
weight model since in practice this model leads to good results for the majority of the target
devices.

In order to estimate the efficiency of a selection function f(k,m), it is interesting to look
at the theoretical correlation c(j, r) between the data set xi for a key guess j and the data
set yi for an arbitrary real key r. Where xi = HW (f(j,mi)) and yi = HW (f(r,mi)), with
i ∈ [0, . . . , 2N − 1], N being the number of bits of the selection function input message m and
HW (w) being the Hamming Weight of the word w. We also denote by x (respectively y) the
average value of the data set xi (respectively yi).

c(j, r) =
∑

(xi − x)(yi − y)√∑
(xi − x)2.

√∑
(yi − y)2

Of course, when the key guess is equal to the real key (j = r), we have c(j, r) = 1.

The Figure 1 displays c(j, 8) for j ∈ [0, . . . , 255] for the AES selection function Sbox(k,m),
for the XOR selection function k ⊕m and for the modular addition selection function k �m.
HAMSI is specific because the selection function is using a subset of the Sbox for a given key,
therefore, the following table displays c(j, r) for j ∈ [0, . . . , 3] and r ∈ [0, . . . , 3]. Only two bits
of the message and two bits of the key are handled in this selection function.

XXXXXXXXXkey value
key guess

j = 0 j = 1 j = 2 j = 3

r = 0 +1.00 −0.17 −0.56 −0.87

r = 1 −0.17 +1.00 +0.87 −0.09

r = 2 −0.56 +0.87 +1.00 +0.17

r = 3 −0.87 −0.09 +0.17 +1.00

The efficiency E(f) of the selection function f is directly linked with the correlation contrast
cc between the correct key guess (correlation = 1) and the strongest wrong key guess (correlation
= cw). The higher this contrast, the more efficient the selection function will be to perform a
side-channel analysis. Indeed, it will be able to sustain a much higher noise level.

cc = 1−|cw|
|cw|

selection AES modular
XOR1 HAMSI

function Sbox addition Sbox
cw 0.23 0.75 −1 0.87
cc 3.34 0.33 0 0.15

The values of cw are extracted from Figure 1 by measuring the highest correlation peak (except
the peak with correlation equal to 1 which corresponds to the correct guess). The result of this
theoretical/simulation study is the following:
1 In practice, if the attacker managed to characterize the chip leakage, he eventually can distinguish the wrong

guess from the correct guess by taking in consideration the correlation sign (positive or negative). Note that
a contrast of zero does not means that the XOR selection function is not yielding any information. Indeed,
the attacker have reduced the subkey space from 256 to 2 values (with correlation 1 and -1).



E(AES Sbox) > E(modular addition) > E(HAMSI Sbox) > E(XOR)

In the rest of this article, we will search for the best selection function for each SHA-3 candidate
analyzed with this conclusion in mind.

j
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Fig. 1. Correlations c(j, 8) in the Hamming Weight model for the AES Sbox, XOR and modular addition selection
function respectively.

3 AES-based SHA-3 candidates

In this section, we analyze ECHO [7], Grøstl [18] and SHAvite-3 [11], three AES-based SHA-3
candidates. We recall that the round function of AES is composed of four layers (we use the
order AddRoundKey, SubBytes, ShiftRows and Mixcolumns) and we refer to [31] for a complete
specification of this block cipher.



3.1 ECHO

Description. ECHO [7] is an iterated hash function whose chaining variable CVi is 512-bit
long. Its compression function h maps CVi and a 1536-bit message block Mi to a new chaining
variable CVi+1. More precisely, with CVi and Mi the compression function h initializes a 2048-
bit internal state which is viewed as a 4 × 4 matrix of 128-bit words (CVi initializes the first
column while Mi fills the three other ones). A fixed-key permutation PE is applied to this
internal state and the output chaining variable is built by calling the shrink256 function that
XORs all the 512-bit columns together after a feedforward:

CVi+1 = shrink256(PE(CVi||Mi)⊕ (CVi||Mi)).

The permutation PE contains 8 rounds, each composed of three functions very similar to the
AES ones, but on 128-bit words instead of bytes. First, the BIG.SubBytes function mimics the
application of 128-bit Sboxes on each state word by applying 2 AES rounds with fixed round
keys (determined by the iteration and round numbers). Then, BIG.ShiftRows rotates the posi-
tion in their matrix column of all the 128-bit words according to their row position (analog to
the AES). Finally, BIG.MixColumns is a linear diffusion layer updating all the columns inde-
pendently. More precisely, for one matrix column, it applies sixteen parallel AES MixColumns
transformations (one for each byte position in a 128-bit word).

Side-channel analysis. The incoming chaining variable CV fills the first 128-bit words
column (denoted cvi in Figure 2) of the matrix representing the internal state, while the three
other columns are filled with the known random incoming message (denoted mi in Figure 2).
The goal of the attacker is therefore to retrieve the words cvi.

The first layer (BIG.SubBytes) handles each 128-bit word individually. The known and
secret data are not mixed yet (cvi 7→ cv′i and mi 7→ m′i) and therefore it is not possible
to derive a selection function at this point. The same comment applies to the second layer
(BIG.ShiftRows) and one has to wait for the third layer (BIG.MixColumns) to observe known
and secret data mixing: each column will depend on one secret word cv′i and three known words
m′i (see Figure 2). More precisely, for each 128-bit word column, BIG.MixColumns applies
sixteen parallel and independent AES MixColumns transformations (one for each byte position)
and each MixColumns call manipulates one byte of secret and three bytes of known data.
Overall, in the end of the first round, every byte w[b] of an internal state word w (we denote
w[b] the b-th byte of w) can be written as the following affine equation (see the AES MixColumns
definition for the α, β, γ and δ values):

wi0 [b] = α · cv′i1 [b]⊕ β ·m′i2 [b]⊕ γ ·m′i3 [b]⊕ δ ·m′i4 [b]

with b ∈ [0, . . . , 15], i0 ∈ [0, . . . , 15], i1 ∈ [0, . . . , 3] and i2, i3, i4 ∈ [0, . . . , 11]. One could use those
wi[b] as selection functions, but the mixing operation would be the exclusive or. As already
explained, the selection function involving an XOR is the least efficient one. It seems much
more promising to wait the first layer from the second round of the ECHO internal permutation.

Indeed, the BIG.SubBytes transformation applies directly two AES rounds independently
for each words wi. The first function of the first AES round is the subkey incorporation and
in the case of ECHO those subkeys are fully known constants (we denote them ti). Then, the
second function of the first AES round applies the AES Sbox to each byte of the internal state.
Therefore, we obtain the words w′i on the output:

w′i[b] = Sbox(wi[b]⊕ ti[b]).
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Fig. 2. Recovering the internal state for ECHO. The gray cells represent the words that depends on the initial
secret chaining variable. Each cell represents a 128-bit word.

These equations can be used as selection functions manipulating only the AES Sbox which is
much more efficient than the XOR case. Overall, one has to perform 64 AES Sbox side-channel
attacks in order to guess all the words cv′i byte per byte. By inverting the BIG.SubBytes layer
from the words cv′i, one recovers completely CV . Note that for each byte of cv′i, one gets 4
selection functions involved. Thus, the overall number of curved can be reduced by a factor 4
at maximum by using and combining this extra information.

3.2 Grøstl

Description. Grøstl [18] is an iterated hash function whose compression function h maps
a 512-bit chaining variable CVi and a 512-bit message block Mi to a new chaining variable
CVi+1. More precisely, two fixed-key permutations PG and QG, only differing in the constant
subkeys used, are applied:

CVi+1 = PG(CVi ⊕Mi)⊕QG(Mi)⊕ CVi.

Each permutation is composed of 10 rounds very similar to the AES ones, except that they
update a 512-bit state, viewed as a 8 × 8 matrix of bytes (instead of 4 × 4). Namely, for each
round, constant subkeys are first XORed to the state (AddRoundConstant), then the AES
Sbox is applied to each byte (SubBytes), the matrix rows are rotated with distinct numbers of
positions (ShiftBytes) and finally a linear layer is applied to each byte column independently
(MixBytes). This is depicted in Figure 3.
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Fig. 3. One round of the internal permutation PG of Grøstl. Each cell represents a byte.

Side-channel analysis. The Grøstl case is very simple. One can see that the incoming
message block M is processed trough the QG permutation. Since the output of this permuta-
tion only depends on the message block and not on the incoming chaining variable CV , we
can completely ignore this part of the compression function. Then, the permutation PG takes
as input M ⊕ CV and one may be tempted to perform the side-channel attack during this



operation. As demonstrated earlier, it is much more convenient to wait for the opportunity
to attack the AES Sbox instead. The first layer of the permutation PG is the AddConstant
function which XORs the round number i (the counting starting from 0) to the top left byte of
the internal and therefore the operation is fully transparent. Then, the second layer of the first
PG round is the SubBytes function which applies the AES Sbox to every byte of the internal
state w = M ⊕ CV :

w[b] = m[b]⊕ CV [b]

with b ∈ [0, . . . , 63]. The output state is denoted w′ and we obtain the following selection
function which recovers CV byte per byte:

w′[b] = Sbox(w[b]).

Note that it is possible to improve this attack when dealing with CV in
1 (the unknown

chaining variable for the first hash call) by choosing appropriately the message. More precisely,
one can divide the number of power traces by a factor 64 when choosing all m[b] as equals.
Indeed, this allows to perform in parallel the side-channel analysis of the 64 unknown bytes.

3.3 SHAvite-3

Description. SHAvite-3 [11] is an iterated hash function whose compression function h maps
a 256-bit chaining variable CVi and a 512-bit message block Mi to a new chaining variable
CVi+1. Internally, we have a block cipher ES in classical Davies-Meyer mode

CVi+1 = CVi ⊕ ES
Mi

(CVi).

This block cipher derives many subkeys thanks to a key schedule (all subkeys depending on
the message Mi only) and is composed of 12 rounds of a 2-branch Feistel scheme (128 bits
per branch). The basic primitive in the Feistel rounds is the application of 3 AES rounds with
subkeys incoming from the key schedule.

Side-channel analysis. For SHAvite-3, we divide the attack in two phases (see Figure 4).
In the first one, we recover the right part (in the Feistel separation) of the incoming chaining
variable (CV R) during the first round. Once this first phase succeeded, we recover the left part
of the incoming chaining variable (CV L) during the second round. The message expansion
maps the incoming message M to three 128-bit message words (mj

0,mj
1,mj

2) for each round j.
One round j of SHAvite-3 consists in executing sequentially three AES round functions with as
input one branch of the current SHAvite-3 state and (mj

0,mj
1,mj

2) as subkeys. Consequently,
for the first SHAvite-3 round, the secret vector (CV R) is mixed with the known message word
m1

0 during the AddRoundKey layer of the first AES round and we note:

w[b] = CV R[b]⊕m1
0[b].

with b ∈ [0, . . . , 15]. One could use this equation as the selection function, but it is more
appropriate to use the output of the very next transformation instead, i.e. the SubBytes layer:

w′[b] = Sbox(w[b]).

Before executing the second round of SHAvite-3, the left part of the chaining variable (CV L)
is XORed with the output w′′ of the three AES rounds. Then, this word is mixed with m2

0[b]
just before the first AES round of the second SHAvite-3 round and we note:

z[b] = CV L[b]⊕ w′′[b]⊕m2
0[b].



Obviously, after a successful first phase, it is possible to compute w′′[b] and therefore CV L is
the only unknown constant. Once again, one could use this equation as the selection function,
but it is more appropriate to use the output of the very next transformation instead, i.e. the
SubBytes layer:

z′[b] = Sbox(z[b]).

Overall, we recover byte per byte the CV L and CV R values.

CV L ⊕ w′′CV R

AES

m2
2

AES

m2
1

AES

m2
0

z
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CV RCV L

AES

m1
2

w′′

AES

m1
1

AES

m1
0

w

first round

Fig. 4. Recovering the internal state for SHAvite-3. The AES rounds we use for recovering the internal state
are depicted in black.

4 Other SHA-3 candidates

In this section, we analyze BLAKE [3], CubeHash [9] and HAMSI [35], three 2nd round SHA-3
candidates.

4.1 BLAKE

Description. BLAKE [3] is an iterated hash function whose compression function h maps
a 256-bit chaining variable CVi and a 512-bit message block Mi to a new chaining variable
CVi+1. Internally, the update is done with a block cipher EB, keyed with the message block
(see Figure 5):

CVi+1 = final(EB
Mi

(init(CVi)), CVi).

where the init function initializes the 512-bit internal state with CVi and constants. The final
function computes the output chaining variables according to CVi, constants and the internal
state after the application of EB. The internal state is viewed as a 4×4 matrix of 32-bit words
and the block cipher EB is composed of 10 rounds, each consisting of the application of eight
128-bit sub-functions Gi. Assume an internal state for BLAKE with vi+4j representing the 32-bit
word located on row j and column i, one round of EB is:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)



A sub-function Gi incorporates 32-bit message chunks mi and is itself made of additions, XORs
and rotations. During the round r, the function Gs(a, b, c, d) processes the following steps:

a← (a� b)� (mi ⊕ kj)
d← (d⊕ a)≫ 16
c ← (c� d)
d← (b⊕ c)≫ 12
a← (a� b)� (mj ⊕ ki)
d← (d⊕ a)≫ 8
c ← (c� d)
d← (b⊕ c)≫ 7

where ≫ x denotes the right rotation of x positions, i = σr(2s) and j = σr(2s = 1). The
notation σr represents a family of permutations on {0, . . . , 15} defined in the specifications
document.

CVi

cv4cv5cv6cv7

cv0cv1cv2cv3

Initialisation

t4 t5

cv4cv5

t2 t3

cv2cv3

t6 t7

t0 t1

cv6cv7

cv0cv1

EB

Mi

Finalization

CVi+1

Fig. 5. The compression function of BLAKE.

Side-channel analysis. The sixteen 32-bit internal state words are initialized with the eight
secret chaining value CV words (denoted cvi) and constants values ti (see Figure 5). Then, the
eight Gi functions during the first BLAKE round are applied to the internal state and one can
check that the two first parameters of G0, G1, G2 and G3 are (cv0, cv1), (cv2, cv3), (cv4, cv5) and
(cv6, cv7) respectively. Our goal is therefore to recover a0 and b0 when applying Gi(a0, b0, c0, d0)
with 0 ≤ i ≤ 3. The functions Gi consist in a sequence of eight transformations, the five first
being:

a1 = (a0 � b0)�mk

d1 = (d0 ⊕ a1)� 16
c1 = c0 � d1

b1 = (b0 ⊕ c1)� 12
a2 = a1 � b1 �ml

In practice, the first transformation will be computed in one of the three following way:

first a← a� b then a← a�mi

first a← a�mi then a← a� b

first x← b�mi then a← a� x



For the second and third case, a0 and b0 can be found by two side-channel analysis applied
successively to the two modular addition selection function (working byte per byte):

wi = cvi �mk and zi = cvi+1 � wi.

For the first case, a0 � b0 can be recovered by performing the side-channel analysis on the
second modular addition selection function. In order to solve the problem and estimate a0 and
b0 the attacker has to target the output of the fourth transformation of Gi. However, in this
case the selection function would be based on the XOR operation. Therefore it seems more
interesting to aim for the fifth transformation of Gi, a modular addition.

4.2 CubeHash

Description. CubeHash [9] is an iterated hash function whose compression function h maps
a 1024-bit chaining variable CVi and a 256-bit message block Mi to a new chaining variable
CVi+1. Internally, the update is done with a permutation PC :

CVi+1 = PC(CVi ⊕ (Mi||{0}768)).

The internal state is viewed as a table of 32 words of 32 bits each. The permutation PC is
composed of 16 identical rounds and one round is made of ten layers (see Figure 6): two intra-
word rotation layers, two XOR layers, two 232 modular addition layers and four word positions
permuting layers.
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Fig. 6. Recovering the internal state of CubeHash during one round of the internal permutation PC . Each cell
represents a 32-bit word.

Side-channel analysis. The attack is divided into 4 steps. The incoming chaining variable
CV fills an internal state represented by a vector of four 256-bit words or eight 32-bit words
(denoted cvi). The known random incoming message M is first XORed with cv0 and then
starts the first round of permutation PC . Thus, the first selection function is of XOR type and
recovers cv0 byte per byte:

w[b] = cv0[b]⊕M [b].



with b ∈ [0, . . . , 7]. Once this first step successfully performed, the attacker fully knows w
and the first layer of PC adds each 32-bit words from w to those from cv2 modulo 232 (and
each words from cv1 to those from cv3). The second selection function is therefore of modular
addition type and recovers cv2 byte per byte (starting from the LSB of the modular addition):

z[b] = cv2[b]� w[b].

The second layer of PC applies a rotation to each 32-bit word of w and cv1 and then XORs z
to this rotated version of cv1 (denoted cv′1). The selection function for the third step is then of
XOR type and recovers cv′1 byte per byte:

y[b] = cv′1[b]⊕ z[b].

Finally, going backward in the computation to the first PC layer, the selection function for the
fourth step is of modular addition type and recovers cv3 byte per byte (starting from the LSB
of the modular addition):

x[b] = cv3[b]� cv1[b].

Note that each step must be successful, otherwise it would compromise the results of the
following steps.

4.3 HAMSI

Mi
expansion(Mi)

m4 m5 m6 m7

m0 m1 m2 m3

CVi

cv4cv5cv6cv7

cv0cv1cv2cv3

Concatenation

cv6cv7

cv4cv5

cv2cv3

cv0cv1

m6 m7

m4 m5

m2 m3

m0 m1

PH

Truncation

CVi+1

Fig. 7. The compression function of HAMSI. Each cell represents a 32-bit word.

Description. HAMSI [35] is an iterated hash function whose compression function h maps a
256-bit chaining variable CVi and a 32-bit message block Mi to a new chaining variable CVi+1.
First, the message block is expanded into eight 32-bit words mi that are concatenated to CVi

in order to initialize a 512-bit internal state (viewed as a 4× 4 matrix of 32-bit words). Then a
permutation PH is applied to the state and a truncation allows to extract 256 bits. In the end,
there is a feedforward of the chaining variable (see Figure 7):

CVi+1 = trunc(PH(CVi||expansion(Mi)))⊕ CVi.

The permutation PH contains three identical rounds. One round is composed of three layers:
constants are first XORed to the internal state, then 4-bit Sboxes are applied to the whole state



by taking one bit of each 32-bit word of the same column of the 4 × 4 matrix and repeating
the process for all bit positions. Finally, a linear layer is applied to four 32-bit words diagonals
of the 4× 4 matrix independently (see Figure 8).

Constant Layer Substitution Layer

4-bit Sbox

Diffusion Layer

Fig. 8. One round of the internal permutation PH of HAMSI. Each cell represents a 32-bit word.

Side-channel analysis. The known random message M (after expansion) and the secret
chaining variable CV fill the internal state matrix as shown in Figure 7 (32-bit words are
denoted mi and cvi). The first layer of the permutation PH XORs each matrix element with a
constant ti:

m′i = mi ⊕ ti and cv′i = cvi ⊕ ti+8.

Then is applied the HAMSI Sbox layer. This Sbox is acting over 4-bits (one bit per word located
in the same column of the state matrix). Therefore, the input of each Sbox is composed of 2
known message bits and 2 unknown chaining variable bits. The generic selection function for
HAMSI can therefore be written as:

w = Sbox(m′i[b]||cv′i+2[b]||m′i+4[b]||cv′i+6[b]) or w = Sbox(cv′i[b]||m′i+2[b]||cv′i+4[b]||m′i+6[b])

for i ∈ [0, 1] and b ∈ [0, . . . , 127] where b is the bit index in a 128-bits word. Overall, one
recovers two bits of cv′i at a time with a total of 4 times 128 correlation computations (with 4
guess each).

5 Conclusion and Discussions

For each hash proposal considered in this article, we described an appropriate selection function
for an efficient side-channel attack.

In the case of the AES-based SHA-3 candidates, we did not found significant differences of
performance when choosing the selection function. Indeed, in ECHO, Grøstl and SHAvite-3,
one has to compute several AES Sbox side-channel attacks in order to retrieve the full secret
internal state. Up to a small complexity/number of power traces factor, the three schemes
seem to provide the same natural vulnerability to side-channel cryptanalysis. As expected,
their situation is therefore very close to the real AES block cipher.

Attacking BLAKE seems feasible in practice since we managed to derive a modular addition
selection function for recovering the 256 bits of unknown chaining variable. The modular ad-
dition non-linearity is very valuable for the attacker as it increases the correlation contrast.
Then, for CubeHash (a typical ARX function) we tried to force the selection function to be of
modular addition type as much as possible. Overall, 512 bits can be recovered with modular



addition selection function and 512 bits with XOR selection function. In practice, depending
on the underlying hardware, it could be challenging to mount the attack. One must notice
that the internal state is bigger for CubeHash than for other candidates. This is an additional
strength since in practice, if the side-channel attack gives only probabilistic results, the final
exhaustive search complexity will be higher. Finally, for HAMSI, the attack would be difficult
to mount despite the fact that a substitution table is used. Indeed, the correlation contrast
for this primitive is quite low compared to the AES Sbox. We believe that a better selection
function involving a modular addition might possibly be found in the inner layer.

Of course, those results concern unprotected implementations and the ranking would be
really different if we also considered methods for hardening the side-channel cryptanalysis.
For example, in the case of AES-based hash functions, one could perform secure round com-
putations and leverage all the research achieved so far on this subject [2, 20]. Also, as ECHO
processes parallel AES rounds, we believe it could benefit from secure bit-slice implementa-
tions regarding some side-channels attacks [26], while maintaining its normal use efficiency.
Finally, ECHO and SHAvite-3 can take advantage of the natural protection inherited from the
hardware implementations of the AES round such as the new AES NI instruction set on Intel
microprocessor [8].

Side-channel countermeasures for ARX constructions such as BLAKE or CubeHash are of
course possible, but they will require to constantly switch from boolean to arithmetic masking.
As a consequence, one will observe an important decrease of the speed performance for secure
implementations. AES-based hash functions seem naturally easier to attack regarding side-
channel cryptanalysis, but are also easier to protect.
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