
PRINTcipher: A Block Cipher for IC-Printing

Lars Knudsen1, Gregor Leander1, Axel Poschmann2,⋆ and Matthew J.B. Robshaw3

1 Technical University Denmark, DK-2800 Kgs. Lyngby, Denmark
2 School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

3 Orange Labs, Issy les Moulineaux, France
{Lars.R.Knudsen,G.Leander}@mat.dtu.dk

aposchmann@ntu.edu.sg, matt.robshaw@orange-ftgroup.com

Abstract. In this paper we consider some cryptographic implications of integrated circuit (IC)
printing. While still in its infancy, IC-printing allows the production and personalisation of
circuits at very low cost. In this paper we present two block ciphers PRINTcipher-48 and
PRINTcipher-96 that are designed to exploit the properties of IC-printing technology and we
further extend recent advances in lightweight block cipher design.

Keywords. symmetric cryptography, block cipher, IC-printing, hardware implementation

1 Introduction

New technologies open new applications and often bring challenging new problems at the
same time. Most recently, advances in device manufacture have opened the possibility for
extremely low-cost RFID tags. However, at the same time, their exceptional physical and
economic constraints mean that we must leave behind much of our conventional cryptography.
This has spurred the development of the field of lightweight cryptography.

This paper considers another technological advance, that of integrated circuit printing or
IC-printing. Using silicon inks, circuits can quite literally be printed onto a range of materials
using high-definition printing processes. The technology remains in its infancy and its true
potential is yet to be fully understood. But the claimed advantages include the ability to print
on to thin and flexible materials and, since the conventional fabrication process is by-passed,
to be much cheaper than silicon-based deployments [19]. Since the main driver for IC-printing
is economic, the typically-cited areas of application overlap closely with the typical domains
for lightweight cryptography. Indeed, one of the oft-stated applications of IC-printing is in
the fabrication of cheap RFID tags [13]. Therefore there is much in common between some of
the techniques proposed for conventional RFID tags and those that will be used on printed
tags.

However IC-printing has some interesting properties and these allow us to take a fresh
look at our cryptography and to see how it might be adapted to this new field. In this paper,
therefore, we consider the task of adding some simple security functionality to a printed tag,
and following what has now become a reasonably well-trodden path, we start out with the
design of a block cipher.

Block ciphers make a natural starting point for several reasons. Not only can they be
used in many different ways, but as a community we feel somewhat more at ease with their
design and analysis. That said, for such extreme environments as IC-printing, we are working
right at the edge of established practice and we are forced to consider and highlight some
interesting problems. This is the purpose behind the block cipher PRINTcipher.

⋆ The research was supported in part by the Singapore National Research Foundation under Research Grant
NRF-CRP2-2007-03.

2 Design approach to PRINTcipher

Just as for other constrained environments, the size of implementation will be a dominant
issue in IC-printing. Our work will therefore have close links with other block cipher work
in the field of lightweight cryptanalysis. In fact our starting point for the work in this paper
will be the block cipher present [1] which appears to offer a range of design/implementation
trade-offs. However we will re-examine the structure of present in the particular context of
IC-printing.

Conceptually we can imagine that within a block cipher we need an “encryption com-
putation” and a “subkey computation”. For the first, there are limits to the short-cuts we
can make since we are constrained by the attentions of the cryptanalyst. This means, for the
most part, that proposals for a given security level and a given set of block cipher parameters
would occupy pretty much the same space. If we wanted to reduce the space occupied by an
implementation then we would most likely reduce the block size, something that has been
proposed independently elsewhere [2]. However, for the “subkey computation” things are a
little different and exactly how a key should be used is not always clear. This highlights two
separate issues.

The first issue is whether a key is likely to be changed in an application. In fact there is
probably not too much debate about this issue and many commentators over the years [1,21]
have made the point that for RFID applications it is very unlikely that one would want to
change the key. Indeed some other RFID implementation work [20] has demonstrated that
the overhead in supporting a change of key can be significant.

The second issue is the exact form of the key schedule. Some block ciphers, e.g. idea [14],
have a very simple key schedule in which subkeys are created by sampling bits of the user-
supplied key. This is, in effect, the approach used in the ktantan family of ciphers. The
advantage of this approach is that no working memory is needed for the subkey computations.
Other lightweight block ciphers have some key schedule computation, e.g. present, while
another proposal cgen [21] proposes to use no key schedule; the user-supplied key is used
without any sampling or additional computation.

Returning to the situation at hand, conventional silicon manufacturing uses lithographic
techniques to massively duplicate an implementation across a silicon wafer. This gives the
economy of scale to offset the fabrication costs but at the same time requires that all imple-
mentations are identical. In this paper, we take advantage of the properties of IC-printing to
propose another approach. Regular IC manufacture requires all versions of the cipher to be
identical and so while a specific tag can be personalised with a unique key, this is a post-
fabrication step. With a printer, however, there is essentially no cost in changing the circuit
that is printed at each run. This means that part—or all—of the secret key can be embedded
into the algorithm description. The algorithms that appear on different printed labels will be
subtly different from one another.

The PRINTcipher family was designed with this approach in mind. PRINTcipher-48
is a 48-bit block cipher which uses a fixed 48-bit secret key and derives an additional 32 bits
of security via the secret algorithm variability. Different trade-offs can be established either
reducing the effective security, say to 64 bits, and/or independently increasing the block size
to 96 bits. In fact this is a particularly useful block size since it matches the length of an
electronic product code (EPC) [5]. However we will tend to concentrate our attentions in this
paper on two proposals PRINTcipher-48 and PRINTcipher-96. Given the amount of work
in the area of block ciphers, some points of similarity with other proposals in the literature

are inevitable. For instance, 3-bit S-boxes have been used in 3-way [4] and the Scaleable
Encryption Algorithm (SEA) [26] while key-dependent algorithm features have appeared in
a variety of block ciphers including Blowfish [24], Twofish [25], and GOST [10].

3 PRINTcipher-48 and PRINTcipher-96

xor sk1

xor rci

S S S S S S S S S S S S S S S S
p p p p p p p p p p p p p p p p

Fig. 1. One round of PRINTcipher-48 illustrating the bit-mapping between the 16 3-bit S-boxes from one
round to the next. The first subkey is used in the first xor, the round counter is denoted RCi, while key-
dependent permutations are used at the input to each S-box.

PRINTcipher is a block cipher with b-bit blocks, b ∈ {48, 96}, and an effective key length
of 5

3
× b bits. The essential structure of PRINTcipher is that of an SP-network with r = b

rounds. It follows that PRINTcipher-48 operates on 48-bit blocks, uses an 80-bit key and
consists of 48 rounds while PRINTcipher-96 operates on 96-bit blocks, uses a 160-bit key
and consists of 96 rounds. Each round of encryption consists of the following steps:

1. The cipher state is combined with a round key using bitwise exclusive-or (xor).
2. The cipher state is shuffled using a fixed linear diffusion layer.
3. The cipher state is combined with a round constant using bitwise xor.
4. The three-bit entry to each S-box is permuted in a key-dependent permutation layer.
5. The cipher state is mixed using a layer of b

3
non-linear S-box substitutions.

Key xor. The current state of the cipher is combined using bitwise xor with an b-bit subkey
sk1. This subkey is identical in all rounds.

Linear diffusion. The pLayer is a simple bit permutation that is specified in the following
way. Bit i of the current state is moved to bit position P (i) where

P (i) =

{

3× i mod b− 1 for 0 ≤ i ≤ b− 2,
b− 1 for i = b− 1.

Round counter RCi. The round counter RCi for 1 ≤ i ≤ r is combined using xor to the
least significant bits of the current state. The values of the round counter are generated using
an n-bit shift register (n = ⌈log2 r⌉) in the following way. Denote the state of the register as
xn−1|| . . . ||x1||x0 and compute the update as follows:

t = 1 + xn−1 + xn−2

xi = xi−1 for n− 1 ≥ i ≥ 1
x0 = t

The shift register is initialised to all zeros, i.e. 000000 or 0000000, and is then incremented
at the start of every round. The round counter RCi takes the current value of the register
xn−1|| . . . ||x1||x0.

Keyed permutation. Each set of three bits, namely the input bits to each of the S-boxes,
are permuted among themselves. For each of the b

3
S-boxes the permutation can be the same

or different and it is chosen in a key-dependent manner from a set of four. However for each
S-box the same permutation—once chosen—is used in the same position in every round. In
other words, b

3
permutations (of three bits) are picked from a set of four in a key-dependent

manner. This gives 4b/3 possible mini-permutation layers which is equivalent to 2

3
×b key bits.

sBoxLayer. A single 3- to 3-bit S-box is applied b
3
times in parallel. For the sBoxLayer the

current state is considered as b
3
3-bit words, each word is processed using the same S-box,

and the next state is the concatenation of the outputs. The action of the S-box is given by
the following table.

x 0 1 2 3 4 5 6 7

S[x] 0 1 3 6 7 4 5 2

3.1 Deriving the permutations from the user key

The 5

3
× b-bit user-supplied key k is considered as consisting of two subkey components

k = sk1||sk2 where sk1 is b bits long and sk2 is 2

3
× b bits long. The first subkey is used,

unchanged, within the xor layer of each and every round.
The second subkey sk2 is used to generate the key-dependent permutations in the following

way. The 2

3
× b-bits are divided into b

3
sets of two bits and each two-bit quantity a1||a0 is

used to pick one of four of the six available permutations of the three input bits. Specifically,
the three input bits c2||c1||c0 are permuted to give the following output bits according to
the value of a1||a0. Of course one can combine the bitwise permutation with the fixed S-box
to give, conceptually, four virtual S-boxes. These are given below and testvectors for both
PRINTcipher variants can be found in the appendix.

a1||a0 x 0 1 2 3 4 5 6 7

00 c2||c1||c0 V0[x] 0 1 3 6 7 4 5 2

01 c1||c2||c0 V1[x] 0 1 7 4 3 6 5 2

10 c2||c0||c1 V2[x] 0 3 1 6 7 5 4 2

11 c0||c1||c2 V3[x] 0 7 3 5 1 4 6 2

3.2 Security goals

Our security goals behind PRINTcipher are the usual security claims for a block cipher with
the operational parameters of PRINTcipher. Note that in the case of PRINTcipher-48
even though we have a regular sized 80-bit key, we only have a 48-bit block cipher and this
greatly limits the opportunities for an attacker.

We follow much of the established literature on lightweight cryptography and do not
consider side-channel attacks in this paper. While this is certainly a factor for consideration,
typical applications are very low-cost and the potential gains for an attacker are minor. Even
in a relatively well-developed field such as RFID tags for the supply chain it is not clear what
level of protection is really appropriate for most deployments of lightweight cryptography.
For IC-printing this is even more unclear, and there are some concerns that are particular
to IC-printing for which appropriate precautions will likely be needed, such as the use of
opaque masks to shield the circuit from simple inspection. Note that, shielding protection is
not exclusively an issue for PRINTcipher where the key is part of the circuit, but also for
more standard ciphers where the key is stored in memory, as it is in principle possible to
inspect memory in similar ways (see for example [23]) .

Where we differ from some other work in the field, however, is that for PRINTcipher

we are not particularly concerned by related-key attacks. This is not because we believe that
PRINTcipher is in some way particularly vulnerable to them (see Section 4.3 for details).
Instead it is because we believe that related-key attacks are so alien to the intended use of
PRINTcipher that there is no point in considering them. Recall that a (printed) device will
be initialised with a key in a random way. To mount a related-key attack one has to somehow
find a pair of deployed devices that, by chance, satisfy a stated condition. We consider this
to be an entirely unrealistic threat.

3.3 Some features of the design

During the design of PRINTcipher there were some interesting choices to make. Certainly,
to improve the implementation efficiency we required that each round was identical, even as
far as having an identical subkey in each round. However having the same round key in every
round meant that we were restricted to 48-bit keys. So to increase the effective key length
we used some additional permutation steps that could be key-dependent. Permutations cost
nothing in hardware and, for our application of IC-printing, they incur effectively no additional
cost during the printing of the cipher. It can be shown that there are no equivalent keys in
the sense that there are no two pairs of subkey components (sk1, sk2) that will yield the same
round function. Note that since every round is identical—to the point of having the same
round key—we needed to introduce a round-dependent value to prevent slide attacks and this
was done using a shift register-based counter as outlined above.

The S-box The 3-bit S-box that we chose is optimal with respect to linear and differential
properties. However we cannot avoid the existence of single-bit to single-bit differences or
masks and so our specific choice of S-box minimizes there occurrence. That is, for a given
single-bit input difference (resp. mask) exactly one single-bit output difference (resp. mask)
occurs with non-zero probability (resp. non-zero bias). We generated all 3-bit S-boxes with
this property and it turns out that there are exactly 384 such S-boxes in total.

Clearly, permuting the input bits and (xor) adding constants before or after the S-box
preserves the desired properties. Up to these changes, there is only one possible choice of
S-box, i.e. all 384 S-boxes fulfilling the desired criteria can be constructed from any one of
them by permuting the input bits and adding constants before and after the S-box (indeed
384 = 6 · 23 · 23).

Thus in the design of PRINTcipher there is, in effect, only one suitable choice of S-
box. Choosing any other of the 384 possible S-boxes would result in the same cipher for a

different key, up to an additional xor with a constant to the plaintext and the ciphertext.
More formally, given two S-boxes S0, S1 out of the 384 possible choices and any key (sk1, sk2)
there exist a key (sk′1, sk

′

2) and constants c1, c2 such that

PRINTcipherS0,sk1,sk2
(p) = PRINTcipher

S1,sk
′

1,sk
′

2

(p⊕ c1)⊕ c2

for any plaintext p.
Those observations imply another interesting property of the S-box of PRINTcipher.

Namely, instead of permuting the input bits of the S-box one could permute the output bits
of the S-box and xor suitable constants before and after the S-box. More precisely, denoting
the PRINTcipher S-box by S, for any bit permutation P , there exist constants c and d such
that

S(P (x)) = P (S(x⊕ c))⊕ d ∀x.

Note that, while this might give some freedom in implementing the cipher we did not see any
security implications of this.

The bit permutation We choose the permutation so as to give the potential for full depen-
dency after a minimal number of rounds, i.e. after 4 = ⌈log3 48⌉ rounds. Note that in general,
given an SP-network with block size b and s bit Sboxes, where s divides b, it can be shown
that the bit permutation

P (i) =

{

s× i mod b− 1 for 0 ≤ i ≤ b− 2,
b− 1 for i = b− 1.

provides optimal diffusion in the sense that full dependency is reached after ⌈logs b⌉ rounds.
The bit permutation – or rather its inverse – used for the block cipher present is a special
case of this general result.

4 Security Analysis

In this section we analyze the security of our proposal with respect to the main cryptanalytic
methods known. Though we focus on PRINTcipher-48, the security analysis can be easily
extended to PRINTcipher-96.

4.1 Differential and linear characteristics

Let p be the probability of a linear characteristic, then define the correlation of the linear
characteristic as q = (2p − 1)2 [18]. As mentioned above, the S-box in PRINTcipher was
chosen with good differential and linear properties. These properties are inherited by the other
three virtual S-boxes, and so if we combine the key-dependent permutation with the S-box
operation any differential characteristic over any S-box has a probability of at most 1/4, and
any linear characteristic over any S-box has a correlation of at most 1/4.

Any characteristic over s rounds of PRINTcipher would have at least one active S-
box per round. Consequently, an s-round differential characteristic will have a probability of
at most 2−2s and any s-round linear characteristic will have a correlation of at most 2−2s.
Thus, conventional differential and linear characteristics are unlikely to play a role in the
cryptanalysis of PRINTcipher with the specified 48 respectively 96 rounds.

We furthermore experimentally checked for differential effects, i.e., the probability of dif-
ferentials compared to the probability of characteristics. Consider the following one-round
iterative characteristic (octal representation):

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1) → (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1).

Only the S-box in the least significant bits is active. This characteristic has probability 1/4
when the active S-box is V0 or V1. The iterative characteristic above has an expected proba-
bility of 2−24 for 12 rounds.

We implemented experiments with 20 keys, each randomly chosen but such that the S-box
in the least significant bits is either V0 or V1. For each key we generated 228 pairs of texts of the
above difference. The number of pairs of the expected difference after 12 rounds of encryption
was 16.6 on the average, where 16 is expected for the characteristic. In similar tests over
14 rounds using 230 pairs, the average number of pairs obtained was 4.5 on average, where
4 was expected. Here the expected probability of the iterative characteristic is 2−28. These
tests suggest that there is no significant differential effect for the characteristic. Computing
the exact differential effect for a characteristic over many more rounds of PRINTcipher is
a very complex task. However since the probability of the iterative characteristic is very low,
e.g. 2−80 for 40 rounds, we expect that good probability differentials are unlikely to exist for
PRINTcipher.

4.2 High order differentials and algebraic attacks

The algebraic degree of the S-box is 2 and due to the large number of 48 rounds we expect
the total degree of the cipher to be close to the maximum. This assumption is supported by
the following experiments. It is well-known that for a function of algebraic degree d, a dth-
order differential will be a constant, and the value of a (d+1)st-order differential will be zero.
Consequently, if a dth-order differential over s rounds for one key is not zero, then the algebraic
degree of this encryption function is at least d − 1. For seven rounds of PRINTcipher and
for ten randomly chosen keys we computed the values of two different 25th-order differentials.
In all cases the values were nonzero. The experiments suggest that the algebraic degree of
PRINTcipher reaches its maximum after much less than the specified 48 rounds. Due to this
observations, we expect PRINTcipher to be secure against higher order differential attacks.

Regarding the so-called algebraic attacks, first observe that there exist quadractic equa-
tions over all 3-bit S-boxes, also those of PRINTcipher. Therefore, the secret key of one
particular encryption can be described as the solution to a number of quadratic equations.
However such a system of equation for PRINTcipher will be huge because of the large
number of rounds, and with the techniques known today, there is not much hope that such
systems can be solved in time faster than simply trying all values of the key. Moreover, the
key dependent permutations potentially make the resulting systems of equation even more
complex and harder to solve.

4.3 Related-key attacks

As stated above, we consider related-key attacks to be an entirely unrealistic threat. However,
in the spirit of academic completeness, we consider the issue here.

The four S-boxes in PRINTcipher are closely related. As an example, S-box 0 and S-
box 1 produce the same output for each of four inputs and similarly for S-boxes 2 and 3 and

Table 1. Promising trails of different sizes.

S-boxes in the trail # of bits in the trail Ratio

{0, 1, 5} 5 5/9

{0, 1, 5, 15} 7 7/12

{4, 10, 12, 14, 15} 9 9/15

{0, 1, 2, 5, 6, 7} 12 12/18

{3, 8, 9, 10, 11, 13, 15} 14 14/21

{0, 1, 4, 5, 10, 12, 14, 15} 18 18/24

for S-boxes 4 and 5. Consider two keys different only in the selection of one S-box, say, the
leftmost one. Assume further that one key selects S-box V0 and the other key selects S-box
V1. It follows that for one round of encryption, the encryption function induced by the two
keys will be equal for half the inputs. Consequently, the encryption functions over s rounds
can be expected to produce identical ciphertexts for one in 2s texts.

There are other related keys. Consider two keys different only in xor halves and only in
the input to one S-box. For such two keys it may be possible to specify a keyed differential
characteristic where the differences in the texts are canceled by the differences in the xor key
in every second round. If in all other rounds it is assumed that there is only one active S-box
and that the difference in the inputs equal the difference in the outputs, then one gets an
s-round differential characteristic of probability 2−s (for even s).

The observations in this section can potentially be used to devise related-key attacks which
could recover a key for PRINTcipher using a little less than 2b texts. It is clear, however,
that if the keys of PRINTcipher are chosen uniformly at random it is very unlikely that one
would find keys related as described above.

4.4 Statistical Saturation Attacks

Statistical saturation attacks have been presented in [3] and successfully applied to round-
reduced versions of present. The key idea for statistical saturation attacks is to make use of
low diffusion trails in the linear layer of present. As PRINTcipher uses a very similar linear
layer, it seems natural that the attack applies to reduced round versions of PRINTcipher

as well. We identified low diffusion trails for any number of S-boxes involved, see Table 1 for
examples of the most promising ones using up to eight S-boxes in a trail. One example of
such a low diffusion trail is given below.

As explained in [3] increasing the number of S-boxes in the trail makes estimating the
complexity of the attack very complicated. Thus, in our experiments we focused only on the
case of three active S-boxes in the trail. All four possible trails gave very similar results. We
estimated the bias for 50 randomly chosen keys for up to 10 rounds and for 20 randomly chosen
keys for up to 15 rounds. Table 2 and Figure 2 show the squared euclidian distance between
the distribution in the trail and the uniform distribution. The data complexity for attacking

Table 2. Estimated squared distance (log
2
) for low diffusion trails with ratio 5/9.

S-boxes in the trail {0, 1, 5} {2, 6, 7} {10, 14, 15} {8, 9, 13}

Round 1 0 0 0 0

Round 2 -3.72 -3.72 -3.74 -3.73

Round 3 -6.67 -6.74 -6.89 -6.65

Round 4 -9.14 -8.98 -9.19 -9.05

Round 6 -13.08 -13.17 -13.17 -13.10

Round 8 -16.92 -17.25 -16.96 -17.10

Round 10 -21.02 -20.88 -20.87 -21.03

Round 12 -25.38 -25.33 -24.82 -24.93

Round 14 -28.72 -28.94 -29.19 -28.94

Round 16 -32.83 -33.05 -33.27 -33.00

r + 3, resp. r + 4 rounds, depending on how many key bits are guessed, is approximately the
reciprocal of the squared euclidian distance for r rounds. While our experiments are certainly
limited, the results strongly suggest that no more than 30 rounds of PRINTcipher can be
broken using this attack.

Fig. 2. The estimated squared bias with the number of rounds on the x-axis and the log
2
of the squared bias

given on the y-axis.

5 Implementation Results

To demonstrate the efficiency of our proposal we have implemented both PRINTcipher

variants in VHDL and used Synopsys DesignVision 2007.12 [27] to synthesize them using the
Virtual Silicon (VST) standard cell library UMCL18G212T3, which is based on the UMC

L180 0.18µm 1P6M logic process and has a typical voltage of 1.8 Volt [29].

Before presenting the results we stress the unique deployment environment offered by
IC-printing. While our implementation efforts allow us to obtain a reasonable estimate of
the space required, in terms of gate equivalents (GE), for an IC-printing implementation of
PRINTcipher, any attempts to compare the likely power consumption with other imple-
mentations of lightweight cryptography are not just difficult (as is usually the case), but they
are essentially meaningless. For this reason our performance results and comparisons will
concentrate on the space occupied by an implementation.

Figure 3 depicts two architectures that were implemented: a serialized one with a datapath
of 3-bits and a round-based one with a datapath of 48 or 96 bits. Components that contain
mainly sequential logic are presented in rectangles while purely combinational components
are presented in ovals.

The first serialized implementation of PRINTcipher-48 used a finite state machine

(FSM) that required 120 GE out of which 95 GE were occupied by two arithmetic coun-
ters: 59 GE were occupied by the 6-bit round counter and additional 36 GE were required for
a 4-bit counter to keep track of the 3-bit chunks of the serialized state. Similar to KATAN [2]
we replaced the arithmetic round counter by a shift register-based counter, which saved 28 GE
(or 47%) while having better distribution properties. The second counter was also replaced

(a)
se-
rial
3-
bit
dat-
a-
p-
ath.

(b)
round-
based
48/96-
bit
dat-
a-
p-
ath.

Fig. 3. Two architectures for PRINTcipher.

by a register-based counter which decreased the gate count by another 12 GE (35%). Finally
we completely omitted the FSM and replaced it with some combinatorial gates to generate
the control signals required (e.g. for the MUX). In total, by omitting the FSM and optimizing
the control logic, we were able to save 54 GE (45%).

As part of our quest for a minimal S-box, we used the Boolean minimization tool BOOM
II [7,8] to obtain the boolean functions of all 48 S-box variants that can be generated from a
3-bit S-box, by permuting the output bits and XORing a hardwired constant. Our synthesis
results show that the results vary between 10.67 and 12 GE, and we chose a minimal S-box.

In order to be able to present a detailed break down for each component of PRINTcipher

(see the accompanying table), we advised the compiler to compile simple, i.e. to keep the hi-
erarchy of the components. The smallest area footprint is achieved, however, if the compiler
uses the compile ultra command, which allows the merging and optimization of different com-
ponents simultaneously. Since the key xor is hardwired, the area requirements for the KeyXOR
component are dependent on the Hamming weight of the key. The implementation figures of
Figure 4 used a key with Hamming weight 24, thus the area footprint of a serialized imple-
mentation of PRINTcipher-48 is bounded by 386 GE and 418 GE for keys with Hamming
weight 0 and 48, respectively (694 GE and 758 GE for PRINTcipher-96). The results show

PRINTcipher-n n = 48 n = 96
serial round serial round

cycles 768 48 3072 96

throughput @100 KHz (Kbps.) 6.250 100 3.125 100

compile ultra sum 402 503 726 967

compile simple sum 411 528 733 1011

sequential: State 288 288 576 576
genRCi 31 31 36 36
NLFSR 23 0 30 0

combinational: MUX 7 0 7 0
KeyXOR 16 16 32 32
pLayer 0 0 0 0
RC XOR 16 16 19 19
sBoxLayer 11 171 11 342
control 12 4 15 4
other 7 2 7 2

Fig. 4. Implementation figures for PRINTcipher.

that both PRINTcipher variants scale nicely; by spending more area for additional S-boxes,
the throughput can be scaled (nearly) linearly. At this point it is noteworthy to highlight
the significant overhead (43 GE or 10.5%) that is required for additional control logic in a
serialized PRINTcipher-48 implementation. This shows that it is hard to gain further area
reductions. Furthermore, note that a 6-bit xor with the round constant RCi requires the same
area as the 48-bit hardwired xor with a key with a typical Hamming weight of 24.

While observing our earlier caveats about the use of power estimates in the context of
IC-printing, we did make some measurements for the likely power consumption of more
conventional silicon-based implementations. We used Synopsys PowerCompiler version A-

2007.12-SP1 [28] to estimate the performance of our implementations. Measurements using
the smallest wire-load model (10K GE) at a supply voltage of 1.8 Volt and a frequency of
100 KHz suggested a power consumption below 2.6 µW; a good indication that all PRINT-

cipher variants are well-suited to demanding applications including printed passive RFID
tags. It is a well-known fact that at low frequencies, as typical for low-cost applications, the
power consumption is dominated by its static part, which is proportional to the amount of
transistors involved. Furthermore, the power consumption strongly depends on the used tech-
nology and greatly varies with the simulation method. Thus we refer to the area figures (in
GE) as the most important measure and to have a fair comparison we do not include the
power values in Table 3.

Table 3. Hardware implementation results of some symmetric encryption algorithms.

key block cycles/ Throughput Tech. Area
Algorithm size size block (@100 KHz) [µm] [GE]

Stream Ciphers

Trivium [9] 80 1 1 100 0.13 2,599
Grain [9] 80 1 1 100 0.13 1,294

Block Ciphers

PRESENT [22] 80 64 547 11.7 0.18 1,075
SEA [17] 96 96 93 103 0.13 3,758
mCrypton [16] 96 64 13 492.3 0.13 2,681
HIGHT [12] 128 64 34 188 0.25 3,048
AES [6] 128 128 1,032 12.4 0.35 3,400
AES [11] 128 128 160 80 0.13 3,100
DESXL [15] 184 64 144 44.4 0.18 2,168

KATAN32 [2] 80 32 255 12.5 0.13 802
KATAN48 [2] 80 48 255 18.8 0.13 927
KATAN64 [2] 80 64 255 25.1 0.13 1054
KTANTAN32 [2] 80 32 255 12.5 0.13 462
KTANTAN48 [2] 80 48 255 18.8 0.13 588
KTANTAN64 [2] 80 64 255 25.1 0.13 688

PRINTcipher-48 80 48 768 6.25 0.18 402
PRINTcipher-48 80 48 48 100 0.18 503
PRINTcipher-96 160 96 3072 3.13 0.18 726
PRINTcipher-96 160 96 96 100 0.18 967

Table 3 compares a selection of lightweight block and stream cipher implementations
that have been optimized for a minimal area footprint. It can be seen that the serialized
implementation of PRINTcipher requires the least amount of area for its block and key sizes
(402 GE). Moreover, spending additional 100 GE (or 25%) the throughput can be increased
16 fold to 100 Kpbs at a frequency of 100 KHz, while still having a remarkably small area
footprint. The resulting throughput per area ratio of 198.8 Kpbs per GE is even suited for
high-speed applications though our main focus is on a low area footprint.

It is noteworthy to stress that we designed PRINTcipher to be secure even in the absence
of a key schedule. This allows for significant area savings, because no flipflops to store the
key state are required. Of course one could hardwire all the roundkeys for any cipher with
a key schedule and, theoretically, this would allow for similar savings. In practice, however,
this is not the case. Since all low-area implementations are serialized or round-based designs,
one needs complex additional logic to select the right roundkey or even the right part of the
roundkey. For a serialized AES for example, one would need a 128-bit wide 11-to-1 MUX to
select the correct roundkey plus an 8-bit wide 16-to-1 MUX to select the right chunk of the
roundkey. Our experiments reveal that a 128-bit wide 8-to-1 MUX already consumes 1276
GE, which makes it more efficient to store the key state in flipflops (768 GE) than to hardwire
the roundkeys.

Though they have not been the focus of our design, for those interested in software im-
plementations we estimate the performance of PRINTcipher on a 64-bit platform to be
around 5-10 times slower than an optimized AES implementation: merging the permutation
and using 6-bit S-boxes could give an implementation with 9-12 cycles per round. With 48
rounds this amounts to 72-95 cycles per byte while AES runs in 10-20 cycles per byte.

6 Conclusions

In this paper we have considered the technology of IC-printing and we have seen how it might
influence the cryptography that we use. In particular we have proposed the lightweight block
cipher PRINTcipher that explicitly takes advantage of this new manufacturing approach.
Naturally it must be emphasized that PRINTcipher-48 is intended to be an object of
research rather than being suitable for deployment. It is also intended to be a spur to others
who might be interested in considering this new technology. Certainly we believe that the
properties of IC-printing could be an interesting line of work and we feel that it helps to
highlight several intriguing problems in cryptographic design, most notably how best to use
a cipher key.

References

1. A. Bogdanov, L.R. Knudsen, G. Leander , C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, and
C. Vikkelsoe. present - An Ultra-Lightweight Block Cipher. In P. Paillier and I. Verbauwhede, editors,
Proceedings of CHES ’07, volume 4727 of LNCS, pages 450–466. Springer, 2007.

2. C. de Cannière, O. Dunkelman, and M. Knezević. KATAN and KTANTAN–A Family of Small and Efficient
Hardware-Oriented Block Ciphers. In C. Clavier and K. Gaj, editors, Proceedings of CHES ’09, volume
5747 of LNCS, pages 272–288. Springer, 2009.

3. B. Collard and F.-X. Standaert. A Statistical Saturation Attack against the Block Cipher PRESENT. In
Topics in Cryptology — CT-RSA 2009, LNCS, volume 5473,pages 195–211.

4. J. Daemen, R. Govaerts, and J. Vandewalle. A new approach to block cipher design. In R. Anderson,
editor, Fast Software Encryption, Cambridge Security Workshop, Cambridge, UK, December 9–11, 1993,
volume 809 of Lecture Notes in Computer Science, Springer-Verlag, pages 18–32, 1994.

5. EPCglobal. Organisation information available at www.epcglobal.com.
6. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a Grain of Sand. Information

Security, IEE Proceedings, 152(1):13–20, 2005.
7. P. Fǐser and J. Hlavička. BOOM - A Heuristic Boolean Minimizer. Computers and Informatics, 22(1):19–

51, 2003.
8. P. Fǐser and J. Hlavička. Two-Level Boolean Minimizer BOOM-II. In Proceedings of 6th Int. Workshop

on Boolean Problems – IWSBP’04, pages 221–228, 2004.
9. T. Good and M. Benaissa. Hardware Results for Selected Stream Cipher Candidates. State of

the Art of Stream Ciphers 2007 (SASC 2007), Workshop Record, February 2007. Available via
www.ecrypt.eu.org/stream.

10. GOST. Gosudarstvennyi standard 28147-89, cryptographic protection for data processing systems. Govern-
ment Committee of the USSR for Standards, 1989 (in Russian).

11. P. Hämäläinen, T. Alho, M. Hännikäinen, and T. D. Hämäläinen. Design and Implementation of Low-Area
and Low-Power AES Encryption Hardware Core. In DSD, pages 577–583, 2006.

12. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. S. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim,
J. Kim, and S. Chee. HIGHT: A New Block Cipher Suitable for Low-Resource Device. In L. Goubin
and M. Matsui, editors, Cryptographic Hardware and Embedded Systems — CHES 2006, number 4249 in
Lecture Notes in Computer Science, pages 46–59. Springer-Verlag, 2006.

13. Kovio. Company information available via www.kovio.com.
14. X. Lai, J. Massey, and S. Murphy. Markov ciphers and differential cryptanalysis. In D. Davies, editor,

Advances in Cryptology - EUROCRYPT’91, volume 547 of Lecture Notes in Computer Science, Springer-
Verlag, pages 17–38, 1992.

15. G. Leander, C. Paar, A. Poschmann, and K. Schramm. New Lightweight DES Variants. In Proceedings of
Fast Software Encryption 2007 – FSE 2007, volume 4593 of LNCS, pages 196–210. Springer-Verlag, 2007.

16. C. Lim and T. Korkishko. mCrypton - A Lightweight Block Cipher for Security of Low-cost RFID Tags
and Sensors. In J. Song, T. Kwon, and M. Yung, editors, Workshop on Information Security Applications
— WISA 2005, volume 3786 of Lecture Notes in Computer Science, pages 243–258. Springer-Verlag, 2005.

17. F. Mace, F.-X. Standaert, and J.-J. Quisquater. ASIC Implementations of the Block Cipher SEA for
Constrained Applications. In RFID Security — RFIDsec 2007, Workshop Record, pages 103 – 114, Malaga,
Spain, 2007.

18. M. Matsui. New Structure of Block Ciphers with Provable Security against Differential and Linear Crypt-
analysis. In D. Gollmann, editor, Proceedings of FSE 1996, volume 1039 of LNCS, pages 205–218. Springer-
Verlag, 1996.

19. PolyIC. Information available via www.polyIC.com.
20. A. Poschmann, M.J.B. Robshaw, F. Vater, and C. Paar. Lightweight Cryptography and RFID: Tackling

the Hidden Overheads. In D. Lee and S. Hong, editors, Proceedings of ICISC ’09, Springer, to appear.
21. M.J.B Robshaw. Searching for Compact Algorithms: cgen. In P. Nguyen, editor, Proceedings of Vietcrypt

2006, volume 4341 of LNCS, pages 37–49. Springer-Verlag, 2006.
22. C. Rolfes, A. Poschmann, G. Leander, and C. Paar. Ultra-Lightweight Implementations for Smart Devices

- Security for 1000 Gate Equivalents. In G. Grimaud and F.-X. Standaert, editors, Smart Card Research
and Advanced Application — CARDIS 2008, volume 5189 of Lecture Notes in Computer Science, pages
89–103. Springer-Verlag, 2008.

23. D. Samyde, S. Skorobogatov, R. Anderson, and J. Quisquater. On a New Way to Read Data from Memory.
SISW ’02: Proceedings of the First International IEEE Security in Storage Workshop, pages 65–69. IEEE
Computer Society, 2002.

24. B. Schneier. Description of a new variable-length key, 64-bit block cipher (Blowfish). In R. Anderson,
editor, Proceedings of FSE 1993, volume 809 of LNCS, pages 191–204. Springer-Verlag, 1994.

25. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, Hall, and N. Ferguson. Twofish: A 128-bit block cipher.
Submitted as candidate for AES. Available via www.nist.gov/aes.

26. F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater. SEA: A Scalable Encryption Algorithm for
Small Embedded Applications. In J. Domingo-Ferrer, J. Posegga, and D. Schreckling, editors, Smart Card
Research and Applications, Proceedings of CARDIS 2006, LNCS, volume 3928, pages 222–236, Springer-
Verlag.

27. Synopsys. Design Compiler User Guide - Version A-2007.12. Available via http://tinyurl.com/pon88o,
December 2007.

28. Synopsys. Power Compiler User Guide - Version A-2007.12. Available via http://tinyurl.com/lfqhy5,
March 2007.

29. Virtual Silicon Inc. 0.18 µm VIP Standard Cell Library Tape Out Ready, Part Number: UMCL18G212T3,
Process: UMC Logic 0.18 µm Generic II Technology: 0.18µm, July 2004.

Appendix A: Testvectors

Table 4. Testvectors for PRINTcipher-96 in hexadecimal notation.

Testvector 1 Testvector 2
plaintext 5A97E895A9837A50CDC2D1E1 A83BB396B49DAA6286CD7834

key 953DDBBFA9BF648FF6940846 D83F1CEF1084E8131AA14510

permkey 70F22AF090356768 62C67A890D558DD0

ciphertext 45496A1283EF56AFBDDC8881 EE5A079934D98684DE165AC0

Testvector 3 Testvector 4
plaintext 5CED2A5816F3C3AC351B0B4B 61D7274374499842690CA3CC

key EC5ECFEF020442CF3EF50B8A 2F3F647A9EE6B4B5BAF0B173

permkey 68EA816CEBA0EFE5 A07CF36902B48D24

ciphertext 7F49205AF958DD440ED35D9E 3EB4830D385EA369C1C82129

Table 5. Sequence of RCi for PRINTcipher-96 in hexadecimal notation.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

RCi 01 03 07 0F 1F 3F 7E 7D 7B 77 6F 5F 3E 7C 79 73 67 4F 1E 3D 7A 75 6B 57

i 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

RCi 2E 5C 38 70 61 43 06 0D 1B 37 6E 5D 3A 74 69 53 26 4C 18 31 62 45 0A 15

i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

RCi 2B 56 2C 58 30 60 41 02 05 0B 17 2F 5E 3C 78 71 63 47 0E 1D 3B 76 6D 5B

i 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

RCi 36 6C 59 32 64 49 12 25 4A 14 29 52 24 48 10 21 42 04 09 13 27 4E 1C 39

Table 6. Cipher example for PRINTcipher-48 in hexadecimal notation.

plaintext key permkey ciphertext

4C847555C35B C28895BA327B 69D2CDB6 EB4AF95E7D37

Rd. RC keyAddition pLayer RC XOR S-box perm. S-box

1 01 8E0CE0EFF120 ED9921498D92 ED9921498D93 ED92A24B0AE3 5B12FB6E89BE

2 03 999A6ED4BBC5 A9DE9DEC68E1 A9DE9DEC68E2 65BF1EEC6991 C765F5585F59

3 07 05ED60E26D22 0D8345DB891C 0D8345DB891B 0D88C67B886B 1B0F85D50E66

4 0F D987106F3C1D 90FA448917F7 90FA448917F8 517A442917F8 7DA8472D9C90

5 1F BF20D297AEEB EAEB7C66A29B EAEB7C66A284 E76AFCC6C484 46D997A676C7

6 3E 8451021C44BC 84015030F6C4 84015030F6FA 4800D09277B9 6C0198FFAD51

7 3D AE890D459F2A A21FEB888A8E A21FEB888AB3 621FEB2A0CB3 C394A62F8AEE

8 3B 011C3395B895 21B2166079C3 21B2166079F8 21D815C079F8 234E1CA02E90

9 37 E1C6891A1CEB D21646B4A739 D21646B4A70E D21C45B6464D BF9A4493FC4C

10 2F 7D12D129CE37 7E6B4E01D46B 7E6B4E01D444 BE6ACD033304 8BD98C02E3C7

11 1E 495119B8D1BC 343C0771F644 343C0771F65A 385607D37729 344C02BEADE1

12 3C F6C497049F9A F273FBB01388 F273FBB013B4 F279FBB014F4 5FAE969C17AF

13 39 9D26032625D4 80C9572711F0 80C9572711C9 4122D78591CA 61B39AE7108B

14 33 A33B0F5D22F0 8284BE2EFCA6 8284BE2EFC95 43053D8EFAA6 6287D4FA28FD

15 27 A00F41401A86 8A120A28096C 8A120A28094B 46180988094B 679E09EC0F0E

16 0E A5169C563D75 C2B7C50CF1F1 C2B7C50CF1FF C35DC60E71FF A2CA851BA092

17 1D 604210A192E9 323008758223 32300875823E 325008D7043D 3FC008B28614

18 3A FD489D08B46F F2FDC6148E49 F2FDC6148E73 F377C5160F33 5EAC841385EE

19 35 9C2411A9B795 A0F94B631543 A0F94B631576 6172CBC19375 C1A38EA3132C

20 2B 032B1B192157 00A437063C6F 00A437063C44 01443704DB04 01F62A04C9C7

21 16 C37EBFBEFBBC F5B6BF73FFF0 F5B6BF73FFE6 F9DD3FD3FFD5 574BD2BD249C

22 2C 95C3470716E7 8851DEB480FF 8851DEB480D3 4431DDB601A3 6460B493817E

23 18 A6E82129B305 A3912B930C43 A3912B930C5B 6390AB318B2B C110E63F09E6

24 30 039873853B9D 09B23FE05AC3 09B23FE05AF3 05D83FE03DB3 074E12406B6E

25 21 C5C687FA5915 D41397D93571 D41397D93550 D81997795360 B41F5AD5C338

26 02 7697CF6FF143 7ED5B38D45BF 7ED5B38D45BD BF35B32D22FE 8AE76E39B395

27 05 486FFB8381EE 792C13768B7E 792C13768B7B B4C613D68D7B 90FC1EB20B16

28 0B 52748B08396D 50D63316C741 50D63316C74A 913C3316A749 FDEA2E123D09

29 17 3F62BBA80F72 436F7F579428 436F7F57943F 82EEFF57923F E25592711212

30 2E 20DD07CB2069 028092DCCF17 028092DCCF39 0301117E2E7A 0281D9CBB453

31 1C C0094C718628 B804C809AA06 B804C809AA1A 7405480B4C29 D007080EFA21

32 38 128F9DB4C85A 6466A2C53BAC 6466A2C53B94 A86D21655CE4 8C5BF9C5CBBF

33 31 4ED36C7FF9C4 3D9FA1BD64F6 3D9FA1BD64C7 3D9FA2BD6387 2B157B89D342

34 23 E99DEE33E139 FF8C9581FB17 FF8C9581FB34 FF8716237C74 490DDD22AA6F

35 06 8B8548989814 A81E24C03544 A81E24C03542 641E24605341 C4143FC04301

36 0D 069CAA7A717A 4595318DFF18 4595318DFF15 8994B22F7E66 EF16EB3AA47D

37 1B 2D9E7E809606 2B3DDCC04968 2B3DDCC04973 26D7DC602973 264CB7C03F2E

38 36 E4C4227A0D55 9303519D3551 9303519D3567 5288D23D5357 7E0F9B29C31A

39 2D BC870E93F161 A6DD91C4A137 A6DD91C4A11A 6B3792664069 CEED5BC7F061

40 1A 0C65CE7DC21A 6C0D981B378E 6C0D981B3794 AC079819D6E4 980D70174DBF

41 34 5A85E5AD7FC4 5DDAEBE505C6 5DDAEBE505F2 9DBB6BE503F1 EB69264582A9

42 29 29E1B3FFB0D2 63B816FF349E 63B816FF34B7 A3D215FDD2B7 81421C4B42EA

43 12 43CA89F17091 549426F93823 549426F93831 991425F95832 F5963C55CE2B

44 24 371EA9EFFC50 67D7664D5DB2 67D7664D5D96 ABBCE54D3AE5 8D6BBC79E9BC

45 08 4FE329C3DBC7 351F2FFE007F 351F2FFE0077 389EAFFC8137 3494E24881EA

46 11 F61C77F2B391 BBF1BB697911 BBF1BB697900 77F1BBC97840 D12156ADAE40

47 22 13A9C3179C3B 68527682BA9F 68527682BABD A4387522DCBE 846E6C224AD5

48 04 46E6F99878AE 5DB722F2A768 5DB722F2A76C 9DDCA1F2C75C EB4AF95E7D37

